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Skeleton-graph approach to dynamical scaling
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We use the skeleton-graph e-expansion method to discuss the critical dynamics of a Bose liquid in d
= 4 —e dimensions. The treatment is limited to the question of the behavior at the critical
temperature of the frequency-dependent order-parameter correlation function (propagator) at zero
momentum. We And that a power-law variation with frequency is only possible when the system
acquires time-dependent Ginzburg-Landau behavior. Our analysis is incomplete in that the influence of
collective modes on the critical behavior is not taken into account in detail. In an appendix, we present
a powerful method for evaluating integrals associated with the Feynman graphs which arise in problems
in critical phenomena.

Recently, several works~ ~ have appeared in
which attempts are Inade to calculate the critical
dynamics of the interacting Bose system. One of
the important questions which has so far been un-
answered is whether or not scaling is va1id in the
critical region.

In this note, we address ourselves to the prob-
lem of the structure of the frequency-dependent
correlation function of the order parameter. Spe-
cifically, we look at the behavior of the propagator
G(k = 0, tu, 7= T,) at zero momentum and at the
critical temperature. We ask the question: Under
what circumstances is it possible for G((o) to ex-
hibit power-law behavior in ~'P By restricting
ourselves to T= T„we not only make the analysis
tractable, we also hope thereby to minimize the
effect of collective modes, which should be con-
sidered in addition to the fluctuations of the order
parameter. Any complete discussion of the criti-
cal dynamics must take account of these collective
modes and their hydrodynamic manifestations. 6'7

We use a method and a models similar to those
which were successful in the analysis of static crit-
ical behavior near four dimensions. Again, we
use a model microscopic Hamiltonian for liquid
helium coxxesponding to a two-component spin
field. The Hamiltonian is

where g(x) is the complex-order-parameter field
and xo is the chemical potential. We work in
d =4 —e dimensions and look for the dynamical ex-
ponent to the lowest nonvanishing order in a.

We conjecture that at the critical temperature
7, the retarded pxopagator has the form

where 8 is in general complex and may depend on
Here p is the dynamical exponent we seek. In

our choice of propagator, we are guided by the
following conditions: (a) The static limit is of the
form 1/k " and (b) the sign of the spectral function
should change at ~ =0. We can then write, first
for &=0,

G" = I/S&u' ', G = I/S*&u' ' (v & 0)

Gs=i/Sl~l' 'e"«-» G"=I/S~l(pl~-'e-"«-'& (~&0)

These forms correspond to the xetarded and ad-
vanced eontinuations of the Matsubara Green's
function

9 = I/S(i(o„)' '- G" (n & 0),

9=1/S+(i(o„)~ '- G" (n& 0)

where ~„=2mnk7; is the boson Matsubara frequen-
cy. The spectral function is 8 = (G" —G")/2mi and
is given by (S=S,+iS„S,&0)

We emphasize that if a power law is valid, both
the real and imaginary parts of G must have the
same power law. In what follows, we need only the
propagator to the zeroth order in &. I or finite 4,
it is given by

In the above, the case S, =0, Sz 0 0 corresponds
to the time-dependent Ginzburg-I. andau model
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(TDGL) discussed phenomenologically by Halperin,
Hohenberg, and Ma.

A further remark on our choice of propagator is
in order. The quantity S arises from the contribu-
tion of intermediate states of high momenta and
frequencies, which tend to dress the unperturbed
propagator even when E =0. That is, the skeleton-
graph expansion that we shall use sums the effects
of the critical fluctuations, and the introduction of
S is designed to give some account of what is there-
by left out. While we cannot compute S by the
present method, we give evidence below that it may
be driven to the TDGL form by the critical fluctua-
tions as ~-0.

We shall use the method of skeleton-graph ex-
pansion, details of which are given in Ref. 8. It
is first necessary to find the & expansion of
I'(k( =0, (d(), which is the analytic continuation to the
real frequency axes of the Matsubara four-point
vertex for zero momentum at T= T,. The argu-
ments of I' are the momenta and frequencies in the
three pair channels of l .

We have remarked earlier that we are going to
neglect the effects of collective modes throughout.
We therefore assume that there are no singularities
in the various vertex parts other than the critical
ones arising from the pair intermediate states in
the e expansion (par(luet expansion). Then, using
the homogeneity form for G given in E(l. (1),
we can show, from the structure of the skeleton-
graph expansion, ' that I" must scale as ~', where

g =(E —2')(l -p)/(2 —t/) = —,
' t+ O(e ) .

Therefore, to O(c), just as in the static case, '
r =r,& and is independent of ~.

To actually find 1"0, we construct a skeleton-
graph E expansion similar to that of the static cases
by considering the derivatives BI', /8(d( of those
parts of the continued four-point vertex that are re-
ducible in the ith channel. As in Fig. 1, i =1 is the
particle-particle channel, while i =2, 3 correspond
to particle-hdle channels. The equations are con-
structed as in the static case where we considered
81'(/Bk(. We find

k, 4) 43

k, G)m

k, 4)

k, 4)II)+4)f)

k.~m ~&

FIG. 1. Decomposition of four-point vertex 1 into
its reducible parts.
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The 0 sums are performed in four dimensions
[g, =(I'((((')fEdE, E=k']. We find

el'q 1 2 21 1
8&d 16v S (v —2E/S)

p2 g2

32~2

8I' 1 2 22iS 1
8(o 16m' '

I
Sl' ((d+2iS3E/I Sl')'

p2 g2
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If we look at the fuQ I' with the same frequency
~ in each channel, we have, just as in the static
case,

' = --,'I', &' — CQ g(k, (o )g(k, (u„—(d„),
m

= - ID~ & ~ kp&m ~ ks(dn+m

where the operation C means the continuation
i&o„- &a+i5. Here we have assumed that to O(e) on
the right-hand side it is allowed to take I"(k, u&)

= I'OE

It is only necessary to treat the Matsubara sums
to O(e ). Therefore, we use the unperturbed prop-
agators (iurS —k ) '. We perform the sums and
take the high-temperature limit k T,/(d» li~:

Then, with I' = I"Oao'~2, we find I'0 =Pm~. Our re-
sult is independent of S, provided S has an imagi-
nary part. Of course, we expect the self-energy
to have an imaginary part; it already develops one
in the second order of perturbation theory.

The procedure to determine the ~ exponent of 6
is also the same as the one we used in the static
case for the k exponent g. We construct the vertex
4 =1 —BZ/8&d, where again the derivative is taken
after analytic continuation of the self-energy Z to
the real co axis. Actually, A is an object with two
legs and its analytic structure is complicated in
the general case; it is described in Appendix A.
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C Q I~(O, k;(o„, (o„)g (k, (u„)
am

xA(k, (g) ) . (4)

Here Iz i.s that part of 1" which is irreducible in
channel 2; it contains 1, and I",. For the case at
hand, where there is no momentum transfer,

We construct a skeleton-graph expansion for A by
differentiating again with respect to ~. We find
[compare Eq. (7) of Ref. 8]

BA/s&o may be found to 0(a2) from the two graphs
shown in Fig. 2, where the solid dot is Fpz and the
solid triangle is the zeroth-order A(&o„) =S~+ig
x (sgnrn). We reserve the details of the integrals
for Appendix B. The result is

8A 1= ——3iqSqE(Sq/ Q), (5)

where q =pc~ is the }t exponent of G and E is a com-
plex function:

E(x) = F, + i' =[In~ --,'In(1+&xa)-Qln(1+ x~)+ 3x tan ~—', x+-', xtan 'x]+ i[ ——', xln+~+~~xln(1+/x~)

—~&xln( 1+ x~)+tan~ ,'x---,' tan 'x] .

Now we can check the possibility of a power law
for the propagator at T= T,. Suppose G"(k=O, ~)
has the form 1/S&u~ '. Then A = (1 —p)S+ ' and

8A =p(1 p)» — —= pS/~. — (6

Since we have found SA/8~ = 0(a ), we see that

p = 0(e ) and A = S+ 0(c ), To find p, we separate
the real and imaginary parts of Eq. (5):

BA~ 3qSP S~ 0( g)
840 (d S2

BAi 3rlS2 Sg
( q)

8(d (d S~

(7)

We therefore find power-law behavior only when

—SqFi( i/ a)=S2E2(S&/S2),

since A& and Aa must have the same exponent.
This condition is only satisfied when S, =0 in which

case, by comparing Eqs. (6, 7) we find

p =3/in+.

In this way, we find a power-law behavior for
G(& =0, u&) at T, only when the propagator has the

TDGL form and in that case the exponent is the
same as that of Ref. 10. Whether or not the TDGL
form is appropriate in the critical region is not
answered by this calculation. However, we can
give an argument that once S develops an imaginary
part S&, the order-parameter fluctuations drive the
propagator to the TDGL form (S- iS,) as the fre-
quency goes to zero. To see this, write A in the

form A= pe'8, where P and 8 are real functions of
TDGL corresponds to 8=-,&. From Eq. (5), we

see that

= A' = (P'+ ie P) e'e= —3i7j(P Bine/&) E(1/tane),
84)

where, since the right-hand side is 0(c ) already
because of p, we may take the zeroth-order values

I

of P and 8: P= I Sl, 8=tan '(S2/S, ). It follows
that 8(v) varies according to

Se 3q xFi(x) + E,(x)
( 1/t 8)

(d 1+X (8)

-k-q,
4)p+ u)(

k+q,
+ — 4)„+4)g2

FIG. 2. Graphs for the calculation of 8A/8w.

%hen 8 is small, we find that it increases as ~ de-
creases according to se/sar = -v7}/~, but that as
it approaches —,'v, Se/&~-0. This behavior gives
support to the adoption of the TDGL form for the
propagator in the infrared limit. This behavior
of S (S- i as v-0) may be thought of as describing
an overdamped quasiparticle. From Eq. (8) we
can calculate the v exponent of 8 as it approaches
—,
'

v . We find 2-v —8 ~ tu, & = 2q In/ .
Our calculation is internally self -consistent.

However, the results are obtained without account-
ing for any structure in the vertex parts which
might be due to collective modes which will in gen-
eral produce additional singularities which we have
ignored. The inclusion of the collective modes is
necessary in any model which is supposed to de-
scribe the critical dynamics of helium. A general
microscopic treatment of the hydrodynamic modes
is not available. (See, however, Ref. 7, where a
treatment for the spherical model is carried out. )
A possible way of including them which is suited
to our formulation has been outlined by Polyakov:
The hydrodynamic mode is introduced via an extra
field which satisfies hydrodynamic equations and
it is coupled to the particle field in a way which
satisfies Ward identities. In the entirely phe-
nomenological models, ' ~both the oi der parameter
and hydrodynamic fields are introduced at the out-
set and coupled to each other in a variety of ways.
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APPENDIX A

We give a brief elucidation of some of the prop-
erties of the vertex function A(k, q; (d, v) which is
the amputated vertex having two legs and one cor-
ner. The incoming momentum and frequency are
k and ~, while the momentum-frequency transfer
at the corner is q, v. The Matsubara frequencies
~ and v are integer multiples of 2mkT. This vertex
gives the response to a scalar fieM (t)(q, t) which
couples to the density fluctuation of wave vector q.
In what follows, P is understood to contain the
density fluctuation operator. In fact, A is the am-
putated Fourier transform of the time-ordered am-
plitude I, =(2iI)(f, )P(ta)P~(f~)). It has a spectral de-
composition by means of which we may study its
analytic continuation into the complex frequency
spRce $(d ~ z& i' + iv ~ z:

q(, q, , )'
( — '+ )(- — )

q«(k& q~ «1~ +2)
"(x,—s'+ s)(x, —d))'

We see that A( has cuts when Imz=0 and

Then it foQows that

A(k, q=O,.«, «)= dy
q(k y)

(y —«)(y —«') (Al)

RIld there Rx'8 foul legions of Rnalyticlty fox' A.
Thus as z- ~ + i6, z' - ~'+ i6, me can define the
four functions A~~, A~~, A"~, A"", where, for
example, A~" means z {d+i5, z' e'-i5.

We may determine the form of q(4=0, y) from
the assumed form of the propagator as follows.
We use the Ward identity"

-0
~ {dp QP

and Eq. (Al) to deduce

n-~() o, z) fd, ')(' =. =g-z
The form of g ' is obtained from Eq. (2). It then
follows that

Im{« —«') =0. This yields six regions in which A
is a separate analytic function according to the
signs of the imaginary parts of the three relevant
frequency variables. 14'

The spectral representabon of A simplifies con-
siderably when q =0, the case discussed in the
text. In that case, by means of a study of the ma-
trix elements entering I., it can be shown that

q, (x„x,)= —q, («„x,)=5(«,)q(x, ), Imq =0.

q{y) =[I/O"(y) —I/O"(y)j/2vi=s, y' '/v, y&-O

= —(8«cosvp —8, simp)
~
y (' '/v, y &0 .

The four functions A" ("'s(A' are now determined from Eq. (Al). The result of the integral in Eq. (Al) is

;„z' '-z" ' p «tl ))

A(«, «') = . 82«'", —(82 cosvp —8, sinvp)sing p z z z (A2)

Here~ the subscr1pts +~ I3 slgn1fy thRt the cuts
which define the phases z, z' in the large parenthe-
ses are to be taken along the positive real axis for
A and along the negative real axis fox J3.

For the calculation in the text, the Eeroth order
in e (p = 0) values of A are required. These are,
for z ~ {d+ i5~ zi ~c a i 5,

ARB(+ +I) AAAg(+ +/)

A ((d, (d ) =A +((d~ &)) }=8—2'«

APPENDIX 8

Here, we show how to perform the integrals re-
quired in the evaluation of Eq. (4). The method
we use is quite pomerful for many calculations in-
volving the evaluation of Feynman graphs in the
many-body problem. We are going to calculate the
graphs of Fig. 2. The internal propagators are

I

0(e ) as given in Eq. (3). We therefore have to
evaluate the expression

—=c'I',—Cg P g'(k, ur„)A g(k+q, ~„+to&)

&& I g(q, (d + &)) + 2 g((I, & —&))),

where, as before, C denotes an analytic continua-
tion of +„ to the real axis. As indicated in the text
and at the end of Appendix A, A, the zeroth-order
vertex part, is simply 8, +iS«sgn(m). In writing
Eq. (Bl), we have actually omitted some contribu-
tions involving regions in which the two legs enter-
ing A have frequencies on opposite sides of the
real axis. These terms mould couple to A~ and
A"" (cf.Appendix A). These contributions all can-
cel in the present case of zero momentum transfer
at the vertex.



4502 E LIHQ ABRAHAMS AND TOSHIHIKO TSVNETO

The first step is the calculation of the frequency
sums. The convenient way to proceed is to replace
each by its spectral representation

g(k, x)= dxa(k, x)/(x —x).

Here

a(k, x) = [G"(k, x) —G"(k, x)]/2wt = —S,x/v~ S(x —I )i',
(82)

where I„=k/S*. We obtain

—=c'r', — I', [dx, Q a(k, x,) a(k, x,) a(k+q, x,) a(q, x,)
i"1 k, q

1 1 1 1 1 1xC A . . +—
2

— ~ 3- n- (d~ X4-~+~- +i »4-~+~+~+r (BS)

The leading term of the frequency sum on l is obtained by expanding the summand in a series of single par-
tial fractions and setting the total Matsubara frequency in each equal to zero. The remaining sum on m16

may be written

1 1
d hy 1 x4- x3 1 x4+x3
dy coth- ~ +

x4x, 4vz c 2 (x, —y)(xp —y) x4 —x'3 —y+wu„2 xi+x, —y —((u„
(84)

where, in the upper-half complex y plane A„=S, and A, = S* in the lower-half. [The contour C reduces to
piecesabove and belowthe various cuts inthe integrand(see Fig.3). j Weperformthey integral in Eq. (84) and

the integrals over the x; in Eq. (83}by contours, using Eq. (82) for the spectral functions a Th.e result is

8A 2 28 1
8' p8co, k k+j q2 iv- U~*„+U,—U~* 2 2 i+ —U~*„—U,*+U~ (85)

where, we recall, U~=k /S*.
It is now convenient to calcu'&te the remaining

integrals in configuration space. This is accom-
plished by the transformation

x(1 ~ t)(1 eisa/4()2(1 e-is ~2/4()

where g=~ e is the k exponent of the propagator.
The r integral is performed first. The result is

Qf(k, q, ~k+ql) =(2w)' Q f(k,k, k, ) 5'(k, +k, +k,)
k1k2k3

8A . S 8
=Sip SZE ~ —C dte ~~((1 —(u„)/t,

8Q) S2 BQ)
(810)

00

f(k,kak, ) =— dt (1 —ru„t) e'&("~~&(, (87)

where 5"= U3* —U2 + U1*, Im 8' & 0.
We then have, from Eqs. (85)-(BV),

d4r g f(k&krak~)
e'&"s'"3+"I& ''.

kkk
12 3

11~~ ~ 111

12S (85)
In the present case, f(k,kmk, ) is given by (n&0)

where I is the complex function defined in connec-
tion with Eq. (5) of the text. We have replaced the
lower limit of the t integral by 7, which corresponds
to the high momentum cutoff k„ that was implicit
in all the original integrals. Here ~=0(~SI/k, }~

However, as in the static-skeleton-graph approach, 7

the derivative S/S&o eventually eliminates the cut-

8A i 2 28
8(d 2 840

where

der dte "~'(1 —&u„t)(L*) L,
(Ba)

Im y

LA(r t) ~ e(&re ((h2/s&t-

eisr'/4(} (89) Re y

We use Eq. (89) in Eq. (88) and the value I'0=/vI
from the text. VVe find

8A . 8
— --= Sig-

8co 8' dt ~dr e~&~
p

F16. 3. Contour for the integration of (B4).
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off. The integral in Eq. (Mo) is app»»ma«d h7
its most divergent term: —In I 7'v„l + i(&w) sgn(&o„).
%e can noir perform the continuation operation C,
and for ie„-co+i6, we find

a result which appears in Etl. (5) of the text.

Note added in proof. The phase of the inverse

TDGL propagator in the critical region is actually
(-', )m(I+p), not (-,')n .In the leading term of the e
expansion [Eg. (5)j this e correction is lost. How-
ever, it is easy to see that if one generates the
skeleton-graph expansion with a Matsubara propa-
gator which is real on the imaginary axis, such as
that of Eq. (3) with S= i, then the resulting propa-
gator must have the same property. Vfe thank C.
DeDominicis and P. Nozieres for discussion on
this point.
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