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Dynamical correlation functions of the transverse spin and energy density for the
one-dimensional spin-1/2 Ising model with a transverse field*~
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Dynamical correlation functions for the transverse (along the direction of the field) spin and energy densi-

ties are calculated for the one-dimensional spin-I/2 Ising model with a transverse field H = —I Z; S,.
—JZ,.S,. S,'+, . Explicit results are obtained for (I S (q,u)S~ {—q)t&, &{E(q,w), E(—q)I &, and their Fourier
transforms in the limits T = ~ and T = 0 and for the autocorrelation functions ((S~,S", (t)J& and ({E;,E,(t)) & in

the same limits. The results are discussed with special attention given to the coupling of the transverse spin

component and energy densities.

I. INTRODUCTION

The Ising model with a transverse field (IMTF)
has been much studied lately because of its useful-
ness in describing phase transitions in a variety of
systems. The one-dimensional spin--,' IMTF is of
special interest because it can be solved exactly. ~ '
The work on the one-dimensional lattice has been
primarily concerned with thermodynamic proper-
ties. In this paper we will extend the analysis to
dynamical properties, studying in particular the
infinite-temperature limit of the transverse-spin
and energy-density correlation functions.

Recently it has been pointed out that the pres-
ence of the transverse field leads to a coupling be-
tween the fluctuations in the transverse magnetiza-
tion and the energy density. ' This coupling gives
rise to an energy-density term in the transverse-
spin correlation function. Because of the special
properties of the one-di. mensional spin- —,

' IMTF, both
the transverse-spin correlation function and the en-
ergy-density correlation function can be calculated
exactly. Thus we are able to study the effects of
this coupling directly without recourse to hydro-
dynamic arguments or computer simulation.

The remainder of this paper is divided into four
sections. In Sec. Q we outline the calculation of
the correlation functions, while in Sec. IG we pre-
sent explicit results for the transverse (along the
direction of the field) spin and energy correlation
functions in the limiting cases T= 0 and T = ~. Our
results are discussed and compared with the pre-
dictions of a thermodynamic-hydrodynamic theory
in Sec. IV. Section V summarizes our findings.

II. CALCULATION OF THE CORRELATION
FUNCTIONS

A. Transformation to noninteracting fermions

H= —res;" —J ps;s';„.
We consider only the case of the cyclic chain in
which case the second sum in the Hamiltonian (1)
runs over the interval 1 & j ~X with S~„=S', . By
making the transformations~

a~i = 8;+iS,'-,

a;=8,' —i$;,
which imply

(2a)

(2b)

(2c)

i-1

c;=exp mi ~ a&a, a;,
j=1

i-1

c; =a, exp —m a;a, ,
j-;1

the Hamiltonian becomes

(3a)

(sh)

H = —rp(c';c, —-', ) ——Q(c'; —c;) (c;„+c;,,)
i=1 &=1

(cN —c~) (ct + cy) (8 + ) q (4)

where

The operators c; and c~i are fermion operators.
As in Pfeutya and I,ieb, Schultz, and 'Mattis, ' we

neglect the last term of Eq. (4) for large systems.
The Hamiltonian (4) is then a quadratic form in
fermion operators and may be diagonalized to

The Hamiltonian for the IMTF may be written
as (we shall follow the notation of Pfeuty2 through
out this paper)

by the transformation

(7)
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Defining X= J'/2I', we-f-ind, for XW1,

(2/N)'/ si.nkj, k &0
(2/N)'" coskj, k ~ 0

(C)„=—. A,'[(1+ /(. cosk)P„, + (X sink)Q ~],
with

A2~= (1+La+ 2K cosk)

(8)

(10)

(A, B)= '(A—B+BA) .
From (14) and (15) we can obtain the time-depen-
dent correlations (/S"(- q), S"(q, t))& and ((Z(- q),
Z(q, t))& by means of Fourier transforms. We will
also calculate the autocorrelation functions ((S";,
S",(t)) & a.nd &(Z, , Z, (t))&.

The various correlation functions involve the op-
erators S/(t) and S/(t), which have the time depen-
dence

k = 2iim/N, S u(t) eiHt Sqq(0)e iHt- (20)

1 1
~ ~ ~ 4)0p ~ ~ ~ p2g1 N even

m = —2(N- 1), . . . , 0, . . . , ~ (N 1), N -odd.

For ~=1 and m= —2N,

—0 (t)
—N-i/2

(t) ~ N-i/2 (12)

(We have set k= 1. ) The time dependence is com-
plicated because 9& and $& do not commute with H.
We avoid this difficulty by using the transformations
(2), (3), and ('7) to convert the a,bove into operators
involving ii~(t) and rtt(t). The noninteracting fer-
mion operators have the simple time dependence

Transformation (6) can be inverted, giving

1
[(~))/ 4/) 7)l (4 k/ 4/) 7)) ]

B. Dynamical correlation functions

We wish to calculate the spin-spin and energy-
energy correlation functions

~ (t) eiMt~ (0) i//t -ir/4&t-

~t(t) eir/4)t

(21)

(22)

The correlation functions are then expressed as
sums of products of Q's and (j)'s multiplied by cor-
relation functions involving g„'s. The latter cor-
relation functions can be easily evaluated using
Wick's theorem as applied to statistical mechan-
ics. ' The contractions are defined by

((s"(-q), s "(q, ~))&

e '"'
& (s"(- q), s "(q, t)) ) dt

2r

((z(- q), z(q, (o))&

e'"' E —,E, t dt,

where

(23b)

(23c)

Since the intermediate steps are lengthy we report
only the final results. The details of the calcula-
tion are given elsewhere.

III. RESULTS

s"(q, t) = g e'" s,"(t)

z(q, t) = P e"' z, (t),

(16)
A. J=2I', all q, T=o, and T=~

For J=2I' we have X=1 and I'=I', = —,'J. This is
the field-strength ratio at which ordering can just
take place at zero temperature. For A. = 1 a num-
ber of expressions simplify; we have

with the energy density defined as
—(2/N)' sink(j+ —,'), k&0
—(2/N)' 'cosk(j+-,'), k~0 (24)

z, (t) = —r s",(t) ——,
' z[s', (t)s'„,(t)+ s,', (t)s,'(t)] .

(18)
These are symmetrized correlation functions in
which

Ag = 2 cos2k' ~ (26)

For T= ~, X=1, and defining + =(d/I', we find

((S"(-q), S"(q, (d))&=——- — '. , 2- —8(4 sin —,'q —(4))e(4sin —,'q+(d )+
N 1 [(4sin-,'q)' —(d']'/' . , -, [(4cos-,'q)' —~']' '
4)) I' (4 sin-,'q)2 ' '

(4 cos—,'q)2

xe(4 coc-,'q —c))e(4 coo—', q+c)) (26)
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Rnd

({E(-q), E(q, (o)}&
= ' . , 2 (3 + cosq+ 4 cos —,'q) 9(4 sin —,'q -.(o)6(4 sin —,'q+ (d)

r N [(4 sin-,'q)2 ~2]«2
a2 4 sin —,'q

4 cosl 2 2 1/2
+ ', , (q+cosq —qcos-,'q)e(qcos-,'q —c))e(4 coo-,'qsc))),

4 cosqq
(27)

where 6(x) is the Heaviside function, which is de-
fined as

() 1ifx)0,
Q jf g(Q.

See Figs. 1 and 2. Equations (26) and (2V) can be
Fourier transformed using Eq. 1.3(a) of Ref. 11.
We obtain

Rnd

([e(- q), e(q, c)j)=(-, ) s(q)

([q*(-q), q*(q c)])=(—„) s(q)

N Z2(4rt cos-,'q)
2 4T tcos4q (35)

({s"(- q), s "(q, t)] &

N J;(4rtsin-,'q) J,(4rtcos-,'q)
&i

4 4I't sin-,'q 41't cos-,'q i
Rnd

((E(- q), z(q, t)] &

I'2N /Z, (4rt sin-,'q)
(3+ cosq+4 cosaq)

8 & 4I'tsin —,q

(2O)

I" N Z, (4rtcos —,'q)
+ i (3 + cosq —4 cosaq)4Ft cos4q

(3a)

Rnd

({s",, s",(t)] &
= -,'([z,(2rt)]2+ [g,(2rt)]2] (3'7)

The autocorrelation functions may be expressed
in terms of Bessel and related functions (see Ref.
12). For T= ~ we find

+ -',' (3+ cosq —4 cos-,'q)Z, (4I't cos-,' q)
41"tcos —'q

where Z, (x) is the Bessel function of order one.

For T=O, X=1, we find

((s*(-q), s "(q, (d)] &
=—— 5(q)t](ai)

1 N

(30) ([;, ;( )])= r'([ (qrq)]'+[q (qr()]'

z,(2rt)z, (2rt) [z,(2rt)]'
2rt a(r t)'

and for T=O we find

(3a)

Rnd

N 1 [(4cos—,'q)2 —P]'i2
22 I' (4 cos-,'q)'

x 9(4 cos—,'q —(o)6(4 cos-,' q+ (o)

(z(q)&, , = —(2r N/w)~(q),

((E(- q), E(q, (o)] &
=— — 5 (q)[) (&u)

1 2I'N

I'N [(4cos—,'q)2 —(d2]' i2+, r, 2 (3+cosq —4 cosaq)4g (4 cos4q)

x 9(4 cos—,'q —(o)6(4 cos—,'q+ (o) .
Note that

(s"(q)&, ,= (N/~)g(q)

(32)

(33)

(34)

i.0

8
CJ'

CO
~s

0.5
I

CO

V

0

& (S (- q ), S ")t q, e) ) ) +

J
X= aE'=i

q ~0.05

q= ~/2

I

2
co/ F

.05

the squares of which appear in the first terms in
(31) and (32), respectively. See Figs. 3 and 4.
Fourier transforming (31) and (32) we obtain

FIG. 1. (I'/N) ({S"(-q), S (q, (e)}) vs (e/I at 7=, for
A, = J/2X'=1, Eq. (26).
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I.O

A

3
Cf

~ 0.5-
I

QJ

V

—&fE (-q), E (q, ())) ) &

1=2' -IJ

T =Co

q = 0.05

and

4N(1 —z)t )()(a)) for X(1
—,'N[ —,'()(o))] for )). ~ 1

the two quasiresonant peaks coalesce j.nto one
broad peak (see Fig. 1). For q=o, T= ~, we find

&{s"(-q), s"(q, )}&,=,

1 N [4)ts (4 "2 1 )tR)s]1/2
l" 16m

&&[6(o) —2
I
1 —A.

I
)6(2(1+X) —(d)

+ e(~+2(1+))))e(-211—)
I

—~)]

&(z(- q), z(q, (u)}&, ,=-,'xr'(I+)(')()( ) . (44)

FIG. 2. (I/I' N) ((E(—q), E(q, &a))& vs &u/I' at T=~, for
z=z/2r=z, zq. @7).

1 Z (2I't) 2 1

ir (2('t)~ ir (2(t)') '' (4o)

J„(z) i.s the Bessel function of nth order, which may
be defined in integral form as

1 f
J„(z)=— cos(n8 —z sin8) d8

p

and Z„(z) is the related Anger-Weber function,
which is defined as

1 f
Z (z) =— sin(n8 —z sin8) d8.n

(41)

B. q=O, all ~=J/ZI', T=O,and T=

For T= ~ and small q, &(S"(-q), S"(q, o))}& has
two terms, a narrow peak at ~ =0 which is due to
the long-time asymptotic behavior of &(S"(-q),
S"(q, t)}& and two (Iuasiresonant peaks at plus and
minus a finite frequency which are due to the rap-
idly decaying part of &fs (- q), S"(q, t)] ). For )(= 1

&$S";, S";(t)}&=1/m + —,'g[Z (2rt)]s+[Z, (2rt)]'
—[z,(2rt)]' —[z,(2rt)]' } (29)

and

4X'
((z;, z;(t))) = +("([&(3('&)I'+(&(2~'))'

g,(2rt) z, (2rt) [z,(2rt)]'
2I"t 2(2I't)

—[z,(2r t)]'- [z,(2rt)]'

z,(2rt)z, (2rt) [z,(2r t)]' 2 z,(2rt)
2rt 2(2rt)'

For small but finite q the central peak acquires
a finite width. This width is determined by the fac-
tor ()((o —rA~+rA„,,)+()((d+rA„—1"A„,,), which im-
plies that for small q the term is nonzero only for
—X'Aq&&&lAq, where A is the minimum of X and
1. The behavior of the quasiresonant part of
&$S"(- q), S"(q, (o)}&,.0 [i.e. , the part proportional
to ()(o)) has been subtracted out] for various values
of & is shown in Fig. 5.

For T=0 and q=0 we have

&{s"(-q), s"(q, )}&, , -&s"(o)&'('( )

[4~' - (-'(d' —)(' —1)z]
Bw 1' l~t

x[e(o) —2
I
1 —x

I
)e(2(1+x) —(o)

+6((d+2(I+)t))e(-2I1- ~I —(o)],

3
0.06

CF

4'
e)l A

Q'

CO

V
I

A

0.05—

CO

CF
I

CO

V

2
OJ/ F

FIG. 3. (I/N)(&(S "(-q), S"(q, &u))& —{S"{q)& t)(q)()(m)]
va ~/I" Rt T=O, .for A. = J/2&=1, Eq. (31).
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) S(~)

[E(q = 0), H] = 0, (50)

J,(z) - —,'zr(v+I) (52)

and so for q = 0 and infinite temperature we can
compute the correlation function & JtE(- q),E(q, t)I&
without making use of the fermion representation.
We have

&&E(0),E(O, t))& =& tE(0), e*"'E(O)e '"')&

=
& IE(0), E(0))&

= —,'N I"'() '+1),
which is constant in time, and so the frequency
Fourier transformation yields expression (44) di-
rectly. By using the small-argument expansion of
the Bessel functions

2

0J/I

where

&S"(q)&=-,'6(q) Q
N ' 1+Xcosk
2m, (1+X'+ 2A. cosk)' ' ' (46)

FIG. 4. (I/I'N)[&(E(-q), E(q, co))) —&E(q)) 6(q)6(co)]
vs co/1" at T=O, for A. = J/2I'=1, Eq. (32). (For q=0 the
function is 0. )

we can see that expression (30) for the time corre-
lation function &IE(- q), E(q, t)) ) for X = 1 reduces in
the limit q =0 to expression (51).

For small q and finite temperatures, the corre-
lation function of the energy-density fluctuations
&(E(-q), E(q, (u)}& —&E(q))' still has a peak about
cu = 0 of the same width as at T = ~, but reduced in
intensity. Note that &F(q)& =0 for T= ~.

At zero temperature the intensity is equal to zero
when q =0, and so the energy-density-fluctuation
correlation function has a peak only for finite T, as
shown in (32) and (47). That the correlation func-
tion equals zero at T =0 for q = 0 can be explained
by thermodynamic arguments. The specific heat
of the system is equal to ((E(q =0)s& —(E(q =0)&s)/
kT . Since specific heats vanish at zero tempera-

&(E(-q) E(q )J'&,=o- &E(0)&'6( ) =o

where

&E(q)&= ——6(q) g &. = E.5(q)

and Eo is the ground-state energy:

(47)

(48)
~ 0.025

oO 020

I l I

—& S (-q), S (q,(u)
X X

q=O'resonant structure
q=0

NlEo= ——~/II, =- (I+A +2Xcosk)' dk .O, Z ~ 4
(49)

IV. DISCUSSION OF THE RESULTS

A. Energy -energy correlation functions

Expression (27) shows that as q becomes small
the energy-density correlation function &(E(-q),
E(q, ~)j& at infinite temperature becomes peaked
about co =0 with a broad low background. In the
limit q = 0 the peak becomes a 5 function of (d and
the background disappears. This behavior is
shown in expression (44), which gives the correla-
tion function for q =0 and arbitrary ~. The 6 func-
tion for q =0 and the peaking for small q is due to
the fact that the energy density for q =0 is the Ham-
iltonian operator and hence is a constant of mo-
tion, i.e. ,

II O. OI5
A

3.
O. OIO-U'

CO

CF
I

0.005—
V

Io
oJ /I

I5

FIG. 5. Quasiresonant peaks of (1/N) &(S"(—q),
S"(q, e)}) 0 vs co/F at T=~, for various values of
p = J/2r, Eq. (43).

20



DYNAMICA L CORRE LATION FUNCTIONS OF T HE. . . 455

ture, we must have (E ) —(E) = 0 at 7= 0.
Although the spectrum of the correlation function

of the energy-density fluctuations is peaked about
~ =0 for small values of q, this peaking is not due
to diffusion since the asymptotic behavior is not of
the form e ' '. The absence of diffusion agrees
with the fact that the IMTF for the spin- —,

' chain can
be transformed to a system of noninteracting quasi-
partieles. Simple arguments in the kinetic theory
of gases give the diffusion coefficient as being pro-
portional to the mean free path. If the particles
are noninteracting the mean free path is infinite,
and so the diffusion constant is infinite. Thus in
the case of noninteracting particles we would not

expect diffusion.
Qn the other hand the chain with S & 2 and the two-

and three-dimensional IMTF with arbitrary spin
do show diffusion. ' This can be established from
a calculation of the second and fourth moments of
the energy-density correlation function, m~ and

m4. For the one-dimensional spin-2 IMTF we have

mz ~q and m4 c~-'q, for small q. In contrast, for
S & —,

' and for arbitrary $ in two and three dimen-
sions, m~ ~q and m4 c(. q . The q dependence in

m4 for the one-dimensional spin--,' IMTF reflects
the fact that the thermal current operator, defined
by j =lim, ,(i/q)dE(q, t)/dt [= 2 JQ„S„'(S„'., —S'„&),
for one dimensional systems], is a constant of mo-
tion for this system, which is not the case in the
other examples of the IMTF.

It happens then that the spin- —,
' chain, by virtue

of the fact that it can be transformed to a system of
noninteracting quasiparticles, has behavior which
is quite different from the other cases. This is
seen in the lack of diffusion for the energy density
and will be seen in the form of the spin-spin corre-
lation function.

=((s"(o), s "(o))) . (54)

In the finite-temperature limit this equals &Ns(s+1)
,'N —which agrees with expression (43) for the spin-

correlation function.
In the other limiting case (i.e. , the Ising model)

we have

H=- ZgS', S;.„ (55)

and

Sx(q t) Qe&ele&H&sxe &Hi

e-Jt(s&+&+s ~ y) +S-e+tJ t(s~+~+s~ &)

l

(56)
where S; =S"&+iS', and S, =S",—iS'„and where we
have used

[s'„s,'] =+ 5 „s,.'

and

e"Ce "= C + —,[A, C] +—,[A, [A, C]]
1 1

1
+—,[A, [A, [A, C]]]+ ~ ~ ~

0

(56)

Hence for T = ~ we have

((S"(q = 0), S"(q = 0, t)) ) = 8 N(1 + co sd t), (59}

where we have used the fact that at infinite temp'er-
atures spins on different sites are uncorrelated,
together with the result

(e&J&s&) & e&J'&1/2+ & e&J& - &/ && 3cos& Jt (60)

Fourier transforming (59), we obtain

(fs"(-q),s"(q, ~))), , =-.'N5(~)+ —,', N[5(~+z)

B. Spin- correlation functions + 5((u —Z)], (61)

We first will look at the spin-correlation func-
tions in two limiting cases in which the correlation
functions can be analyzed without making use of the
fermion representation. If in the Hamiltonian

H =- res", -zgs*, s;.„
we set J=0 (i.e. , &=0 in the fermion representa-
tion), H represents a system of independent spins;
if we set I"=0 (i.e. , /&= ~), H is the Ising-model
Hamiltonian.

In the case of the free spins we have

(53)

so that the total x component of the spin is a con-
stant of motion and we have

((S"(q, t), S"(- q)})= (J&e'"'S "(q)e '"', S"(-q)))

which agrees with expression (43) in the limit
A.-~. Expression (61) shows ({S"(—q), S"(q, &u)))

as a function of ~ to have 6 function peaks at ~ = 0
and &u =+O'. The three-peak structure of (fsx(-q),
S"(q, &d))) is a general feature for small q; the
function is composed of two parts, quasiresonant
peaks at plus and minus a finite frequency and a
peak at (d = 0 which is related to the energy-density
correlation function. This can be seen in the ex-
pressions (26) and (43) and in Figs. 1 and 5. (For
the case ~=1 the two quasiresonant peaks coalesce
into a broad background. )

Comparing expressions (26) and (27) and expres-
sions (43) and (44) we see that the peaks about
co =0 for the energy-density and the spin-density
correlation functions are the same function of co

which is multiplied by different functions of q.
Thus for small q the spin correlation contains the
energy-density correlation. Such coupling of the
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(E(- q)E(q)) = ,'NI'a [—,
' Xa(1—+cosq)+1]

and using Eqs. (43) and (44) we find

[(fs"(- q), s "(q, ~)}&/&fs "(-q), s"(q)})],, „„
[((E(-q), E(q, ~)}&/&(E(-q), E(q)}],=0

(63)

whereas we obtain for T= ~

(x, —x.)/x, = I/(~'+1), (64)

which does not agree with the ratio predicted by
thermodynamic arguments given in Eq. (63). This
disagreement is related to the fact that the iso-
lated, or Kubo, susceptibility X~ for the spin- —,

'
chain is not the same as the corresponding adia-
batic susceptibility. We calculate the isolated
susceptibility as

x, = Rex„„„.(q = o, &u = o)

where I' denotes the principle value of the integral
and where in the last line we have used Eq. (43).
Thus we find

spin and energy densities is predicted by thermo-
dynamic arguments. ' These, together with the
hydrodynamic approximation when applied to the
simple cubic IMTF, lead to the expression'

((s"(-q), s'(q, )}) x.-x. F (q), x.
&]S"(-q), S*(q)}& x, v[~'+ Fs(q)']

(62)
where XT and Xs are the isothermal and adiabatic
susceptibilities in the x direction. The symbol I's(q )
denotes the decay rate of the temperature fluctua-
tions and is equal to D~q~, where DE is the ther-
mal diffusion constant. Also, f(~) is a slowly

varying function of q with a width (in frequency)
» Fz(q) and whose integral over the interval
( —~, ~) is equal to unity.

We noted earlier that for the spin- —,
' chain there

is no diffusion of the energy density, and so we
should replace the Lorentzian appearing in expres-
sion (62) by the normalized energy-density corre-
lation function. We also find for the spin- p chain
that the coefficient (xr —x~)/xr must be modified.
Noting that, for T = ~,

&S'(- q)s'(q)& =-,'N

which is equal to the ratio of the normalized corre-
lation functions as given in Eq. (63). So for the
spin--,' chain we must replace Xs by XI in the coef-
ficient of the energy-density term. The question
of which susceptibility, isolated or adiabatic, to
use in calculating the energy-density contribution
to the spin-density correlation function has arisen
before'; however, for most systems the question
is moot in that the isolated and adiabatic suscep-
tibilities are the same. Wilcox' has derived
bounds on the isothermal, adiabatic, and isolated
susceptibilities,

0- XI ~Xs ~XT ) (6V)

and has commented that it is not necessarily true
that Xs =XI in the thermodynamic limit, as has been
stated by others. Ver beck' and Siskens and
Mazur' have shown that the isolated susceptibility
equals the adiabatic susceptibility for ergodic sys-
tems. Mazur' has also shown that some systems
are nonergodic; in particular, the systems de-
scribed by the Hamiltonian

H =g [(1+y)S",.S",.„+(1 —y)s', .S',.„—Bs;].
j"-1

for a one dimensional chain of spin--,' are noner-
godic. For y=1 the above Hamiltonian reduces to
(1), the IMTF. Thus the IMTF for a spin- —,

' chain
is nonergodic, and so we have X, CXs; however, it
is seen that XI & Xs.

For the spin- —,'-chain IMTF we can write an ex-
pression analogous to that given in (62); we write

(66)

&1S"(-q), s "(q, ~))&

g(q, &u) = Fa(q)/~[(u'+ Fa(q)'], (vo)

where Fa(q) = Baq, with Da being the energy-dif-
fusion constant, Making these two identifications
we obtain Eq. (62) from (69).

The bifurcation of the spin-density correlation
function as expressed in (69) for the spin-& chain
is then a general feature of the Hamiltonian and is
independent of the hydrodynamic approximations.

V, SUMMARY

=()s*(.-s), s*(s))) "' ' s)s, ~) ~—'f)~)),
XT

'
XT

(69)
where g(q, cu) is equal to ((E(-q), E(q, &)}&/([E(-q),
E(q)}&, and it is assumed that lq I «1. f(v) is the
corresponding function of Eq. (62).

In fact Eq. (69) is a generalization of (62). For
ergodic systems we can replace X, with Xs in ex-
pression (69). If there is energy diffusion we can
approximate the correlation function ((E(-q),
E(q, w)}&/((E(- q), E(q)}) by the hydrodynamic form

1 —2X, ~&1
(66) The IMTF for the spin S= —, chain can be solved

exactly. It is hoped that results for this system
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will cast light on the dynamics of the three dimen-
sional IMTF. The dynamics of the one dimensional
chain will not be masked by approximations; how-
ever, the spin-2 chain does have some peculiari-
ties which the other realizations of the IMTF do
not have.

The energy-energy density correlation function
spectrum for q= 0 shows a peaking about co =0.
For the spin-& chain this behavior is nondiffusive,
whereas for the other systems it is diffusive. The
peaking about co=0 is, however, a general feature
of the IMTF.

The spin-spin correlation-function spectrum
shows a three-peak structure for q small and T=~.
This behavior which has been obse rved for the
three-dimensional IMTF' and which has been
shown to be due to the coupling of the energy and
transverse spin densities' is now seen to be a gen-
eral feature of the Hamiltonian and is not due to
hydrodynamic approximations. For the spin- —,

chain the energy density is not diffusive and y, 4 y~,
and so the three-peak behavior is expressed as in
(69). Expression (69) does reduce to the usual
form (62) in the other cases.
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