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Spin-phonon relaxation is interpreted as a quantum stochastic process. Time-dependent magnetization

correlation functions are written in general exponential form, and the phase-modulation terms occurring
in them are evaluated approximately to second order with respect to the coupling parameter. The
spin-phonon interaction is described by the isotropic model of Huber and Van Vleck. A physical

parameter corresponding to an effective Larmor precession frequency is introduced and determined from

the zero-frequency longitudinal susceptibility, which is made consistent with the thermodynamic
derivative of the magnetization. Longitudinal and transverse dynamic susceptibilities are calculated for
all frequencies. At low frequencies they agree with the usual Lorentzian model as expected from the

asymptotic exponential decay of the correlation functions. The high-frequency spectra differ from the
Lorentzian form and contain information on the short-time history of spin-phonon collisions.

I. iNTRODUCTION

The theory of spin-lattice relaxati. on dates back
to the work of %aller. ' In subsequent refinements
of the theory and their applications, considerable
interest has been focused on the calculation of
spin-lattice relaxation rates for specific cases of
crystal symmetry and coupling mechanism, '

assuming a simple exponential decay of the mag-
netization with the time to follow any change of
the external magnetic field. The dynamic frequen-
cy response of the system would thus be charac-
terized by a simple Lorentzian shape, and has in
fact been observed in this form in many experi-
ments. 4 However, it has also become clear that
deviations from this simple relaxation behavior
could exist in certain ranges of frequency and
temperature. Namely, the assumption of an ex-
ponentially decaying magnetization is meaningful
only oa a time scale embracing several elemen-
tary processes responsible for the relaxation;
furthermore, a thermodynamic quasiequilibrium
should be maintained during each process. Hence,
at high enough frequencies or at low temperatures
the dynamic response may exhibit a more com-
plicated behavior, which one would like to predict
from a microscopic model for the spin-lattice
interaction.

Historically, two contrasting philosophies for
systematically developing approximations to the
dynamics have been formulated; ln the first of
these, the emphasis is on the equations of motion
for the response functions in the frequency domain;
in the second-of which the "stochastic" method
is an example —the relaxation is naturally asso-
ciated with the time evolution of the spin corre-
lation functions. In the present work we use the
simple example of linear spin-phonon interaction
to compare these ideas. Ne have several objec-
tives: (a) to develop a stochastic approach and

find a physical interpretation for the various steps
in the approximation; (b) to present results for the
relaxation spectra and understand their dependence
on frequency and coupling parameter; (c) to re-
view the general methodological background for
perspective.

In the system considered, the relaxation con-
sists of a sequence of processes in which the mag-
netic energy of the spin is exchanged for a single
quantum of normal vibrations of the lattice. The
basic physical idea of the stochastic theory is
that this relaxation mechanism can be interpreted
as a series of random collisions between the spin
and a gas of phonons. Unlike classical particles,
both phonons and spins behave as quantum exci-
tations with characteristic dynamic and statistical
features, which is reflected in the analytic prop-
erties of the time-dependent spin correlation func-
tions. For example, in a collision a phonon can
either be annihilated or created; the secom' event
is simply viewed as the time-inverted version of
the first. Not surprisingly we find that only for
asymptotically large times does the dynamic re-
sponse decay approximately with a constant rate;
at intermediate and short times its behavior is
determined by the detailed time dependence of the
spin-phonon scattering operator.

Our approach is formally related to the stochas-
tic theory of line shape and relaxation by Kubo, 6 s

but in a formulation which makes it possible to
solve the interacting spin-phonon model in consider-
able detail, including a discussion of the state
properties.

The response-function (frequency-domain) meth-
ods have been discussed previously'9'"; here we
will only mention some aspects of the memory-
function approach to provide a contrasting example
to the stochastic theory. This will be done in Sec.
II where we first present the model, and later a
preview of the stochastic method. In Sec. IO we
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derive a formal perturbation expansion for the
correlation functions. Section IV contains the de-
tails of this expansion for the correlation functions
appropriate to the longitudinal and transverse
susceptibilities. The derivation of the results
for the dynamic and static susceptibilities is given
in Sec. V. A discussion of these results follows
in Sec. VI.

II. GENERAL BACKGROUND

A. Model of Huber and Van Vleck

The physical system which we consider consists
of a pair of Zeeman levels of a paramagnetic ion
in an insulator. The Hamiltonian is written

H =HO+ V,

where IIO contains the lattice Hamiltonian and the
Zeeman energy of the spin S:

&o=p~(kP) (at ak~+~o)+~oSi ~

x (akt, +a.k~),

Where A„(kp) ( p, =x, y, e) is the coupling constant
between S„and a phonon of the mode kp. This ex-
pression is still perfectly general and can be ap-
plied to any practical situation with a suitable
choice for the Tlp dependence of each of the com-
ponentsA„(Tip). However, as shown in Ref. 5, it
is advantageous to study an idealized isotropic
coupling case where all components A„(kp) are
independent of p, and p and equal to a single con-
stant A~. Thus we will write

V= g A„[S„e„(kP)+S,e, (kP) +S,e, (kP)]
kP

x (ak~ + a g,), (4)

where e„(kp) are the components of the phonon
polarization vector. Since V must be Hermitian
we shall assume that A „=Ak and e( —kp) = e(kp)*.
The polarization vectors satisfy the orthogonality

We use 5=1 throughout this paper. In (2), +(kP)
is the frequency of the lattice wave with wave

tvector k and polarization p, and a„~, ay~ represent
the phonon creation and annihilation operators,
respectively, for this mode. a)0 is the Larmor
frequency due to a static external field X,. For
a doublet with spin S = —,

' this means o =g p, ~X,.
We will consider the case of a spin S =1 for which
the two levels Ms =+1 can be described by a
fictitious spin S = —,

' and hence &oo =2g peZ, . We
ignore all other magnetic levels of the system.
For the spin-phonon coupling we choose the model
of Huber and Van Vleck':

V=+ [A,(kP)S„+A,(kP)S, +A, (kP)S, ]

relation ~

pe„(kP)e„(kP)* = 6„„. (5)

For the frequency dependence of A-„we will use
the form corresponding to the so-called non-
Kramers case~

( Qp
1/2 gQ e+

k -kk r
4L, N~ (6)

B. Response functions

Formally, all relevant information on the dynam-
ics of the system is contained in a set of correla-
tion functions defined in terms of the Hamiltonian
of the system II. For a pair of dynamical vari-
ables A, B the correlation function is written as

C»(t) = Tr(Bpe'~'A) = (A(t)B(0)), (6)

where p is the canonical density matrix operator,

p=e /oTr(e o"), P=—I/keT,

and L is the quantum Liouville operator acting on
all operators standing to its ri.ght according to

LA =[H A] ' e' A=e» Ae ~ =A(t) . (10)

The last expression in (8) is the more familiar form
for the correlation function.

The dynamical variables A, B are chosen such
that their thermodynamic averages are zero: (A)
=(B)=0. For a given operator A, with (Af) 40,
the corresponding dynamical variable A becomes
A =Aq —(A&). Thus, in our case, we will be deal-
ing with variables related to the spin operators in
the following way:

where g is a dimensionless coupling parameter,
N is the number of unit cells, & is the maximum
phonon frequency, and r is the position of the spin.
We also assume that the phonon spectrum is iso-
tropic and independent of p. ' For the density of
phonon states in a single branch we will use the
expression '

D(u&k) = (16N/v~ )(~k/~„)'[1 —(~;/&u )']' ',
(7)

where &uk from now on replaces &(kp). For
ark«&u the spectrum (7) corresponds to the Debye
approximation but contains a Van Hove-type
singularity at ~=+ .

We will learn later through specific examples
how the isotropic model simplifies the discussion
of the stochastic method and, in fact, of any
other method. " This happens, however, at the
expense of a considerable loss of generality. The
extension of the stochastic method to anisotropi-
cally coupled systems falls beyond our present
scope and will not be pursued here.
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A =S~ —(S~), B =St —(St) (p,, v=x, y, z),

where the components S~ obey the commutation
relations [S„,S, ] = i S„etc.

The Fourier spectrum of C„B(t) is related to
the generalized frequency response of the variable
A to a periodic disturbance of frequency & which
couples to B,"
i„(ra) =(im( J «e'""Ic„,(i) - c,„(-i)I . ((g

The zero-frequency response is equal to the iso-
thermal static susceptibility yAB (we consider
ergodic systems):

x~,(0)=i~ =J &&i: (-(~), (13)
0

where CB„(—iA)= Tr(Ape~~B. In order for (13) to
be valid, the function C„B(t) must be analytic for
complex times t in the region 0 &

l lmt I
& P, and

must vanish at It I
-~. The function CBA(- t) in

(12) can then be obtained from the relationship

CB„(—t) = C„B(t—iP), (14)

which follows from the definitions (8) and (9).
Another quantity which can be used in the de-

scription of the dynamics of the system is the re-
laxation function

o„(i)=J da(B(-ix) ()A)i
0

d&C~~ -t-s~,
0

which is related to the correlation function CAB(t)
through Eq. (14) and the last integral of (15).
Note that CAB (0) = yAB. Also,

4AB (t) =C [ C„B(t)—CBA( —t)] ~

Thus the dynamic susceptibility can be obtained
from CAB(t) by the relation"

i ( )=x (~J «~"'o» (i) .
0

(16)

C. Stochastic method

The correlation and relaxation functions have
their exact definitions in Eqs. (8) and (15), re
spectively, which relate the microscopic vari-
ables of the system to the observed dynamic re-
sponse. These formal relations are of little help,
however, when we attempt to calculate the func-
tions. With very few exceptions, the calculation
can only be carried out by using an approximate
method. In general, the understanding of the phys-
ical processes responsible for the dynamic be-
havior provides a valid starting point for the se-
lection of a suitable approximation scheme.

In the stochastic method we draw the parallel
between the spin-phonon relaxation and the col-

lision broadening of atomic lines in a gas. ' '"
This analogy can be illustrated by considering the
characteristic form of the differential equation
satisfied by the correlation functions. In the iso-
tropic coupling case, and for a special choice of
the variables A, B whose unperturbed motion is
simply harmonic, the time derivative of the cor-
relation function C„B(t) is proportional to the val-
ue of the function at that particular t";me, that is,

D. Alternative approaches

It is instructive to compare the stochastic meth-
od with an alternative approach which uses the
memory-function formalism. The latter method
is based on the relaxation function (15)."' For
a pair of variables A and 8 =A', and for an iso-
tropic coupling the relaxation function can be shown
to satisfy an integro-differential equation of the
form

AB(t) + ZWAB@AB(t)

t
dt'M„, (t —t')e„,(t') =0.

0
(18)

Here, wAB is a I armor frequency (not necessarily

C„,(t) ,
=—C„,(t) = —[tn„, -f„,(t)]C„(t), (»)

where 0» is an effective Larmor frequency for
the precession of the variables A or B in the cou-
pled system, and f„B(t) represents a complex
phase-modulation function. The analytic proper-
ties of C„B(t) discussed above and Eq. (14) provide
the criteria that the function f„B(t) has to satisfy.

Note that the values of C„B(t) at times earlier
than t do not enter Eq. (17) explicitly. This gen-
eral form of the equation of motion is character-
istic of a stochastic theory; it should be empha-
sized, however, that in a stochastic theory the
function f„B(t)usually represents a random pro-
cess which is independent of any events that took
place at times t'&f, . In our model, on the con-
trary, the exact f„B(t) as defined later may for-
mally contain some information on the past history
of the system. However, the approximation scheme
used in evaluating f„B(t) suggests an interpretation
in terms of random collisions between an iso-
lated spin and phonons, thus providing the essen-
tial element of a stochastic method. We expect
this interpretation to be justified at higher tem-
peratures where many of the eigenstates of the
system are occupied and for weak spin-lattice
coupling. If the coupling is strong, or if the tem-
perature is low, memory effects may play a major
role in determining the behavior of f„B(t), and

hence C„B(t).



equal to Q„B). The memory kernel M„B(t-t')
connects the time derivative of the relaxation func-
tion with its values at earlier times t . A for-
mal expression for M„B(t—t') can be obtained by
the technique of Mori. '4' 5 If 8+4', or when the
system is described by many variables A„.. .A„,
Eq. (18) must be written in a more general form
of R matrix equRtlon

The contrast between Eq. (18) and the equivalent
equation for C„B(t), Eq. (17), is o'bvious. The
basic assumption in theories based on the relaxa-
tion function is that the memory function M~B(t)
has a simpler behavior as a function of time (or
frequency) and coupling parameter than the dy-
namic susceptibility, and is therefore more easily
accessible by various approximations. '6 ' An
analogous assumption will be made in the sto-
chastic approach for the phase function f»(t).
Practically every problem can be formulated both
ways, and f„B(t) can be obtained from M„B(t) and
vice versa. Thus the distinction between the two
approaches may seem R.rtificial, which would in-
deed be true if one could carry out both exactly.
However, if we start from two independent ap-
proximation schemes, one for f„B(t) and another
for M»{t), we will obtain two different results
for y„B(u). The selection must be made on phys-
ical basis, that is, we keep the result which
g' b tt d yt' f th p p t' f th
system as needed.

When Fourier transformed, Eq. (18) is factorized
and thus leads to a particularly simple relation
between g»(+) and M»((d), namely,

( )
M~((d) —(t)~B

1AB XA B ~ M (~).

Rs follows fl'onl (16). II1 the stocllRsilc Rppz'oRcll
the factorization occurs in the time domain, and
the Fourier transform needed in Eq. (12) has to
be found numerically.

Several other methods can be used to calculate
g „B(&). The Green' s-function decoupling method
gives results which are formally similar to Eq.
(19). ' Recently, some problems associated with
that method and with the memory-function ap-
proach have been discussed for a much simpler
spin-phonon coupling with only one nonzero com-
ponent A„(kp) in (8) and no static field, in which
case the exact y»((H) is also known. ' There, ap-
proximate methods were found to be applicable in
the weak coupling case only, and in a limited range
of frequencies. It should be mentioned, however
that the stochastic method is identical with the
exact solution in that particular ease. These
facts together with preliminary results for the
present model' have prompted R more detailed

study of spin-phonon relaxation, which is pre-
sented here.

III. FORMAL TREATMENT

In the following we wiQ discuss a comulant ex-
pansion for the correlation function {8). Our ap-
pl"ORch ls slmilRr to that of Kubo.

%'e need an interaction representation for the
time evolution of the operator A in Eq. (8). For
this purpose we will treat the first term of the
Hamiltonian (1) as the unperturbed Hamiltonian
H&, and the rest as a perturba, tion V. In the ab-
sence of collisions the motion of A is determined
by the unperturbed Liouville operator L0,

HtI, ()t A eiHot Ae iHot -A(t) (ao)

The complete time dependence of A ca,n then be
expressed as

A(f) = V(f)A(f)„V(t) = e'" e "0'-
introducing a "scattering" operator U(t) which
satisfies the equation of motions~

v(f) = tv(f) w(f), v(o) =I

W(t) = e'B()t We ' O'; W —= L - I.o . (28)

The Liouville perturbation 8' is simply related to
V according to WA= [(H-HO), A] =[V,A].

Integrating Eq. (22) and substituting the result
into (21) finally leads to the following expression
for the correlation function (8)B'1H:

This avera, ge is linear and properly normalized
since ((1))»=1. The denominator of (25) is the
correlation function (24) with an unperturbed time
dependence for which we introduce a new symbol

K„B(t)= Tr(Bp e'~otA) = (A(t)(&B-). (26)

It should be noted that the thermal average in (26)
is still defined with respect to the total Hamiltonian
(1).

Using (25) Rnd (26) we can write (24) as

C»(t)= Tr BpT' exp t W(t')dt' etBot A . (24)
0

The symbol T' stands for a time-ordering oper-
ator which arranges a product of operators W{t')
in such a way that their a,rguments increase from
left to right.

Equation (24) can be further rewritten by intro-
ducing a generalized time-dependent average of an
operator 8 as follows:
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and then transform the average into a cumulant
average in the exponent. 2 The function (24) thus
appears in the general form

d„(t)=(( d'exp('f w(e)de') —1 )) (29)

C„B(t)=KAB(t) e AB' ',
where

(28)
and the superscript c refers to the fact that the
average must be interpreted as a cumulant expan-
sion. The first few terms of this expansion are

t ~t t ~t
gAB(t) =t «1«~(tt))&AB-

i
«2 dt1 «~(tt) ~(t2}))AB+- «1 yt'(t1) + ' ' '

~

a0 &0 0 JO Aa
(30)

(t) &AB) B tedAt+2AB(t) (32}

In general, the time dependence of g„B(t) must be
such as to ensure the decay of C„B(t}at large times
as required by Eq. (12). However, as t- ~, g„B(t)
may also contain an imaginary term that goes lin-
early with time. Its rate of change,

yAa = Im lim e dt e "gAa t, (33)

represents a shift of the Larmor frequency due to
the interaction. Introducing further

~Aa = ~A —yAa ~

as an effective Larmor frequency, and

(34)

The averages in (30) can in principle be evaluated
for any given system, however, they can be very
complicated due to the fact that they contain the
full statistical operator p of Eq. (9).

The usefulness of the above procedure depends
on the properties of the function g„B(t). In partic-
ular, it has to be a well-behaved function of time
and of the interaction Hamiltonian V in order to be
calculable by some approximation from (30). Fur-
thermore, the formulation outlined above will be
meaningful only when the function K„B(t) is diago-
nal in the space of variables A and B needed to
fully describe the dynamics of the system. In our
case, this requirement is satisfied thanks to the
isotropic model for the spin-phonon coupling. Name-

ly, we can choose the variables in such a way that their
unperturbed motion is purely harmonic,

(31)

where (dA is the unperturbed Larmor frequency.
The variables associated with the spin operators
S, S„S,introduced later will indeed have this
property. If this were not the case, the functions

K„B(t), C„B(t), andg„B(t) wouldbecome matrices in the
space of variablesA, B and would be interrelated by a
complicated matrix equation analogous to Eq. (28).

Because of (31) and the conditions just mentioned,
our discussion is limited to the case where each
correlation function contains only one resonance,
even though the whole system may still contain
several resonances.

The correlation function (28) now has the form

f„B(t)= g„B(t)-—iyABt,

we can thus write

(36)

(t) &d4B) e tAAB-t+fAB(t&

D1fferentiating (36) with respect to the time yie].ds
(17). Thus the cumulant-expansion method

provides the machinery to calculate the terms ap-
pearing in the stochastic equation of motion.

The complex phase-modulation function f„B(t) in
(36) is responsible for the analytic behavior of
C„B(t). In particular, we see from (36) that f„B(0)
=0, while the real part of f„B(t) for I t I -+~ should
be large and negative, for example, Re f„B(t)

n) P.
For B=A' the imaginary part of the susceptibility

(12) must have the property }tA'B(td)/»0. " It can
be shown that gAB(&) &0 guarantees this inequality,
where gAB(~) is the Fourier transform of g„B(t)
from Eq. (32).

We now examine the perturbation expansion of
f„B(t) in powers of V. The question is under what
conditions can be cumulant expansion in (29) be
terminated at the first few terms displayed in (30),
and whether these terms can be evaluated in a low-
order perturbation exapnsion in V. Let us associ-
ate any pair of operators W(t,.), W(tt) with a scat-
tering event that occurs in a time interval t, =t,
—t, We may then neglect all averages containing
more than one such event if, first, there is no
correlation between two events occurring in two
different time intervals separated by more than a
certain correlation time t„and second, if the
coupling is weak enough so that the contributions
of multiple scattering events taking place within
an interval t, is much smaller than that of a single
scattering. The first condition implies the as-
sumption of randomness of collisions and has to
be fulfilled even in case of weak coupling (second
condition) because the function g„B(t) in (30) might
otherwise increase as a high positive power of t.

An alternative interpretation suggests itself when
we look at the actual form of the averages in (30).
As shown in Sec. IV, the lowest term in f„B(t) is
proportional to a sum over all phonon vectors k
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of the square of the coupling constant, IA.„I'.
Higher-order terms would thus involve multiple
sums over k, k', k", etc. However, since
lA), I ~ I/N by Eq. (6), we must have krak'ak",
etc. in an infinite system. Thus, if we omit these
higher terms, we essentially neglect all correla-
tions between the collisions involving two or more
phonons belonging to different modes. Our ap-
proximation is therefore analogous to the indepen-
dent-collision approximation used in the theory of
pressure broadening of spectral lines in gases. '3

The frequency shift y» cannot be calculated by
a similar low-order expansion in V. The reason
is that the renormalized Larmor frequency 0»
in addition to being responsible for the long-time
oscillatory behavior of C„s(t) enters the expres-
sion for the thermodynamic average &AB) in (36).
The derivative of this average with respect to the
static field must be consistent with the definition
of the static susceptibility in Eq. (13). Thus we
obtain a condition which must be satisfied by ~»,
or equivalently y», as a function of the coupling
parameter.

The approximation method based on the pertur-
bation expansion of f„s(t), although the most plau-
sible one, is by no means unique. For example,
rather than expanding the averages in (30) in
powers of V one can apply a decoupling scheme in
order to express f„s(t) as a functional of the prod-
uct between C„s(t') and a corresponding phonon
correlation function. ' In this way, one generates
a set of self-consistent equations for the correla-
tion functions which are generally difficult to solve
and do not offer a simple physical interpretation.

first introduce the usual spin-flip operators S, and
S,

S, = S„~iS„. (39)

If a transverse probe field is applied along the x
axis, we find for the corresponding susceptibility

x,(~) = -'(x,(~)+ x. (~)l, (40)

where x .(p)) is obtained from (12) with A =S —(S )
and B=s,-(S,). Thus we will need the correlation
function

c„(t)=(s (t)s, (o)) -(s )&s,). (41)

(t) (S S )e )Qpt+f~(t)-

(t) &S S )e+)Qpt+f~ (t)
(42a)

(42b)

The averages (S,) and (S,S,) in (37) and (42), re-
spectively, are connected by the relations

The function C, (t) can be found from (41) with the
help of (14). The averages (S,) are different from
zero if the general spin-phonon coupling (3) is
used. However, it can be shown that in the iso-
tropic coupling case introduced in Eqs. (4)-(7) they
vanish rigorously. To prove this, one can use the
usual perturbation expansion for the density matrix
(9) in powers of V and find that all terms are zero
because of the orthogonality relation (5) and the
fact that the unperturbed averages (S,) are zero.

From the unperturbed time dependence S,(t) =S,
=S,e"" ' and (31)we find the zero-order Lamor
frequencies ~,=(do and ~ =- ~0. Following the
steps leading from (32) to (36) we then introduce an
effective Larmor frequency 0,=—Qo and a phase-
modulation function f,(t) in terms of which the cor-
relation function (41) finally becomes

IV. SPIN CORRELATION FUNCTIONS

A. Definitions and general properties
(S,S ) —(S S,) =2(S,),
(s.s ) +(s s.) =1,

(43a)

(43b)

C, (t) =
I.

—(S,) je "' (38)

introducing the phase-modulation function f„(t)
=g„(t). The longitudinal susceptibility X„(a&) is
obtained by inserting (38) into Eq. (12). The fac-
tor (gPp) has been incorporated into the definition
«x &(~).

To determine the transverse susceptibility we

The first quantity which is of interest is the lon-
gitudinal dynamic susceptibility. From (1), (8),
(11), and (12) we see that the correlation function
involved will be

c.,(t) = &s.(t)s.(o)) —&s.&'.

The unperturbed time dependence of S, is S,(t)p=S„
and the corresponding Larmor frequency intro-
duced in Eq. (31) is p), = 0. We may also anticipate
that C„(t) will not oscillate as t -~, that is, 0„
=0. Using the fact that S,=-,' we can thus write
C„(t) in the form of Eq. (36),

f (-t)=f. (t-ip);
&s s.) = &s.s ) e' "p.

Together with (43) the last equation leads to

(44)

(45)

(S S,) =(e-p "p+1)-', &S,S ) =(e' "p+1)-', (46a)

(S ) = —
p tanh(pPAp). (46b)

which follow from the commutation relations for
the spin- —,

' operators.
We must now calculate the functions f„(t) and

f,(t) figuring in (37) and (42), the Larmor frequen-
cy Qp, and one of the averages, say (S,). In Sec.
IV 8 we will discuss a perturbation expansion for
the phase functions. To determine Ap and (S,) how-
ever, we need two more equations. The first of
these is provided by the relation (14) the functions
C (t) and C, (t) must satisfy, Applying (14) to (42)
and comparing the exponents in C,(- t) and C.
(t iP) we fi-nd the following relations:
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B. Perturbation expansion for f„~ (t)

When we try to calculate the first few terms in
the expansion (30) for g .(t), we realize that it con-
tains a number of unknown averages like (S a&),
(S,s a~@a t.~.), etc. To determine these we would

need a number of additional parameters and con-
ditions of the type (47). In order to keep the num-

ber of parameters minimal, we will limit our-
selves here to one unknown parameter only, that
is, the effective Larmor frequency 00 introduced
earlier. In this approximation we shall, there-
fore, calculate the averages in (30) and hence the
functions f,(t) by a finite-order perturbation ex-
pansion in powers of V, however, with 00 figuring
everywhere in lieu of the unperturbed Larmor fre-
quency 0. Introducing

K,(t) =(s s.)e-'"o', (48)

The remaining unknown parameter 00 can be de-
termined from the requirement that the static lon-
gitudinal susceptibility ~, must be equal to the de-
rivative of the spin polarization (S,) with respect
to the static external field K, =~o/gps, or in our
system of units,

[i (S )2] d7 f (-jX) ( I)
0 0

where the first equation follows from (13) and (38).
A consistency condition of the type (4'7) has been
proposed by Gotze and Schlottman' for the case of
a spin-& impurity in metals.

In the memory-function method or in various
Green's-function approaches additional conditions
may arise. They usually have the form of a fre-
quency sum rule for the dynamic susceptibility
}t„s(v)which is equivalent to the requirement that
the correlation function C»(t) must have a pre-
scribed value at t= 0. For example, [C,(0)+ C, (0}]
=1 in view of Eq. (46b). In the stochastic ap-
proach, the analyticity of the correlation functions
guarantees the correct behavior of the frequency
dependence of ~s(e) and hence the frequency sum
rules are automatically satisfied. There is fur-
thermore no distinction at all between the results
derived from the commutator or anticommutator
correlation (or Green's) functions. This is not the
case with other approaches where approximations
are based on the frequency rather than the time
dependence of the correlation functions, a point
we discussed in Ref. 9.

and using Eq. (42), we can thus write

c (t)=K (t)e'- "' (49)

=1+[K(t)] '[C (t)+ C (t)+ ~ ~ ], (50)

where we have dropped all the subscripts, and in
the last line we used the fact that C'=K(t). At
t = 0 we have f"(0)= 0, hence

[K(0)] [C (0)+C (0)+ ~ . . ]=0. (51)

Subtracting (51) from (50) and comparing the terms
of the same order on both sides of the equation,
we derive

f ', (t) = (s s,&-'[~'"o' c',(t) c„'(o)—];

f ', (t) =(s s.)-'[~'"o' c',(t) —c'.(o}]--,'[f '.(t)]';

(52a)

(52b)
etc. This is, of course, just another form of a
cumulant expansion.

Finally, an analogous procedure can be set up
for the function C„(t). Starting from Eq. (38) we
find that in this case

f,', (t) = [-,' —(s,)']-' c,',(t), etc. ,

where we have also used C,2, (0) =0.

V. CALCULATION OF SUSCEPTIBILITIES

A. Longitudinal relaxation

We will first investigate the simpler and physi-
cally more interesting longitudinal case. To cal-
culate the function f„(t) in the lowest- (second-)
order approximation we need C~, (t) according to
Eq. (53). It turns out to be easiest to do the cal-
culation for imaginary times t= —i7 using the Mat-
subara perturbation technique. " The second-order
term of C„(-i~) is

where a bar over a symbol indicates an approxi-
mate quantity which is a function of 00, and 00 it-
self has to be determined from the self-consistency
condition (4'7).

As a convenient way to calculate f,(t), we now

imagine that both C,(t) and f,(t) have been expand-
ed into a power series with respect to V, and let
C",(t) and f" (t) denote the nth terms in this ex-
pansion. Only even powers of V appear. From
(49) we find

e7 "'t """'= [K(t)]-'[C'(t)+ C (t)+ C'(t)+ ]

~IS T3

c,', (- t~) = d~, d~, [(z;v(- t~,),v(- &7,),s, (- t~},s,), —(s.'),(v( t~,),v(- t-~),),],
+0 0

(54}

where T, is the time-ordering operator which orders all operators with time arguments 7,. on the interval
0 —7;~ P in ascending order from the right to the left. The second term in (54) follows from the expansion
of the trace of the statistical operator in (9).
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To evaluate the averages in (54) we use the explicit form of the perturbation V, Eq. (4}, and note that the
unperturbed spin and phonon averages can be separated. The orthogonality relation (5) is used to eliminate
all crossterms of the type S„(-i~,) pS„(-i~,)„p.tv. Owing to the cancellation of spin averages between the
first and the second term of (54), we get a nonzero contribution only for r, ~ 7~ Tp T.he calculation of the
integrals is trivial, and the result is

( p (A (e (e"' ~&' —e' 'e)(e' "'—())
(e'"i —1) (eP p+1)

+ ((0 4) ) + (Qrp (dp) + ((0 y (dp (0 y (dp)
k k

(55)

This expression is first converted into C„(-iv) by replacing ppp everywhere by Ap. Next, we substitute
(it) for T in order to obtain C„(t). Using Eq. (53) with

[-,' —(S,)'] -' = 4 cosh'(-,'PIL, ),

we finally have

f p (t) —cosh( —PIL ) p (e [&P p ~((&~
( -t(&p-(e(I)t I) + g (IL IL ) (56)

The terms with cog- ~g have already been taken into account.
To evaluate the above expression we make use of Eqs. (6) and (7), and introduce dimensionless quantities

+k/~(eee xP ~P/+(n, and b = P P(d The r.esult is written

f«(t) =X«(t) —i Y«(t),

with both X„(t) and Y„(t) real, and equal to

(57)

X„(t)=(7cosh(bxp) dx, . P jcos[(x- xp)(d t]- I);x (1 —x )' P cosh[b(x —xp)]
x- xp 'sinh bx

Y„(t)= q cosh(bxp) (58)

The final expression for the longitudinal susceptibility y„(&u) is derived by using the approximate result
(57) and (58) for f„(t) in Eq. (38), and then inserting the function C„(t) thus obtained into Eq. (12):

y„(&o) =& sech (bxp) dte'"'sin[Y„(t)]ex«"'.
0

(60}

The integrations in (58)-(60) must be done numerically. We must, however, first find the value of the
parameter xp = Qp/&o„ from Eq. (47), and investigate the analytic behavior of the integrand in (60), in par-
ticular at large times.

The asymptotic behavior of the integrals in (58), (59) is governed by the singularity which occurs at
x= xp, assuming xp& l. Introducing a new variable z = x- xp we find that the leading terms of X„(t) at p( t
»1 are

' odkX„(t)-qxPp(1 —xp)"P coth(bxp) —,[cos(z(d t) —1]+~ ~ ~

f g 8
0

- —(exp (1 —xp)'~P coth(bxp)
~

((d t) {Si[(1+xp)(d„t]+Si[(1+xp)cu t]j

cos[(1+xp)u& t] —1 cos[(1 —xp) &u„t] —1
+ + P ™ +0ly~t( .1+X0 1-X0 (61)

In the same approximation Y„(t) behaves like

Y«(t) - qx p (1 —xp)" b coth(bxp) (Si[(1+xp)&u~t]+ Si[(l —xp) &u~t] ] + 0(1/t) . (62)
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In these expressions Si(x) is the sine-integral func-
tion which for large arguments behaves like" Si(x)-

&m —(cosx)/x+0(x ). Hence, the leading asymp-
totic term in (61) is simply

X„(t)-—
I tl /Z, (x,&1), (63)

where

T, =tanh(bxo) [qx(u xo(1 —x~~)~2] ~. (64).

Thus for t» I/(v —Qo) the correlation function

C„(t)decays exponentially with a relaxation time T,.
The process involved is the direct (one-phonon)
transition in which a phonon supplies the energy
corresponding to the effective Larmor frequency
Ao. The temperature dependence of T, is deter-
mined by the parameters b and xo in (64) and is in
general quite complicated. However, if the varia-
tion with T of Qo happens at high temperatures to
be weak, we may expect the usual T,™I/T depen-
dence of the relaxation time.

The imaginary part of f„'(t}approaches a con-
stant value as t-~,

Ygg(t) gvxo (-1 —xo)~I b coth(bxo) = p/Tq, (65)

which would be roughly temperature independent at
high T, but may increase sharply on lowering the
temperature if T& Qo/ks.

The asymptotic behavior of C„(t) is relevant to
the low-frecluency behavior of y„(&o). For small
values of q the integrand in (60) behaves roughly
as -(p/&, ) e'"' " ' and we can expect a I orentzian
shape for the low-frequency susceptibility. Such
estimates are not too reliable, however: If one
would use the anticommutator form, C„(t)+C„( t), -
and the fluctuation-dissipation theorem to find the
susceptibility, the same asymptotic C„(t) as above
would lead to a non-Lorentzian line shape. 5'9 The
problem lies in the detailed time dependence of the
functions X„(t) and Y„(t), in particular at small
times, which should not be disregarded. Thus it
is hard to see how the correct frequency dependence
of X„(~) could be predicted from simple phenomeno-
logical approaches, since these usually involve an

exponentially decaying correlation function at all
times. '

For large 7i (strong coupling) or low temperature
(P» T,), the function Y„(t) can reach asymptotic
values near -

&m or larger. This means that the
oscillating character of sin[Y„(t)] becomes impor-
tant, and the behavior of y„(&u) may become very
different from a simple Lorentzian at all frequen-
cies. From (65}we realize that the critical value
of 7', is roughly given by I/T, =2m'keT, that is, the
relaxation rate is equal to m times the average
thermal energy. The relaxation rate would thus

play a role in statistical factors, something we

have neglected by introducing a real Larmor fre-
quency in the averages (46). This suggests that the

validity of our approximations is limited to such
values of q and temperature for which Y„(~)never
exceeds the value &m.

If xo & 1, that is, Qp ~ e„, the renormalized Lar-
mor frequency lies outside the range of available
phonon frequencies, the direct relaxation processes
become forbidden. The asymptotic behavior of the
function X„(t) is then such that it vanishes as
-1/Itl for t-~. Similarly, Y„(t)-1/t. The cor-
relation function C (t) no more vanishes at infinity
and thus violates the requirements imposed upon

C„(t) in connection with Eq. (12}. The trouble lies
in the approximations made in calculating f„(t),
specifically in limiting the perturbation expansion
to the second-order term f,',(t). If one would carry
on the calculation to higher orders in V, collisions
involving two or more phonons would be properly
taken into account. The calculation of f„'(t) is,
however, not trivial as it involves fourfold time-
ordered integrals. Furthermore, such a result
would be of little practical value because the quasi-
two-phonon processes involved have to compete in
reality with real processes arising from that part
of the spin-lattice coupling which is quadratic in
lattice displacements. We have neglected any such
terms in our interaction Hamiltonian, and will not
consider the case x0 & 1 in any detail.

B. Spin magnetization and static susceptibility

We must calculate the spin magnetization (S,) and

the static susceptibility p„ to determine the value
of the parameter Qo from the relations (46b) and

(47). We will use a procedure similar to that of
Ref. 18. First we note that Qp is a function of eo,
that is, QO=QO(~0). Conversely, &up=~a(Qp) ~ Thus
we may rewrite the derivative in (4V) as

where we have used Eg. (46b}. For a prescribed
value of the effective Larmor frequency, say Q0,
we can always calculate X„from the first of Eqs.
(4V) into which we substitute f„(-iX} from (5V}-(59}
for f„( iX) The va. lue -of y„ thus obtained will be
denoted as X„(QO}. Inserting (66) into Eq. (47),
and integrating both sides with respect to 00 be-
tween zero and Qo yields

t.A0

(g, (A, ) = —
J dAO [cosh'(-,'PQO) y„(QO)] ', (67)

0

where we have used the boundary condition v, (0)
=0. Since we know }t„(QD) for any value of Qo, we
can calculate the integral in (67) numerically with
a variable upper limit and stop as soon as we reach
the known value of &0. Intermediate steps give us
the function Qo(+o) from which we can find (S,) as a
function of the static external field H, =ufo/2gpe,
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coupling parameter g, and the temperature. The
parameter 0, has thus been determined self-con-
sistently for any value of the unperturbed Larmor
frequency zo, and can now be used to calculate the
dynamic susceptibility from Eq. (60).

C. Transverse susceptibility

The calculation off,(t) in (52a) proceeds in a
manner very similar to the derivation of Eq. (56).
First we consider the second-order terms of the
imaginary-time correlation function C,(- i&):

C,(-iX) = d7'p
~

d7, [(T, V(-ir )ppV(-iv, ) pS ( ir-)pS,}p-(SSupe "P'(V(-imp)pV(-i7', )p}p].
Qo H P

(68)

There are now three different integration regions which give nonzero contributions to the integral in (68),
depending on the position of S (- i7')p relative to V(- imp)p and V(-is, )p A. fter finding C,(-ir) we substitute
(it) for 7 and Qp for &pp, and then use Eq. (52a) in order to derive f p, (f). The result is

k

where the notation iS the same as in Eqs. (58) and (59). The second integral is a principal-value integral
because the singularity at x =xo, which mould give an imaginary term proportional to t, has been removed
by the term ill pt in -(42} according to (32)-(36). The corresponding function f, (t) needed in C, (f) can be
derived from (70) by using the general relationship (44). We can then verify that

y! (i)=7'.(i) ~„, „. (71)

Separating the real and imaginary parts of f.,(t) as in (57) we write

j'.(i) -=&,(i) —il', (i), (72)

and similarly for f,.(t). The final result for the transverse susceptibility }('„,(&d) as introduced by Eq. (40)
can be written

All imaginary terms that go linearly with time as i-~ have been dropped from C,(t) because they are part
of the oscillating factor e ' o' in (48) according to the definition off,(t) in Eqs. (35) and (49).

The calculation of f ', ()t) is completed by making use of the models for the coupling constant A;, Eq. (4)
and the phonon spectrum (7), and leads to the result

2 t}
" x'(1 x')'t' 1+e ""pf '.(i) = —" dxx(1-x')' ' pt„(e '"" ' —1)+— dx (8-t&)t-xp)(t t I) (70)2 . , 1 —e 2, (x-xp) 1 —e""

t~t x,&t) sin[~lpi+I'-, (i)1 x, &t) sin[I})pi —I; (i)]
~ (73)

As before, we must investigate the asymptotic behavior of the function f,(t). The integrand of the first
term in (70) has no singularities (it has a square-root branch point at x =+1) and is expected to vanish as
i-~. It becomes particularly simple at high temperatures (b&d «1), where we have

( +],
a ~pafr, (t) -=—, dxx(1-x')'~p» (e '""~' —1}—= — dx (I -X')'~ —[cos(x&d t) —1]-ix sin(x&d t) I2 "-1 b m foal )

lm J,((o p 1 . nw 9 J,((o p)2b &()„i 2 2 8(&d i) (t) t (74)

Here J,(x) is the ordinary Bessel function whose
asymptotic behavior is '

J,(x) - [2/(wx)] '~'[cos(x —ptt —3 sin(x ——,'tt) /(8x)]+ ~ ~ ~ .
Thus we realize that f .,(i) falls off at infinity as-

I t I and does not contribute to the relaxation
behavior of the correlation function C, ()t). Note
that f,(t) does not depend in any way on the Lar-
mor frequency 00. The processes involved in this

part of g, (t) are adiabatic (in quantum-mechanical
sense) phase interrupting collisionst in which no
real transitions between the two magnetic states
occur. Mathematically speaking, one could pro-
duce a function f ~,(t} that goes as = —it i at large i
by choosing A&c~:&' rather than A.„~+& as in
Eq. (6). Such a coupling constant would correspond
to the piezoelectric coupling of donor impurities in
insulators, '~' but does not seem to be relevant to
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the present problem.
The second integral in (70) has an asymptotic

behavior very similar to that of f ~,(t). Indeed, if
we apply the same method as in deriving (61), (62),
we observe that

The static susceptibility is given by the derivative
of (S,) with respect to &uo according to (47), and is
not displayed. In general, the value of

~ (S,) ~
de-

creases with increasing g for the range of param-
eters chosen. The frequency 00 can be obtained
from (S,) by the relation

- —.'[X„(t)—iY„(t)j„„, (75) &,=(2/P)tanh '(2~(S, ) ~),

V. DISCUSSION

In order to study the character of the results
derived in Sec. IV, we have carried out numerical
calculations of the static and dynamic suscepti-
bilities. First we had to determine the parameter
Ao for a given temperature, static field X, (or
410= 2gpsX, ), and the coupling parameter g from
Eq. (67). In Fig. 1 the spin magnetization is
plotted for four values of g as a function of eo and
compared with the curve for a free spin (q= 0).

0.4

i&sz&i

0.3

0.05 &0~&m 0.2

FIG. 1. Static spin magnetization at constant tempera-
ture (p~ =10) as function of the external field (in units
of Mp/a)fft) Arrows indicate the positions of. the effective
Larmor frequencies corresponding to four values of the
coupling parameter q (0.3, 0.6, l.2, and 2.4). Dashed
line: free-spin magnetization (q = 0).

where the asymptotic forms of X„(t) and Y„(t) are
given by Eqs. (61) and (62). Thus the leading term
in X,(f) at large t will behave as

(76)

where T, = 2T, . This relationship between the
transverse and longitudinal relationship is char-
acteristic of spin-phonon relaxation. In the limit
(d&-0, we would expect T~ = T, owing to the isotropy
of the coupling in (6); however, both T, and T, be-
come infinite in this case as can be seen from Eq.
(64). On the other hand, if we choose the hypo-
thetical coupling A.»„c('v»„' ' mentioned above, Tj
and T~ are both finite as (do- 0 and become exactly
equal in this limit, because the two terms in (71)
contribute equal amounts to the function f,(t),
which is further equal to f,', (f).

and is itself a decreasing function of g. The be-
havior of (S,) at low temperatures and for strong
coupling (g» 1) cannot be studied in the approxi-
mation used for reasons- discussed in Sec. IV.
There are, however, no obvious limitations on the
high-temperature side. The relaxation rate 1/T,
from Eq. (64) can become very large without
causing any problems while Y„(t-~) remains
finite, as we saw. In general, we may even ex-
pect the validity of the stochastic theory to im-
prove as we go towards higher temperatures for
physical reasons mentioned at the end of Sec. IIC.
The temperature dependence of Q has not been
investigated because of the length of the compu-
tations involved. Physically, we can expect that
the properties of the complicated low-lying excited
states of the coupled spin-lattice system dominates
the scene as T 0. Different methods should,
therefore, be sought to describe the behavior of
(S,) in this limit.

Having found Qo for a given g, coo, and tempera-
ture, we can now calculate the complex longitu-
dinal susceptibility y„(&) from Eqs. (57)-(60).
The function f,~(t) at small values of the time t is
obtained by numerical integration from (58), (59),
while for t large we can use an asymptotic ex-
pansion of the type (61), (62). The imaginary (ab-
sorptive) part of the relaxation spectrum, X,",(&u),

appears in Fig. 2 for the same range of param-
eters as used in connection with (S,) above. The
frequency scale is logarithmic. The maximum at
low frequencies occurs at re =1/T, in agreement
with the usual qualitative picture of the longitudi-
nal relaxation. Its shape at low frequencies is
reasonably close to a simple Lorentzian, indicated
by the dashed line for g = 2.4, as expected on the
basis of the asymptotic exponential form of C„(t).

The high-frequency part of y",,(v) exhibits some
structure which is unrelated to the long-time ex-
ponential decay of the correlation function. The
details of the phonon spectrum near e& =v now

play a role; the maximum occurs near e~ and then
the spectrum falls off sharply near co=~ +AD,
the highest possible frequency transfer in a spin-
phonon collision. However, the spectrum does
not drop to zero and remains finite at even higher
frequencies. This behavior suggests the existence
of short-time correlations between the motions of
the spin and the phonons, which are not negligible
because of the finite duration of each scattering



STOCHASTIC THEORY OF SPIN-PHONON RELAXATION 448I,

x"(»
x'(0)

0.5

x'(»
x'(oj

10
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102

10

0.01 0.1 td /Cdm
1D

0.01 td/41m

FIG. 2. Longitudinal relaxation spectrum in units of
static isothermal susceptibility. The value of the static
field corresponds to &0/, „=0.2. The temperature and
the values of g are the same as in Fig. 1. The Lorentzi-
an curve (dashed line) is shown for the case q=2. 4 and
is normalized so that it overlaps with the corresponding
spectrum at low frequencies. Inset: phonon density of
states (vertical scale arbitrary).

event. Note that these effects could not be de-
scribed by a Green's-function decoupling treatment
in the same (second) order Fro.m a physical point
of view, the details of the calculated high-frequen-
cy longitudinal spectrum may not be very impor-
tant for the problem studied. The problem is that
&u„, and hence the second maximum of y",,(&u), will
typically lie in the range of optical frequencies,
that is, far above the frequencies at which the
longitudinal relaxation is usually observed. In ad-
dition, there are processes not considered here
which may influence the shape of y",,(&o) at high
frequencies, namely, the relaxation via higher
magnetic levels and the two-phonon transitions due
to the quadratic spin-lattice coupling. ~

The calculation of the transverse susceptibility
y„„(&u) proceeds in a manner similar to the longi-
tudinal relaxation. The imaginary part g",„(e) is
shown in Fig. 3 for three values of g and the same
vo and T as before. The resonance lines are lo-
cated at cu = 00 and their positions vary with g, as
expected. The lines are very nearly Lorentzian
except at high frequencies where the influence of
the second maximum prevails. Again, the pro-
cesses mentioned above and the effects of spin-

FIG. 3. Transverse spectrum, exhibiting a resonance
near ~ =~0, for three values of q. All other parameters
same as before. Dashed line: Lorentzian model for g
=2.4 (unnormalized). Both scales are logarithmic.

spin interactions will alter the picture in practice.
Knowing the correlation functions C«(t) and

C,(t), we could easily calculate the moments of
the corresponding spectra. Unlike in the simple
I orentzian model, all moments exist because they
are related to the derivatives of the correlation
functions at t=0, which are finite since the corre-
lation functions are well behaved at all times.

To summarize, we conclude that the stochastic
theory is applicable to the calculation of both the
longitudinal relaxation and the transverse reso-
nance absorption at all frequencies. Our study
was simplified through the use of an isotropic mod-
el for spin-phonon coupling; however, the method
could probably be extended to more general cases
of spin-lattice interaction. The Lorentzian model
is only recovered in the limit of very low frequen-
cies, that is, when the collisions take place on a
time scale short compared to the changes of the
external field. The high-frequency relaxation and
resonance spectra, however, reveal some struc-
ture which is due to the real physical details of
the collisions, and is furthermore related to the
high-frequency part of the phonon density of states
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