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Classical one-dimensional Heisenberg magnet in an applied field
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We present theoretical results for the thermodynamic properties and time-independent spin-spin
correlation functions for the classical Heisenberg magnetic chain in an applied magnetic field. The
calculations are performed by numerical solution of the transfer-matrix integral equation. In addition,
approximate variational procedures and low-temperature expansions yield some analytic results. The
procedures used are applicable to any near-neighbor interaction for classical spins in a linear chain. The
most unusual behavior found is for antiferromagnetic coupling, where the specific heat shows
osci11ations as a function of field, and the longitudinal uniform susceptibility and the transverse

staggered susceptibility increase with field for low fields.

I. INTRODUCTION

The physics of systems with 1.ess than three
dimensions has been widely studied in recent years,
especially on account of the discovery of real ma-
terials whose properties closely approximate those
of one- or two-dimensional lattice models. Lower-
dimensional systems have long been of theoretical
interest, largely because of the relative ease in
constructing models that can actually be solved-
in some cases exactly. Much recent work, both
experimental and theoretical, has focused on
one-dimensional magnetic systems, with many
aspects of one-dimensional magnetic behavior
having already been studied. For the Heisenberg
model in zero applied field, Fisher provided an
exact solution for the thermodynamic behavior and
the static spin pair-correlation functions in the
classical (infinite-spin) case. Other simple mod-
els have also been investigated, some of which
have yielded exact solutions4' for the static be-
havior.

The dynamical behavior in magnetic spin sys-
tems has long been of interest. For the case of
the one-dimensional Heisenberg model in zero ap-
plied field, the dynamics has been studied theoret-
ically, largely motivated by recent neutron scat-
tering experiments. ' Whi1. e much has been
learned, many interesting aspects of the dynam-
ical behavior remain unresolved. A very useful
device which serves to bridge the gap between
theoretical calculations and experiments on real
systems is the computer "experiment. " Here.
one can perform an experiment on precisely the

idealized model system studied theoretically. The
theory can thus be tested in a way that is unen-
cumbered by the complications of real crystals,
which conform only approximately to the idealized
theoretical model. Experiments of this sort on
one-dimensional magnets have already provided
useful information for the theorist. ' ' ~

The work reported here is concerned with the
thermodynamic and static correlation behavior in
the one-dimensional classical Heisenberg model
in the presence of an applied (uniform or "stag-
gered") field. Gur interest in this system arose
in part from certain aspects of its dynamical be-
havior. In particular, the applied field induces
a, coupling between the spin fluctuations and the
fluctuations in the energy density. Such a, spin-
energy coupling may be responsible for certain
features of the neutron scattering in the ordered
states of real magnetic systems undergoing phase
transitions. '3 Although a phase transition does
not occur in one dimension, it is of considerable
interest to study the spin-energy coupling induced
by the application of a field. ' '~ To study this and
other aspects of the dynamical behavior in a field,
a technique was developed for preparing close-to-
equilibrium states of one-dimensional spin arrays.
This "initialization" technique, which will be de-
scribed elsewhere, '4 is a simple direct applica-
tion of the present results.

Although it was motivated by our interest in
dynamical studies, the present work is concerned
purely with static properties. We calculated static
pair-correlation functions as well a,s thermody-
namic properties and the magnetic equation of
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state. Such calculations are of experimental in-
terest in connection with the susceptibility behav-
ior of tetramethyl ammonium manganese chloride
(TMMC) as observed in large applied fields by
Walker, Dietz, Andres, and Darack. '6 Of course,
as they noted, dipolar anisotropy plays a very
major role in determining the magnetic behavior
of TMMC, and quantum effects also enter to some
extent. While we have not considered them ex-
plicitly, anisotropic terms can easily be taken into
account by the techniques discussed in this paper.

We begin in Sec. II by reviewing the general
features of the statistical mechanics of one-di-
mensional classical spin systems in the transfer-
matrix formalism. This part of the discussion ap-
plies for any (translationally invariant} Hamil-
tonian which can be written as the sum of near-
neighbor interaction terms. Here we express a
number of important probability distributions and
correlation functions in terms of the eigenvalues
and eigenfunctions of the transfer matrix. Al-
though a solution cannot be obtained in closed
form (see Appendix B), the eigenfunctions and
eigenvalues can be obtained very accurately by
the numerical procedure outlined in Sec. IIIA.
(A similar procedure was used in Ref. 16 to ob-
tain the zero-field susceptibility in the anisotropic
Heisenberg model. ) We obtain the first 16 eigen-
functions and eigenvalues, and in particular we
find the eigenfunction 4Q belonging to the largest
eigenvalue XQ and thus the thermodynamic prop-
erties. It turns out that, except for the case of
antiferromagnetic coupling at low temperatures
and moderate fields, the eigenfunction 4Q is found
to be remarkably well approximated by a simple
exponential form. This form is then used to ob-
tain an approximate variational solution for 4Q as
discussed in Sec. III B. The thermodynamic prop-
erties obtained in this variational approximation
are generally very close to those of the exact
(numerically obtained) eigenfunction, except as
discussed in Sec. IIIC, where we consider ex-
plicitly the form of the eigenfunction for antiferro-
magnetic coupling in a field of low temperatures.
Section III concludes (in part D) with an outline
of the relation between the system properties in
an applied "staggered" field and those in a uniform
field. In Sec. IV we present selected results for
the thermodynamic and static correlation proper-
ties in graphical form, and also discuss aspects
of the limiting low-temperature behavior in a field.

II. TRANSFER-MATRIX FORMULATION OF THE
STATISTICAL PROPERTIES OF LINEAR CHAINS

Ne want to solve for the thermodynamic prop-
erties and pair-correlation functions of the classi-
cal Heisenberg chain in an external magnetic
field, with the Hamiltonian

X = —JQ S» ~ S»,»
——Q(St+8'», »),

where k= pH, with II the applied field and p the
magnetic moment of a spin. The spins S; are or-
dinary unit vectors, and periodic boundary con-
ditions are assumed with S„„=S,. The transfer-
matrix ' 7 method can be used to obtain both the
thermodynamic properties and the correlation
functions. Since the technique is applicable to
more complex interactions than those in E»I. (1),
we consider a more general case and only in Sec.
ID and in our numerical calculations do we re-
strict our attention to E»I. (1). We now treat the
Hamiltonian with arbitrary symmetric near-neigh-
bor interactions,

x=-g v(s;, s...),
$ J.

where we assume

v(s, , s;.,) = v(s,.„s, ) .
E»luation (1) is clearly a special case of E»I. (2)
with

v(f», 5»,») = Js» ' s;,» + 2h(s» + s»,q } .
The partition function for a system governed by
E»I. (2) is given by

~ ~ dS '''dS 81 N

X e»»F»ap, s 3) ~ ~, PV(8»», S»)

Here d S& represents an element of solid angle of
the ith spin, dS;=-sin8, d8;dQ;, where 8» and Q»
are the polar and azimuthal angles of that spin.
Defining the kernel

~(s s )=-2""»'*&'

the partition function is seen to be formally the
trace of the Nth power of A, which is clear if we
regard the integral in (3) as the limit of a multiple
summation with S; and S;,~ serving as indices for
the transfer of matrix A. The calculation of the
trace is facilitated by the evaluation of the eigen-
functions and eigenvalues of A. . Consider then the
integral equation"

& Sz&Sa +n S2d =~~+~ Sg &
4

which defines the eigenfunctions 4'„(S) and eigen-
values X„ofA. Since the eigenfunctions form a
complete set [which can be assumed orthonormal,
i.e. , f@„*(S}4'„(5)dS=5„„.] the kernel A can be ex-
panded in terms of the eigenfunctions, with the
well-known result

x(s„s;..) =g ~„e*„(s,)e„(s»..) . (6)
N
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Substitution of (5) into (3) and utilization of the or-
thonormality of the 4'„'s then yields

z=Px"„.
n~o

In the limit of large N, only the largest eigenval-
ue Xo (which can be shown to be nondegenerate at
nonzero temperatures) survives, and

(6)

Z Xp for N (7)

wa(si, 5„,i)

dSo' ' 'dS„dS„,o ' ' df~( W)(((Si,
' ' ', f)(()

dso" 'ds„ds„,o' ' 'dS„A(Si, So)

~ ~ A(K 5,).
Substituting Eq. (5) for A and again using the or
thonormality of the eigenfunctions we find

w",(s„s„.,)

= —P ~".~"„, e., (s,)e„*(s,)e„(s„„)e„*,(s„.,) .

Taking the limit N- ~, with the distance n be-
tween the spins held fixed, only the term m'= 0
survives in the summation, and

w".(Si, S..i)
(10)

A knowledge of the largest eigenvalue as a function
of temperature and magnetic field can then, through
E(l. (7), provide the thermodynamic functions of
the system.

In order to calculate the correlation functions it
is useful to define the probability distributions of
the system. The probability density W„(S„... , S~)
&d S&

' ' ' d S~, defined as the probability that the
N spins of the chain point in the solid angles
ranges d S» ~, d S„about the directions Sf p Sg p

is clearly given by

W„(Si,",8„)dSi dS„=(1/Z) e o~dSi '' 'ds„.
(6)

All other probability densities can be derived from
this one. For example, Wo"(Si, s„,i)df&df„,i, de-
fined as the joint probability that two spine a dis-
tance n apart along the chain point, respectively,
within the ranges dS, and dS„,~ about the directions
8i and S„,» can be obtained from W„(f» ' ' ', f„)
by integrating over all spin directions except fi
and S„,&. 8'z can be expressed in terms of the
eigenfunctions and eigenvalues of the transfer ma-
trix. We have

Wi (Si) =
Jt d85, i Wo(si~ 8)(~i)

=g —"e,(H, )e".((),)Ju((„.,)(.(8...)eo(8„„)

4'o(Si)4'"(Si)5 (),

or, finally,

Wi(Si) = 4'o(si) ~ (12)

Hence the square of the eigenfunction belonging to
the largest eigenvalue has the property that it is
the probability density for a single spin.

Finally, an important property of the linear
chain distribution function can be obtained by de-
fining the conditional probability P(So I S,) dSo, i.e. ,
the probability that a spin points in the solid angle
range dSo about the direction fo given that its
nearest neighbor points in the direction S~. This
is, by definition,

p(s,
i s, ) ds,

W2(Si, So) dsi dso A(si, So)4'o(so) dso

w, (s, ) ds, x,+,(5,)
where we used E(ls. (11) and (12). More gener-
ally, since we employ periodic boundary condi-
tions

P(8;,i i
Si) ds;, i =—A(si, Si,i) —

"i dSi, i . (13)

This result is the basis for the "initialization"
procedure used to generate equilibrium spin rings
on the computer. This will be discussed in detail
elsewhere. ~ For the present we point out that
the Markoffian joint distribution

w(s„. . . , s, )-=w, (s,)p(s, is, ) "p(s is„,)
generated by repeated application of Eq. (13) is
practically identical to W(si, . . ., S„) for large ¹

Indeed, upon using (12), (13), and (5) we find

w(s„. . ., s„)=f(s„s„)w(s„. .., s„), (14a)

where

f(S» Si() = Xo@o(Si)%'o(S~() g X~%'„*(Si)%'~(S~) .(14b)

In particular, the nearest-neighbor joint probabil-
ity distribution Woi(S» So) is, because of E(ls. (10),
(4), and (5), given by

w,'(s„s,) = (I/x, )e,(f,)A(s„s,)e,(f,), (11)

where the eigenfunction Co belonging to the largest
(nondegenerate) eigenvalue can be chosen to be
real A. nother useful probability density is
Wi(Si)dS» the probability that a single spin points
in the range dSi about the direction Si. This can
be obtained by integrating E(I. (10) over f„,i:
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V(S»s S;,~) ——lnf (S» S„)

N-1
= —Q V(5;, S; f) [lnqfo(S~)+in''0(S»»)]+(const).

(14c)
This is just the Hamiltonian for the open chain,
with an effective temperature-dependent potential
on the two end spins replacing the interaction be-
tween them. A detailed discussion of the effect
of open-chain boundary conditions is given in Ap-
pendix A.

The correlation functions can be calculated
from the probability distributions and hence are
expressible in terms of the eigenfunctions and
eignevalues of the transfer matrix. For example,
if f™"(S) and f~(S) are arbitrary functions of the
spin components at the nth site on the chain, the
correlation function (f, (S»)f„,~(S»~) ) can be ex-
pressed

(f» (S»)f'.,»(Sg..)&

dSqd, ~ ~ „,q, q W2 Sg, S„,

ds y ))S=P'—,') f «"„(s,}ff(», )«g(s, ) ds,, &o]

q,*(s„.,)f„'„(s„.,)e„(s„.,)ds„, (i6)

In particular,

(S S„,)=Q — qf*(S)8 qf (S)dS
~=o

(i6)

and other correlation functions can be similarly
expressed. The correlation functions are seen to
fall off with dista, nce as a sum of exponentials.
Also, the average of an arbitra, ry function of the
spin components f(S) at a single site is given by

(f(S)) Jf(S)S((S)ds=Jf(s)«(S}dS, ,

In other words, the set of Markoff chains gener-
ated by repeated application of (13) corresponds
exactly to the canonical ensemble for the tempera-
ture-dependent effective Hamiltonian

Ss)

knowledge of the largest eigenvalue and the asso-
ciated eigenfunction is sufficient to provide all
thermodynamic quantities and single-site spin
averages. In general, the higher eigenfunctions
and eigenvalues are necessary for the determina. -
tion of pair-correlation functions.

III. CLASSICAL HEISENBERG CHAIN IN A FIELD

We now return to the specific problem as ex-
pressed in Eq. (1). We need the eigenvalues and
eigenfunctions of the integral equation

dsz exp[PJS» ~ S(,, + —,
' Ph(S,'+ 83')]4'„(S2)= X„C'„(S~).~

~

(ie)
For 8= 0 the solution is straightforward; it follows
from the expansion

es'"»'&'=4~+ f,(SJ)r,.(S,)r,*„(S,), (20)

where the functions i»(x) are spherical Bessel func-
tions of imaginary argument. Comparison of
Eqs. (20) and (5) shows that the eigenfunctions for
8=0 are the spherical harmonics 1'»„(S), and the
corresponding eigenvalues are X» = 4vi»(PJ), in-'

dependent of rn. The largest eigenvalue is ob-
tained for l=0, so

Z [4vio(SJ)]" = 4»»[(sinhPJ)/PJ]".

This is in a.greement with Fisher's solution of the
linear -chain problem in zero field. The corre-
lation functions can also be derived from the above
eigenfunctions and eigenvalues, together with Eq.
(15). When I»ss 0 the problem is no longer straight-
forward. The eigenfunctions for A=0 are inde-
pendent of temperature and exchange, but this will
clearly no longer be true for h 0. The eigen-
functions do not correspond to any readily tabulated
functions, and we can evaluate them either by
numerical solution of the integral equation or by
an analytic approximation procedure. We describe
both methods in the following.

A. Numerical solution of the integral equation

Numerical evaluation of the eigenfunctions and
eigenvalues is possible in practice to a very high
degree of accuracy. To do this we first note that
the eigenfunction can, by symmetry, be written
in the form

and, in particular, the z component of the mag-
netization ls proportional to 4»„(S)=g»„(cos8)(1/~m) e»"~, (20a)

(s'„).=( s's,'(s}ds . (18)

Comparison with Eq. (16) shows that the I=0
term in the summation in that equation is simply
the square of the long-range order, i.e. , (S'„)2.

It follows from the discussion given here that a

where 8 and p are the polar and azimuthal angles,
respectively, of S. We have written the index n
of the eigenfunctions as the pair (f, m) to take into
account the Q dependence of %. Substituting Eq.
(20a) into Eq. (19) and setting x= cos8, the equa-
tion becomes
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+1 . 2i
dx' dy'exp PZxx'+ Pd[(I x-')(I - x~) j'~'cos((I) -y')+ —(x+x') (I,„(x')— e(""=)((„(t&(„(x)

-1 0

The integral over P' can be carried out analyti-
cally, with the result

sx Sx'exp Sxxx'e —(x+x'&)

x f (PS[(1-x')(I -x")j'")y(~(x') dx'

= )((m4'(e(x) ~

Here,

1f„(x)=- — 8*""'"'dy=f„( x)=I-(x)
27K 0

(21)

where the meights se& and points x& are tabulated. 19

The integral equation then becomes

dx' G„(x,x')q(„(x') =)((„q( (x)

is the Bessel function of imaginary argument.
This one-dimensional integral equation can now be
solved numerically by converting it to a matrix
equation. The integral over x' is performed by
NI-point Gaussian integration, using the expres-
sion

Xl
f(x)dx=Qw, f(x,),

-1

tice Nz= 16 was found to give convergence to seven
significant figures for all values of PJ and h for
which calculations mere done. The solution of
Eq. (23) for given m, PJ', and I( with Nz = 16 took
about 2 sec on the Brookhaven CDC 6600 computer.
Results are discussed in the folloming section.

The largest eigenvalue of Eq. (21) occurs for
m=0. (This is easily seen as a result of the fact
that the eigenfunction belonging to the largest
eigenvalue has no nodes. ) The free energy can
then be obtained from this eigenvalue, and other
thermodynamic quantities can be found by numer-
ical differentiation with respect to appropriate
variables.

The x component of the magnetization (S') follows
from Eq. (18). Since S'=cos&=x, we have

+1 &r

( = dx x (/&pp(x) Q w(x( $()p(x()
"1 4=1

00 2

In the same way we can derive the following ex-
pressions for the correlation functions:

(s;.s', „&=g '" ds e„(s)s'e*,„(s)

where

w~G„(x, x~)y(„(x~),

(x xry 2&&eggg'+(ga/2) (~(,+g )

(22) Because of the form of the eigenfunction only m = 0
terms survive in the summation, and

dx xqpp(x)g(p(x), (25)

)( f„(Pd[(1-x')(I x")j'"). -
If we look for solutions of Eq. (22) only at the
points x=x& of the numerical integration the in-
tegral equation becomes a matrix eigenvalue equa-
tion:

Q w~G (x;, x))y(„(xg) =)((„(&( (x,) .

To make this more symmetric, we multiply both
sides of the equation by ~su„obtaining

Sl
+ (fft) (r haft) ~ (r fft) (23

where H(~™=~w(G„(x;, x&)s(w) and (t&(c" =~~qg(~(x()
Equation (28) is an NI

XNAN

matrix eigenvalue
equation with Nz determined by the number of
points used in the numerical integration. In prac-

Note from (24) that the 1 =0 term in this summa-
tion is simply the square of the long-range order
(S'&=(S',&. I.etting

5s(= s', -(s'&,

we then find that

po y g i+1
,
2

(5S(' 6S(„&=g —"
dxx happ(x)g(p(x)

l~1 ~00 ~ -1

ÃI ~ ~ N . 2
(P x y (PP)y ((P) (25 )

Also, for the transverse correlation function,

&s*;s;.„&=+ —' j sssee(5&s's," (s&
rm

In this case only m=+1 survive; so

(s"s"g
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tl ( +f

dx(l —x,o)'~'goo(x)y„(x)
l=i

Q (I xo)l joy(oo&yol)

The thermodynamic quantities of interest, such
as the free energy, internal energy, isothermal
susceptibility, specific heat, {8M/8T)„, and adia-
batic susceptibility, can also be expressed in
terms of the eigenfunctions and eigenvalues of the
transfer matrix. %e give below the expressions
which have been used in the evaluation of these
quantities. The derivations follow straightfor-
wardly from the formulas given above (In. each
case we give the expression for the appropriate
quantity Per sPin. )
Free energy:

I = -N P lnZ = - P ~
lnkoo (27)

internal energy:

B=& '&8c&=-I &S;}-Zg&S'S. ) (28)

where &S & and &Sq 'Sq,&} are given by Egs. (24)-
(26).
Isothermal susceptibility

=P'~'g[&(S; ~ S...)(S, S...)&

8M-&S;'S),g}&Sg
' Sg,g}]—2h

h

=Bo —2k ——Ph g +S O' Q
BM

BT T
gw]

2~00
Z) 2

00 -~ro

Once these have been calculated, the adiabatic
susceptibility can be found from the relation

The coefficients Bo, C& and D, used above are de-
fined by

= —P~X, —O'd g[&S'(S ~ S .,)& —&Sf&&S ~ S...&]

pI X pap 00 (so
00 fo

Specific heat at constant field:

c„=p'x '&(8c -&x})'}

Hate of change of magnetization with respect to
C( J~ dxx(oo(x)(go{x) (32)

&i =~o~o dSdS'+io S A 8~S' S'S'@oo S

=2v~o~o dxdy q~o{x)qoo{y) p[Wxy+ lPI ( +y)lf y -Io(~d [{I— ')(I -y')]'")
J g

+ [(I -")(I-y')]'"1,(W(I — ')(I -y')]'")],

Bo=&(S) Sg,q) }—&Sg ~ Sg,q} = —D~ +2vXoo j dxdygo(x)go(y)exp[Pixy+ os(x+y)]

&&((I+2x'y'-x'-y')Io(@'[(I -x')(I -y')]'")+(2xy 8'd ')I (H-~[(I — ')(I -y')]'")] . (34)

In addition, the following expressions for the lon-
gitudinal and transverse wave -vector -dependent
susceptibQities are also easily obtained:

~gg(~) p
oo fo ~ o

Zoo —2Xoo X(o cosy + x)o

In particular, the staggered susceptibilities may
be found by setting q = m. All of these quantities
are easily evaluated once the eigenfunctions and
eigenvalues have been found.

B. Variational approximation for the largest eigenvalue

X ex(~) ~ oo El BR
2 to~0 —2@00X„cosy +X'„

g~g

where

A~(x)(I —x')'"|t oo(x) dx .
-1

In some circumstances it is useful to have an
analytical approximation for the eigenfunction be-
longing to the largest eigenvalue and an approxi-
mation for that eigenvalue which does not involve
the solution to the integral equation.

For the largest eigenvalue of the integral equa-
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tion (22), the variational principle gives the in-
equality

f f dx dx' P(x)G(x, x')(t) (x')
f"(()) (x)2 dx (s5)

where equality obtains when p(x) =(i)I(x). We use
as a trial function Q(x) ~ e * with n as a variational
parameter. This form is correct for h= 0, where
(x=0, and also for J=O, where c, = —,'Ph. In the
intermediate region, where h and J are both non-
zero, this form will not be exact, but we expect
it to provide a good approximation, except as ex-
plained below. We find on substituting into (35)

2' +
&(

~ /l( ) —
) d d a( &)& Mr))(()&2/2& * ))

sink2Q

X j&(PJ'[(].—x2)(1 -y2)]&/2} (se)

The integral over y can be performed, yielding

where

47te "'~,
& ~„~» sinhzax 8

sinh2Q' ~ g z
(s7)

2 = [(n+ Ph/2)'+ 2(~+ Ph/2) Pdx+ P2Z2]'/2 .
This expression for A(a) is easily maximized nu-
merically, as a function of e, and, with this val-
ue of e, the variational magnetization is calculated
to be

(S'),~ = coth2(2 —I/2(2 .
In addition, it is possible to carry out the integra-
tion in (37) in a series of Bessel functions. 2 The

numerical procedure was used in preference to
analytical expressions, however. ~e The free ener-
gy and magnetization obtained by this procedure
are accurate to better than 1% (except for the case
of antiferromagnetic coupling at temperatures less
than 0.2}Z} and at fields of the order of }8},as
discussed in the next section).

In Figs. 1 and 2 we show the variational eigen-
function and the exact numerical solution for two
values of field, temperature, and exchange. The
agreement is clearly very good.

C. Asymptotic form for the eigenfunction at low temperatures

In the preceding section it was mentioned that
the exponential trial form for the eigenfunction be-
longing to the largest eigenvalue did not work well
at low temperatures for the case of antiferro-
magnetic coupling in a field. The physical reason
for this is that the magnetization in this case is
not saturated, even at very low temperatures, in
fields of the order of the exchange interaction (see
Sec. IV). We &en expect that the probability dis-
tribution for the spins [the square of the eigen-
function according to Eq. (12)] will be strongly
peaked at a value of cos8&1. The exponential
form cannot produce such a peak, and a more de-
tailed analysis is required.

The asymptotic form for the eigenfunction be-
longing to the largest eigenvalue can be found from
Eq. (21) with»& =0. Using the asymptotic form
for the Bessel function 1(&(x)-e' '/$2&/I xi, that
equation becomes

2&/ ~/2 & exP PJxy+(Ph/2)(x+y)+Pidl [(1-x')(I-y')]'/'
( ~ p

pi di, ' [(1-x')(1-y')]"' (s9)

The argument of the exponential peaks for
x=y =a, where a is to be determined. Expanding
that argument gives

y(x, y) -=Pixy+ —(x+y)+ P~ Z
~

[(1-x')(1-y')]'"

= Q (a, a) + (x —a) —+ (y —a) —+ —,(x —a)
sy 2 S'0
Bx By

' ' Bx2

s2$ s2y
+ —,'(y —a)', + (x —a)(y —a)

By BxBy '

and, setting 8(t)/sx= 8$/sy=0, we find

a(d- ~d ~)=--,'h . (40)

This procedure is then valid for antiferromagnetic
coupling, where J= —

i j'i, and for h/4idi &1,
where we find

a = h/4
~

J'
~

(antiferromagnetic coupling). (41)

1 P}~}
dy exp ——

2 [(x -a)2+ (y -a)2
2 1 —8

+ 1(& —Ra') (x -a) (y -a)])( ( y)

q, -(»z((&,2,2& Pirl(I -a') '"
( )2'

(i)(x) will also be strongly peaked at x= a; so we
write

g(X) e e-(&/2&f(a-a& /((&2

(42)

(4s)

For h/4i J i& 1, the maximum of the argument oc-
curs outside the range of integration, and the
linear exponential approximation becomes valid.
From this point on we consider only the antiferro-
magnetic case.

On evaluating the second derivatives of (t)(x, y),
substituting x=y=a in the denominator of (39), and
extending the range of integration, we find
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FIG. 1. Behavior of the eigenfunction belonging to the
largest eigenvalue as compared with the exponential vari-
ational form for the case of ferromagnetic coupling with
kgT/J=1. 0 and pH/J=2. 0.

FIG. 3 ~ Behavior of the eigenfunction belonging to the
largest eigenvalue (dotted curve) as compared with the
asymptotic form given in Eq. (43) (solid curve) for the
case of antiferromagnetic coupling at low temperature
and moderate fields. Here k&T/1J I =0.03 and p&/1 J1
=1~

l/2" = I'I ~Is/(l -s')'" (44a)

Substituting into (42) and carrying out the tedious
algebra, we obtain expressions for 0; X and c: x =(2w/Pl z l) e"""'""[i+2a(l-a')'"]'"

(44b)

C= (7f0'2)

IO—

I.O=

IO

IO'

I I I I I I I

where a=8/4I J'I. In Fig. 3 we show the asymp-
totic low-temperature form compared with the
exact solution. The agreement is quite good.

It is clear from the discussion of this section
and the preceding one that the appropriate varia-
tional form for the wave function is

q(g) ~ eaxwx

where e and y are to be determined by maximizing
(35). This procedure, with two parameters, is
sufficiently cumbersome that it has no advantage
over the exact solution.

IO'

IO

I

-0.8
I I I I I I I I

-0.4 0 0.4 08
cos 8

FIG. 2. Behavior of the eigenfunction belonging to the
largest eigenvalue as compared with the exponential vari-
ational form for the case of antiferromagnetic coupling,
with AT/I Jl =0.5, pH/I Jl =5.

D. Staggered and uniform fields

%e conclude this section by noting that a simple
transformation enables us to relate the solutions
for ferromagnetic or antiferromagnetic coupling
in a uniform magnetic field to the solutions in a
staggered field. If the sign of every other spin
is changed, i.e. , if S&-(-)"~8&, the Hamiltonian
for ferromagnetic coupling in a uniform field be-
comes that for antiferromagnetic coupling in a
staggered field, while the Hamiltonian for anti-
ferromagnetic coupling in a uniform field becomes
that for ferromagnetic coupling in a staggered
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TABLE I. Equivalences between cases of staggered
and uniform applied fields.

I.Q I I I I I I I

Ferromagnetic
coupling,
uniform field

Antiferromagnetic
coupling,
uniform field

J'~- J'

a a„
M ~M~t

—t'~ J'

Is~

Antiferromagnetic
coupling,
staggered field

Ferromagnetic
coupling,
s'taggered field

co Q/

field. The partition function is unchanged by such
a transformation, however, so the free energies
in uniform and in staggered fields are equal, pro-
vided the sign of the exchange is changed. In
Table I we show schematically the equivalences
and changes that are possible. The calculations
performed here can thus be interpreted to give a
wider range of information.

C.OI
Q. I 1.Q

PH

FIG. 5. Reduced magnetization as a function of pH/
k~7 for different values of kI3T/ ) J ) for both ferro- and
antiferromagnetic coupling.

IV. THERMODYNAMIC PROPERTIES AND CORRELATION

FUNCTIONS. RESULTS AND DISCUSSION

I.Q—

Q. t

Q.O I

Q. l I

T

FIG. 4. Reduced magnetization as a function of k~T/
) J) for different values of pH/ ) J ( for both ferro- and

antiferromagnetic coupling.

Using the methods described in Sec. III, detailed
results were obtained for the thermodynamic, mag-
netic equation of state, and longitudinal near-neigh-
bor correlation behaviors. These are now pre-
sented in graphical form. The case of a uniform
applied fi.eld is considered explicitly; the resul. ts
for a staggered field may be obtained from the
transformation given in Table I. Some aspects of
the limiting low-temperature behavior are also
described.

Figure 4 shows the temperature dependence of
the reduced magnetization M/M„, = (S') for a num-
ber of different field values. The abscissa, i.e. ,
the quantity "T"which represents the temperature,

is the ratio ' ksT/I Jl . The numbers "H" labeling
the curves for different fields are values of the
ratio pH/I Jl. The curves labeled "F"correspond
to the case of ferromagnetic coupling (J &0), while
those labeled "AF" correspond to antiferromag-
netic coupling. These notations will also be used
in subsequent figures. It is seen from Fig. 4 that
the magnetization generally increases as the tem-
perature decreases at fixed field. An exception to
this occurs for negative J and at low fields. In-
deed, for an infinitesimal field the magnetization
has a single peak at ks T/I Jl =0.4V64, as was al-
ready noted by Fisher. ' ' For ferromagnetic cou-
pling the magnetization of course saturates as
7'. -0 'K. This is also true for antiferromagnetic
coupling when pH/I Jl &4; for smaller fields, how-
ever, the limiting magnetization is given by

M(0 'K)/M~~q ——p, H/4
i Ji, (45)

as described below and in Sec. III C.
Figure 5 is a replot of the magnetization behav-

ior. Here the abscissa is p, H/ksT, while the num-
bers attached to the different curves are values of

kent/I/I�.

The dotted central curve (for which this
ratio is infinity) then corresponds to the behavior
of the Langevin paramagnet.

In Fig. 6 we plot the behavior of the near-neigh-
bor correlation for the Quctuation in the longitudi-
nal spin component, i.e. , the quantity (5S;5S)„)
computed from Eq. (25a). Here the abscissa is
kent/I J I, whilethenumbers attached to the curves
are values of

pH/IS!�.

At a given temperature the
suppression of the correlation by the field is much
more marked in the case of ferromagnetic coupling.
(Note the factor of 2 difference in the scales for
the F and AF cases. )

Figure 7 is a plot of the negative of the internal
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FIG. 6. Near-neighbor longitudinal correlation
(gS; gS;,&) as a function of k~T/( J ] for different values
of pH/ j J t.

0.0 I—

or when p, H&4l Jl by

E(0 'K)/N (47)

These results are easily obtained by noting that for

I I I I I I I IIII I I I I I I I I IT

energy in units of Nl Jl. The abscissa is ksT/I Jl,
while the parameter appropriate to each curve is
pH/I Jl . For the ease of ferromagnetic coupling
(solid curves) —E/Nl Jl tends of course to the value
1+ pH/I Jl in the zero-temperature limit. For anti-
ferromagnetic coupling (dotted curves), the zero-
temperature limit is given when p, H&4l Jl by

E(0 'K)/N=
i Ji —pH, (46)

0.05
O. l

s i i i I & I

1.0
I I I I I I

IO

FIG. 8. Specific heat at constant field in units of Ãkz
as a function of k&T/I Jl for different values of pH/) J[ .
Solid curves J&0; dotted curves J&0.

negative J the minimum energy configurations are
of the "flopped sublattiee" type. Here the even-
and odd-numbered spins form two sublattices, each
making an angle 8 with the field, the total moment
being parallel to the field. The energy of such an
arrangement is easily seen to be

E(8) =NI JiI cos28 —NpHcos8.

The angle 00 which minimizes this is given by

C9

bJ
Q

Z.'
ijj

0
LU

Z

I.O

O. I

O. I

I I I I I I I IIII I I I I I I I I II
I.O IO

T

cos8o ——p.H/4 (46)

when pH/4) Jl & 1, from which Eq. (45) is easily
obtained. The two sublattices become coincident
when H/4l Jl ~ 1. The expressions (47) and (46)
correspond to the minimum energy value in each
case. This behavior is also readily derived from
the results of Sec. IIIC.

Figure 8 is a plot of the constant-field specific
heat in units of Nk~ as a function of k~T/I Jl for
different values of pH/I Jl. The zero-temperature
limit is evidently described by

(49)

That this is indeed correct may be shown by sepa-
rately considering the cases

(a) J&0,

(b) J &0, qH~4

(c) J'&0, pH&4~ J).
FIG. 7. Negative of the internal energy per spin in

units of I J) as a function of k&T/I J I for different values
of H/ ) J I. Solid curves J&0; dotted curves J&0.

In cases (a) and (b) the system ground state corre-
sponds to full alignment of every spin with the field.
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i I S I I ~ I very nearly as lt does in zero applied field and
then drops off sharply as the system becomes sat-
urated. The behavior in the latter region is de-
scribed rather well by spin-wave theory, accord-
ing to which

x, la, r (pe)
'"

( per) (
per)"

For ksT/J &0.2, this holds to within 7% for all
points on the solid curves of Fig. 9. Equation (53)
is easily obtained classically by using (50) together
with the inverse of (51) to give

(aO. t l

T

FIG. 9. Isothermal susceptibility in units of Np / ) J (

as a function of Az&/( J i for different values of pH/) J i .
Solid curves J&0, dotted curves J&0.

S+ g»i/3 S+ $Ena —
U + .yÃ ne E ~ K&

the system Hamiltonian becomes

$C(U~, U„, Vg, V„)= -NJ-Np, H'
+ Q(U~r+ Vr) W(K)/2 (52)

to terms quadratic in the spin deviations. Here

W(K) = pH+ 24(1 —co,sKa).

Since the sum in (51) extends over the N wave vec-
tors in the Brillouin zone —v/a&K& v/g, the result
(49) follows from the equipartition theorem.

For case (c) the spin-wave analysis breaks down
since there are modes for which W(K)-0 when
K v/a. In this case, however, we can employ the
results of Sec. IIIC. Using Eq. (44b), we find that
in the low-temperature limit the free energy be-
comes asymptotically

Ii = —&~Ting = —Ãk~TlnT'+ Cr&+ Cs,

where C& and Cz depend only on H, J, or ¹ Then,
writing CH = —T(B~E/8 T )H, we again obtain the
result (49).

Figure 9 is a plot of the isothermal susceptibility
in units of Np, /I Zl as a function of ks T/I Jl for
different values of p.H//I J'I. For the case of ferro-
magnetic coupling, the susceptibility at first in-
creases strongly with decreasing temperature,

Then, as T-O, a spin-wave description becomes
appropriate. Here we can specify the deviation of
each spin from the z direction by the variable
S„'=S"„+iS'„,with

1 —s„'=- is„'i'/2. (50)

Then, writing

(54)

Using (52), the thermal average on the right-hand
side of (54) is easily performed, yielding

,) 1 ksT ksT '~' dK
H W(K) 2v/a q, pH+ 24(1 —. cosKa)

Carrying out the integration, we find

1 —(S') =ksT[(p.H+4J)pH] '~, (55)

In the spin-wave limit the left-hand side of (56) is
simply the mean-squared angular deviation of a
single spin from alignment with the field. Equati. on
(56) actually provides a rather good account of the
loci of susceptibility maxima in the temperature-
field plane for the case of ferromagnetic coupling.

The low-temperature-susceptibility behavior for
the case of antiferromagnetic coupling is also quite
interesting. From (48) we see that for T=O the
susceptibility has a constant value

)tr(0 'K) =Np /4~4~ (57)

for p.H&4J. It should then vanish abruptly for
p, H &44, since the system becomes saturated. It
is interesting to contrast this with the correspond-
ing zero-field behavior3

Np k~T
Xp (58)

Comparing (57) and (58) it is clear that if we were
to plot the susceptibility as a function of the field
at a fixed low temperature, a crossover must occur

which upon differentiation leads to (53). Note of
course that the spin-wave approximation will break
down at any given low temperature when the field
becomes sufficiently small. This should happen
when the susceptibility predicted by (53) is com-
parable to the zero-field susceptibility. Using
Fisher's low-temperature limiting result yr(H=O)
~ 1/T, and assuming that pH is not large com-
pared with t, we find that this happens when

e "-'"
Q~T pH J+ — - = 1.p
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FIG. 10. Isothermal susceptibility in units of Np / [ Jt
as a function of pH/ I J ) for kz T/ ( J j

= 0.2 in the case of
antiferromagnetic coupling. The crossover between the
low-temperature behaviors described by Eqs. (5S) and
(57) is evident.

between a value close to Np, '/61' I at H = 0 to a
roughly constant value close to N p'/4 IJ I for inter-
mediate fields. This must in turn be followed by
a rapid susceptibility decrease when pH=41 J l,

corresponding to the angular coincidence of the
sublattices. This may be seen in Fig. 10, where
we plot the behavior of yr (in units ot Np'/ I J I) as
determined from our numerical solution carried
out for ks T/ I Jl =0.1. The crossover, though grad-
ual, is centered at pH/ks T = 3. Similar behavior
was observed at k&T/ I J I =0.2. Note in this con-
nection from Eq. (44a) that at low temperatures
the peaked Gaussian form for the happ should begin
to develop when p,H & 3A~T.

The behavior of the constant-field specific heat
during these processes is shown in Fig. 11 for
ks T/ I Z I

= 0.2. Here the abscissa is pH/ I J I and
the ordinate is CH/Nks. The behavior here is com-
plicated. Finally we show in Fig. 12 the behavior
of the longitudinal and transverse staggered sus-
ceptibilities as a function of applied uniform field
for antiferromagnetic coupling at k~ T/ I

O'I = 0.2.

FIG. 12. Behavior of the longitudinal (solid) and
transverse (dotted) staggered susceptibilities in units of
Np, / ) J l as a function of pH/ t J I for the case of antifer-
romagnetic coupling at k&T/ I J I =0.2.

The most interesting feature is that the transverse
staggered susceptibility increases with a small ap-
plied field while the longitudinal staggered sus-
ceptibility, as expected, decreases monotonically.

Some insight into the behavior of the transverse
staggered susceptibility can be obtained with the
results of Sec. IIIC. Consider the conditions
under which 4p takes on the Gaussian-peaked form
corresponding to the 'flopped sublattice" spin con-
figurations: At a given low temperature this gener-
ally requires that the width o given by (44a) be
small, However when a = pH/4! J'I is close to l,
the more stringent condition o «1- a must clearly
be imposed. Then (44a) yields the condition

(59)

If now we define

T„=(- l)"(xS"„+yS"„),

it is clear that when (59) holds the vectors T„will
be highly correlated ferromagnetically in going
from one site to the next. Thus, letting )„denote
the angle between T„and Tp, the directional cor-
relation (cos$„) must clearly become long ranged
at low temperatures. Now let

1.0

I

T=0.2 J= - I.O
and note from the rotational symmetry about z that
the bond angle 4)„will be uncorrelated with the
direction oi the previous spin. [See Eg. (13).] It
follows that

0.4

0.2

I

].0
I

2.0 3.0 4.0 5.0

(cos$„)=(cos&„,cosh. („—sin(„, sink)„)
= (cosg„,) (cosh, $„),

and hence that

(cos]„)=u'"', (60)

FIG. 11. Behavior of the specific heat at constant
field (in units of Aha) as a function of pH/ i J I for the
case of antiferromagnetic coupling at k&T/) J I =0.2.

where

u =(cosh ])
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&r",r"„&= —,'&T, T„&=——,
' a'"'(1 —a').

From the fluctuation theorem we then obtain

(62)

for the transverse staggered susceptibility per spin.
To see how this diverges as T- 0 K, we use Eq.

(11) for the joint distribution of a neighboring pair
of spins S, and 52. Let these be specified by the
polar angles 8, and 82 and the azimuthal angles
Q, and &f2, and let x, =cos8, and xt=cos8, . Writing
the joint dlstrlbut1on ln the form

+1 2) si ~1 d~1 d4 1 sini g d6& d4t

+ (xi' x2& 4 1 s 48) dx1 dx8 d4 1 d4'ty

we find from (11) and (43) that P is sharply peaked
when x, =xi =a and Q, —Qt =v. More specifically,
writing 6$ = P, —Q2 —7/, we find

&(, ) xp[-P ~~~(1 — ')"'(1 — ')"'

x(1 —cos&$)],

where E(x„xt) is sharply peaked at x, =xa =a. The
energy in the exponential in (64) is simply that as-
sociated with having the transverse projections of
S, and 82 deviate from antiparallelism by an angle

To a good approximation we have

~~~(x x )e 8IJ'l(l-g )M /2
1% 2 j

a=&coed)&=1--,'«$'&=1- [2P ~&~(1-a')) ',

so, with X, = p, '/ i/i, Eq. (63) gives

X".",/Xo = 2(//, r/J)-'(1 - a')' (Z«O) .
Comparing this with the zero-field low-tempera-
ture behavior3

x".",(a = o)/x, =-', (/, r/~)-' («o),

is the average of any bond-angle cosine. The argu-
ment leading to this exponential decay of the A'-

~eet~onaE correlation is analogous to that used by
Fisher3 for the zero-field case. Note, however,
that in the present case the spin correlation (T, ' T„&
will not have a strictly exponential decay as (26)
shows. However, when (59) holds, this decay will
be nearly exponential since the lengths l T„ I will be
nearly constant. Thus since

~ r„~= sine, = (1 - a ')'", (61)

we have

we see that at very low temperatures the effect of
a small uniform field (kaT/ I Zl«a«1) is a 3-fold
enhancement of the staggered transverse suscepti-
bility, followed at larger fields by a rapid decrease
proportiona, l to (1 —a')'.

CONCLUSIONS

The behavior of the isotropic Heisenberg chain
in a magnetic field is clearly very complex and
interesting, particularly for antiferromagnetic
coupling, and we have been able to provide in this
paper only a sampling of our numerical results.
The techniques used here are applicable, as dis-
cussed in Sec. II, to more complex near-neighbor
interactions than those for which results have been
presented, including anisotropic exchange inter-
actions, biquadratic and higher-order exchange,
and higher-order single- spin terms. Calculations
and analytical results can be obtained for these
cases as required.
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APPENDIX A: PROBABILITY DISTRIBUTIONS

FOR THE OPEN CHAIN

In Sec. II it was shown that the probability dis-
tribution for the closed chain (i e. for .the chain
with periodic boundary conditions) is not strictly
Markoffian, while the distribution for the open
chain is Markoffian in the thermodynamic limit.
The open chain distributions are, however, not
translationally invariant, as there are surface ef-
fects (or "end" effects) on the distributions, and
it was found that a distribution which was both
Markoffian and translationally invariant could be
obtained by placing a temperature-dependent poten-
tial, proportional to the logarithm of the eigenfunc-
tion belonging to the largest eigenvalue, on each
of the end spine, as in Eq. (14c).

In this appendix we give a brief discussion of
the probability distributions for the open chain,
including some comments on the end effects. If
the Hamiltonian is given by Eq. (2), the partition
function for the open chain is

Z = ... O'S, . ~ dS„e'~'~l ~2)

X 88F(82t S3) e P'(SE.isa)

which differs from (3) only in the omission of
e~~' &' l' from the integrand. The eigenfunctions
and eigenvalues are defined as in Eqs. (4) and (5),
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but the integrals over S, and S„are different here,
since they each appear only once in the integrand.
The partition function is, in the thermodynamic
limit,

g = P, -' e0(s)ds (A2)

which replaces (7). The difference between (A2)
and (V} is negligible when the free energy is cal-
culated. The probability distributions W0(S„S„,)
and W~(S,) can be calculated directly. The general

expressions are (N» 1)

)( s )I( (S )' ( (s (s1)

xE(—)""—'"s(s )')

where c„=j ds)l(„(S). Also,

s', (s;)=fss, , (s,(s(, fg„)

(As)

At the extreme left end (i= 1),

Wi(Si) = )1(0(Sq)/C0 . (A 7)

In the middle of the chain, on the other hand (i.e. ,
~»i» 1),

WR(S(, S(.g) = +0(s()A(s(. S(.1)q'0(S(,i)/~0, (AS)

W, (S,) =
I
q', (S,)I ',

the same results which are found for the closed
chain, as expected. It is interesting to contrast
Eqs. (AV) and (AQ). The probability distribution
of a spin varies from being proportional to )10(S)
at the left end to being proportional to I4'0(S) I in
the interior of the chain. This "surface effect"
shows that the magnetization is smaller at the sur-
face than in the interior. This can be made quanti-
tative by ealeulating

(M,.) —M- dS,. W,(S,)S;— as~ @,(S)~'S, (Alo)

These general expressions are functions of position
in the chain, and are not translationally invariant.
In particular, at the left end of the chain (i.e. ,
N»i- I)

)s,(«)=Q(~" —"s.(«)so(s'),

W0(s;, s~t)

~ S ' ' +.(S;)&(S(, &(„)q0(S;„) c.

the difference between the magnetization at spin i
(near the left end) and the magnetization M in the
interior. From (A5) this is

OC)

(M,)-M =g — —" dSe„(S)S e,(S),
1 Xp Cp

where the n = 0 term cancels the last term on the
right in (Alo} and is therefore omitted. This dif-
ference decays exponentially at relatively large
distances from the end since the leading term will
be n= 1, so (M,) -M-e' '"s "0'. This decay is
thus similar to that of the longitudinal spin-spin
correlation function. Similar expressions can be
given for the finite closed chain.

APPENDIX 8: BISPHERICAL AND

TOROIDAL COORDINATES

(f p0e "i'0 4„(p0) = X„'4„(p~) . (B2)

The only difference between this equation and that
for the zero-field equation is that the integration
over p2 is now to be carried out over a unit sphere
displaced from the origin by a distance h/2J' along
the z axis. The equation would then take its sim-
plest form in a coordinate system for which one of
the isotimic surfaces is displaced. The two such
coordinate systems are bispherical or toroidal co-
ordinates. Bispherical coordinates have as iso-
timlc sul fRces spheres whose centeI'8 RI'e RlwRys

displaced from the origin a distance greater than
the radius. These coordinates are therefore ap-
propriate for h/2J &1. Toroidal coordinates, on
the other hand, have spheres displaced less than
the radius; so they are appropriate for h/2J& 1.
Use of these systems reduces the three-dimensional
integral to one over two coordinates. Unfortunately,
no further simpliflcRt1on is possible 1n these nRt-
ural" coordinates for this problem since, as pointed
out by Morse and Feshbach, the wave equation is
not separable in these systems, and the eigenfune-
tions would depend in an unseparated way on both
coordinates. A different demonstration of the com-

It is tempting to try to find an exact solution to
Eq. (19) in terms of tabulated functions. Indeed,
the anisotropic Heisenberg chain was solved by
Joyce in terms of theGreen sfunction for the wave
equation in ellipsoidal coordinates, and he showed
that 'the eigenfunctions and eigenvalues could be ex-
pressed in terms of spheroidal wave functions.

Equation (19) can be transformed into a form
similar to the zero-field equation by writing

pq = 8~+(h/2Z} e, p0 = 80+ (h/2Z) e,
(SI)t' =8 (h/2Z)'Z, 4(p) -=4(S),

where i is a unit vector along the z axis. Substitut-
ing into (19) then gives
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plexity of the problem has been given by Rajagopa], . 3

who found a differential equation satisfied by A.
This equation too was not separable in the presence
of an external field.

In any event, if numerical results were required,
the numerical procedure adoped above would be
more useful than the evaluation of tabulated func-
tions. Indeed, this procedure was used by Walker

for the anisotropic Heisenberg chain. He solved
the integral equation directly insteady of using
tabulated spheroidal wave functions.

Conclusions identical to ours concerning the
utility of bispherical and toroidal coordinates for
the problem of the chain in a field were reached
by L. R. Walker. We thank him for discussions
of this work.

*Work at Brookhaven performed under the auspices of the
U. S. Atomic Energy Commission; work at Stony Brook
supported by the National Science Foundation.

/Work supported by the National Science Foundation
Center of Excellence Grant to Brandeis University and
also by NSF Grant No. GH36612.

)Present address: IRT Corp. , Post Office Box 80817,
San Diego, Calif. 92138.

A review of the experimental literature is given in L.
J. deJongh and A. R. Miedema, Adv. Phys. 23, 1
(1974).

See, for example, E. H. Lieb and D. C. Mattis, Math-
ematical Physics in One Dimension {Academic, New
York, 1966), Chap. 6.

3M. E. Fisher, Am. J. Phys. 32, 343 (1964).
See, for example, H. E. Stanley, Phys. Rev. 179, 570
(1969).

5G. S. Joyce, Phys. Rev. 155, 478 (1967).
F. B. McLean and M. Blume, Phys. Rev. B 7, 1149
(1973); 7, 5017(E) {1973);K. Tomita and H. Mashi-
yama, Prog. Theor. Phys. 48, 1133 (1972); S. W.
Lovesey and R. A. Meserve, Phys. Rev. Lett. 28,
614 (1972); J. Phys. C 7, 2008 (1974); other refer-
ences are contained in these papers.
J. Skalyo, Jr. , G. Shirane, S. A. Friedberg, and H.
Kobayashi, Phys. Rev. B 2, 4632 (1970).

M. T. Hutchings, G. Shirane, R. J. Birgeneau, and
S. L. Holt, Phys. Rev. B 5, 1999 (1972).

~C. S. Windsor, Proc. Phys. Soc. (London) 91, 353
(1967); in Proceedings of the Symposium on Neutron
Inelastic Scattering (IAEA, Vienna, 1968), Vol. II,
p. 83.
R. E. Watson, M. Blume, and G. H. Vineyard, Phys.
Rev. 181, 811 (1969).
N. A. Lurie, D. L. Huber, and M. Blume, Phys. Rev.
B 9, 2171 (1974).

~ M. Blume, R. E. Watson, and G. H. Vineyard, Bull.
Am. Phys. Soc. 16, 629 (1971); Phys. Lett. A 50,

397 (1975).
3B. I. Halperin and P. C. Hohenberg, Phys. Rev. 188,
898 (1969); P. Heller, Intern. J. Magn. 1, 53 (1970);
D. L. Huber, Int. J. Quantum Chem. 5, 667 (1971).

4M. Blume, P. Heller, and N. Lurie (unpublished).
D. L. Huber and K. Tommet, Solid State Commun. 12,
803 (1973).
L. R. Walker, R. E. Dietz, K. Andres, and S. Darak,
Sol. St. Commun. 11, 593 (1972).
See, e.g. , C. Domb, Adv. Phys. 9, 164 (1960).
We note in passing that if V is not symmetric [as a re-
sult of the presence of antisymmetric exchange of the
form D (S;&&8;,&), for example], then it is necessary
to consider not only the right eigenvectors +„of (4),
but also the left eigenvectors C„which are solutions of
f C'„(S t S2)'dS& ——Z„'C'„(S2). The subsequent development
of the theory requires little generalization of that given
here.

~Handbook of Mathematical Functions, edited by M.
Abromowitz and I. A. Stegun (NBS, Washington, 1964),
p. 916.
The behavior at zero temperature for the classical an-
isotropic Heisenberg chain has been discussed by C.H.
Weng [thesis, Carnegie Mellon University (1968) (un-
published) ].

'In comparing the present results with those of Ref. 3,
it should be noted that the exchange constant they em-
ploy is twice our J. Accordingly, our dimensionless
temperature variable k&T/ ( J ) is twice as large as the
corresponding variable used in Ref. 3.
Morse and Feshback, Methods of Theoretical Physics
(McGraw-Hill, New York, 1953), Vol. 1, p. 665.
A. K. R,ajagopal, Proc. Indian Acad. Sci. A 78, 13
(1973).

4L. R. Walker {private communication).
5A. K. Rajagopal (private communication).

26A. K. Rajagopal and M. Blume (unpublished).


