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A calculation of the linear-response properties of an electron gas, coupled by the s-f exchange

interaction to a lattice of localized spins is presented. Coupled-charge and spin-density-response

functions are determined in the random-phase approximation and used to compute a Mott-type
instability of metallic Eu-rich EuO toward formation of magnetic polarons bound to oxygen vacancies.

Critical carrier densities are obtained as a function of temperature and phase diagrams of the metallic

and insulating states are presented and compared with existing theories and experimental results.

I. INTRODUCTION

An insulator-metal transition (IMT) in Eu-rich
EuO has been extensively investigated in recent
years. ' " The resistivity, found to be nonacti-
vated (metallic) at low temperatures, increases
sharply by some orders of magnitude in the
vicinity of 50 K. Somewhat above the ferromag-
netic Curie temperature of T~ = 69 K, the resis-
tivity exhibits a maximum and, depending on
sample preparation, shows activated or nonacti-
vated behavior at temperatures much higher than
the Curie temperature. "

Since the IMT occurs only in Eu-rich EuO, the
transition is presumably associated with oxygen
vacancies. According to some authors, "these
vacancies act as traps which may or may not bind
electrons depending on their position relative to
a magnetically shifted conduction-band edge. At
the same time it was suggested by von Molnar
and Kasuya' that the doubly charged positive oxy-
gen vacancies can bind two electrons in a tightly
bound nonmagnetic heliumlike singlet in the high-
temperature insulating region and in a magnetic
triplet below Tc in which the is & electron is
tightly bound and the 2s 4 electron merges with
the tail of the conduction band edge, giving rise
to hopping or even band conduction. In contrast,
Torrance eI' al.' proposed that the high-tempera-
ture state was a "bound magnetic polaron" (BMP);
the effect of the deeply trapped electron was ig-
nored and the more loosely bound electron was
shown to gain stability in the paramagnetic region
by exchange polarizing the Eu" spins within a
rather large region about the vacancy.

Other theoretical treatments of the IMT in EuO
are those of Nagaev and Grigin" and of Leroux-
Hugon. " Leroux-Hugon, who neglects the effects
of double occupancy on vacancy sites, calculates

the Mott instability of an exchange-polarized elec-
tron gas toward formation of a bound hydrogen, ic
impurity state, using a Landau theory for the local
moments and the Thomas-Fermi approximation
for the conduction electrons. Nagaev and Grigin
compute the linear response functions of an ex-
change polarized electron gas to an electric per-
turbation. But, besides neglecting the effects of
double occupancy on vacancy sites also, they com-
pute the linear response functions in the spin-wave
approximation, which limits their calculation to
low temperatures.

In this paper we present a calculation of the
electric and magnetic linear-response properties
of an electron gas, coupled by the s-f exchange
interaction to a lattice of localized spins. Owing

to this exchange coupling the electronic charge
density, as well as the spin density of the local
moments, separately respond to both electric
and magnetic field perturbations. This is an
exact property within linear response and can be
formulated as

i)( p) =L»y +L„h,
5(S') =L„rp+L22h, ,

where &(p) and 5(S') are the charge and spin
densities, respectively, induced by the electric
and magnetic perturbations, y and h, respective-
ly. In. Sec. II the response functions Lyy Lyg L2y,
and I» are calculated using the Green's-function
equation of motion method and decoupling in the
random-phase approximation" (RPA). In Sec. III
we use these response functions to calculate the
Mott instability of a conduction electron toward
formation of a bound magnetic polaron in the field
of a positive oxygen vacancy and interacting via
s-f exchange with the localized magnetic moments
of the Eu" ions. Since the vacancy is doubly
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charged, we assume a second electron to be tight-
ly bound to it. Although this second electron does
not take part in the conduction process, it inter-
acts with the localized magnetic moments of the
nearest Eu" neighbors and gives rise to a per-
turbing nonuniform molecular field that sensitively
influences the Mott localization of the conduction
electrons, even well above T&. Our approach is
similar to those of Nagaev and Grigin, "Leroux-
Hugon, "and to the model of Torrance et al.' How-
ever, we believe, in contrast to these authors,
that the effects of the tightly bound electron cannot
be ignored. Further, our RPA treatment avoids
some approximations and limitations and exhibits
the effects that we believe are responsible for
the IMT. A discussion of the results is given in
Sec. IV.

II. LINEAR-RESPONSE THEORY

We consider a system of localized magnetic
moments arranged on a crystal lattice and inter-
acting via the Heisenberg Hamiltonian

H, ~
=-I Cna 8a a

' Sn Cna
n, a, a I

(4)

where c„, and cna are Wannier creation and an-
nihilation operators related to the corresponding
Bloch operators by means of

t. 'p RnCt"pa= ~~ ~ e "en'

and its Hermitian conjugate. The quantity 0' is the
Pauli spin operator, l is the contact intra-atomic
s fexch-ange parameter, and N is the number of
atomic sites.

The total system under consideration is then
described by

BO=H~+Ei, +H, ~ .
We now apply, adiabatically, small electric and

magnetic fields whose time and spatial variations
are characterized by a frequency (d and a wave
vector k. The corresponding perturbation is
denoted by 8, and

II~ =Ilm+II,

Hz = —P &„S„S +g tteh, g S„',
n y m n

w'here

K =gtte&h(k, ~)Sf, e ' '""'+H.c. (8)

where S„ is the spin moment on the nth site and
is the exchange coupling constant between the

sites n and m. The quantity g is the gyromagnetic
ratio and p~ is the Bohr magneton. The applied
field h, serves to define the direction z of spon-
taneous magnetization. Equation (2) describes
the magnetic subsystem, which we take to be
immersed in an interacting sea of conduction
electrons described by the Hamiltonian

Ks g EpQpaepa
py a

+
2 ~ ~pa q-Ka p+Ka pa a qa

p ~ q, k
a, a'

where E
p

is the conduction-band energy as cal-
culated in the paramagnetic state and is assumed
to be a simple s band. The quantity

V» = 4»e'/», K'

is the Fourier transform of the Coulomb interac-
tion between the conduction electrons in a medium
of unit volume, described by the background di-
electric constant &,. The quantities a, and a p,pa
are Bloch creation and annihilation operators.
Equation (3) describes the electronic subsystem.
The magnetic and electronic subsystems are
coupled by the s-f Hamiltonian"

$~ = — g m$
g ik' R a
k g m (10)

and

p ya

To formulate the response properties of the sys-
tem defined by (6), we use the linear response
formula"

5A= A t —t';H, t' dt' .

Here &A represents the response of the quantity
A to a time-dependent perturbation K, (t). It is
just the difference in the thermal average of A
computed with and without K, (t ) applied. The
retarded double-time Green's function, whose
propagation is determined by the unperturbed
Hamiltonian Ho, appears under the time integral
and the quantity A(t ) is the operator A. expressed

and

K, =- ep-„y(k, ~)e-' ' '"'+H.c.
Here h(k, &) and y(k, &) are the Fourier compo-
nents of the perturbing magnetic field and electric
potential. The spatial distributions of spin and
electron densities are determined by $k and pg
which may be written
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in the Heisenberg representation. Specifying this
operator to be either PT, defined by (11) or Ss),

defined by (10) and substituting for II, [Eq. ('I)],
we obtain for the time-Fourier transforms of
the longitudinal charge- and spin. -density response

a y~H (k (a)
&( S T; ST, » = 2'( p' ),

x [1 —2vI(« p-„, ;S-'„» —« p-„„;S-',
&) )].
(21)

5P T, ((d) = I » (k, ()))(P(k, (d) + I » (k, (a)h(k, (a),
(13)

Here X„(k,(a) is the Lindhard susceptibility func-
tion

5S-*„((d)= I,„(k, (a)~P (k 1 (a}+I.„(k,(a)h(k, (a)

and find the response coefficients to be given by

~ fp+Ta fp, -
Xaa{ 1 ) ~(a E~ ~ E t

p

(22)

I,„(k, (a) = —2)ie((p-„; p -„))

L»(k, (a) =2vNgps« pk, s), ))„,
I,„(k,(a}= —2we«s'-„; p -„))

I,„(k,~) =2vNgq, (&S'T, ; S-„))

(14)

(15)

(16)

(17)

Here the + subscript of the Green's functions is
used to denote the time-Fourier transforms and
is usually suppressed but implied.

To actually calculate the response coefficients,
we must resort to approximations: The Green's
functions are calculated by the Zubarev equations
of motion method'6 and are decoupled in the RPA."
Furthermore, in the calculation we use only the
Zener part" of Eq. (4) since 'spin-flip terms in

H,& give rise to mathematical difficulties. If,
however, one attempts to determine the spin-flip
Green's functions, one finds that some of them
renormalize the Heisenberg coupling constants

producing indirect-exchange contributions.
We therefore reinterpret the coupling constants

in the final answers to be renormalized, al-
though this does not account for all the neglected
terms. We shall find another coupling constant
later on, p defined by Eq. (55}, which we also
find necessary to renormalize, presumably for
the same reasons.

For the detailed calculation it is convenient to
define up- or down-spin charge density operators
Pka by

f pa is the Fermi-Dirac distribution

f-,.=[exp[P(E-, ~Slo, p)]+-1] ',
where p is the chemical potential P =1/(&sT); and

o, is the reduced magnetization due to the lattice
of localized moments with spin S. The quantity
X"„(k,(a) is given by

(23)

X.".(k, &) =F, (k, &)/[& —F,(k, &)]
1

(24)

and

)
(gPs)' 'g (0 p

—0 p.T, )(~ p
—~-p.T, )

Scr (8- J- -)
P 0 p p+k

(25)

E,(k, (a)

lg(~--~- -)[(~-—~-)(-+(~- —~- -)0- -]
(a-so (J--J- -)

(28)

Here Jp is the Fourier transform of &„and )t)-

is defined through
+(S-S-)=5

p ~ ~

Equations (19)-(21)may be easily solved for the
three types of Green's functions and the response
coefficients may then be written explicitly as

I„(i, ) = e (x,
' (i, ~)-

I)I g)us '
PT(a = Q n pan p+Ta .

P

(18}

«P T...p T, » =- X,.(k, (a)[1/2)i+i', «P T„p T, »

+I (5, $ 5,t )(( P T(, s)( ))], (19)

It is then easily seen that for the determination
of Eqs. (14)-(17)three Green's functions are
needed. Setting up their equations of motion and

decoupling, one obtains the set of equations

x v i (4 w)x, i( i, ~))

I. IX"„(k,(a)X, (ki, (a)

gu, k(k, ~)

—elX,",( k, (a)X, (k, (())

(gP, )'&&(k, &)

—XH, (k, (d) [1+V, X.(k, (a)]

](k, (a)i

(27}

(28)

(29)

«Pk. s;» =-, x,.(k, ~)[i',&&P-;s-&&

+1(5.
~ i —5., t)«s T, .s), » l. (2o)

where

x,'-(k, &) = x,t (k, ~) +x, ) (k, ~) (31)
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and

$(k, ~) =1+Vk X,"(k, ~)—

& [x.'(k, ~)+4v. x.~ (k, &)x, ) (k, &)l.

and assume S = 2 so that in the Tyablikov theory
we may write

4p =~~(exp(&[ g&sk. +2o.(~.-~-,)]}-I)',
(39)

(32)

Using Eq. (13) one can express the longitudinal
dielectric function" e(k, ~) and the longitudinal
magnetic-susceptibility function" x „(k, (()), in
terms of L~~ and L22

e(k, a&) =[1—(V, /e)I, »(k &e)]-~ (33

we obtain X"„(k,0) which agrees with the results
of Kawasaki and Mori" and of I.iu." These au-
thors use essentially the Tyablikov approximation
which is the RPA for spin systems.

For use in Sec. III one may determine the inte-
grals occuring in Eqs. (25) and (26) in the limit
-0 and for long wavelengths, where

X..(k, ~) =-g p, L..(k, ~) . (34)
J -J =c~p2.

For T & Tc one then obtains"
Substituting Eqs. (27) and (30), we obtain

E(k, v) =( ~ )', (ll'(k, &)

4I'X"„(k, (d)
X,t (k, w)X ~ (k, ))&ig u&i

1
X

Af(gi s)' (35)

X „(k,tu)[1 + V, X,'( k, ~)]

The basic equations which yield these results
are Eqs. (19)-(21). These were obtained by
dropping spin-flip Green's functions of the type

Z

(&
- - - -

&)

(&s: a a t p- &)

and decoupling the hierarchy of Green's functions
as follows':

«np pkn ' p k»=& -n;. n-,.&«pk p k&)

+ & p k&« n ~.n;. ; p k&&,

+ Z Z + Z Z((s-s-s- s-)&=&s-s-&((s- s-»

+(s;)((s-s- s-)) .
To show that this decoupling scheme corresponds
to the RPA, we set I =0 in Eqs. (35}and (36) and
obtain

e(k, ~) =1+V,X,'(k, ~),
x., (k, ~) =x"..(k, ~) .

(37)

(38)

Equation (37} is the standard RPA result" for the
longitudinal dielectric function of the electron gas.
The quantity X, "„(k,k)) is seen to be the longitudinal
magnetic susceptibility of the Heisenberg-spin
subsystem. If we take the (()-0 limit of Eq. (24),

(k 0) a k2+k2c N/k 1' 1-- o

(40)

where ~ is here the number of spins per unit
volume. For» T~ the Ornstein-Zernike result
is obtained. "

From Eqs. (28} and (29) one sees that the off-
diagonal response functions, L» and I2g vanish
as expected for I =0. They also vanish when the
exchange splitting of the conductiori band goes to
zero (i.e. , for T&Tc) In this c. ase Xoi=xo)=2XO
and g, =0. Also for»T& the dielectric function
reduces to the RPA result, Eq. (37), and the
longitudinal susceptibility reduces to

-1
x..(i&, )=x"..(i, )(1 — '. x,'(ic, ~) .

(41)

In the static limit, =0, and for small 0, this
can easily be reduced to the Ornstein-Zernike
susceptibility, "except for a renormalization of
Tc due to the s fexchange cou-pling.

Finally, it should be noted that for T & T~ in the
case that one subband is populated (i.e., X,~ =0),
if we replace X"„(k,0) by the Ornstein-Zernike
susceptibility, our response functions & and p„
reduce to the results of Leroux-Hugon" in the
long-wavelength static limit.

III. INSULATOR-METAL TRANSITION IN EuO

We warit to apply our results to the IMT in Eu-
rich ferromagnetic EuO. In view of modern theo-
ries concerning localization in disordered sys-
tems, '4 one ought to study Anderson localization of
electrons in the random field of oxygen vacancies
which according to all experimental indications
are responsible for the IMT in EuO. Such a theory,
being complicated in nonmagnetic systems, is
expected to be even more difficult here because
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a20k', = 1 (42)

determines the critical density. Here a, is the
crystal Bohr radius and k', is the Thomas-Fermi
inverse screening length

k2 = 6me'n/(~, E„},
where &0 is the background dielectric constant
and E~ is the Fermi energy

—(g2/2gg +}(3v2n)2~3 (43)

where n is the carrier density and rn* is the ef-
fective mass. Equation (42) then gives for the
critical carrier density

of the magnetic properties of EuO that manifestly
influence the IMT.

Therefore, we use the older idea of Mott" to
calculate the critical carrier density n„ that
separates activated (semiconducting) from non-
activated (metallic) behavior in systems with
charged impurities. This theory is not only easily
applied, and modified for the magnetic properties
of the system, but estimates of n, for nonmagnetic-
doped semiconductors have ordinarily been found
to be surprisingly accurate.

The idea of Mott localization about charged im-
purities can be summarized as follows: In the
metallic phase, charged impurities are screened
and can or cannot bind an electron depending on
the carrier density. U binding is possible, the
assumed metallic state is unstable and the system
is semiconducting provided the number of im-
purities is large enough. Within a simple Thomas-
Fermi theory one finds the condition"

change the numerical estimates somewhat, but
will not change the general situation, which is
shown as curve A in Fig. 1.

Therefore, according to this consideration,
which takes into account the magnetic order only
through the exchange splitting of the conduction
band, if a phase change occurs at all, then the
high-temperature phase should be metallic and
the low-temperature phase should be insulating,
contrary to the experimental observation on Eu-
rich EuO. If, however, the dielectric screening
is computed with e(k, 0) given by Eq. (35), and if
the magnetic interaction of charge carriers with
the local moments is taken explicitly into account,
an IMT with a low-temperature metallic phase
may be obtained over a definite range of concen-
trations.

To show this we proceed by assuming a metallic
system with n charge carriers per cm'. An equal
amount of doubly charged positive oxygen vacan-
cies is assumed to have trapped one electron each
in a tightly bound state. We compute whether such
an impurity complex, composed of vacancy and

tightly bound electron, is capable of binding a sec-
ond electron in the form of a bound-magnetic pola-
ron'" (BMP). If the result is affirmative, then
the metallic state is unstable toward formation
of a BMP. We should emphasize that no attempt
is made to calculate or describe the system after
localization occurs. Rather our purpose is to de-
termine n, (T), which gives the phase bounds, ry of
the metallic state.

The trial wave function of the " second" electron

a0n, '~3 = 0.25 . (44)

For n&n, the system can be semiconducting. In
ferromagnetic EuQ, however the conduction band
is known to be split for 7.'&T~ due to the long-
range magnetic order and the s fexchange inte-r-
action. The splitting is so large that for carrier
densities of the order of 10"cm ' only the spin-
up band is populated at low temperatures. Con-
sequently, Eq. (43) becomes for T«Tc

NIETAL

E~ = (ri'/2m*)(6w'n)' '

This leads to the relation

(45 }
0.2-

INSULATOR

Euo 4nnonmagn
C

(46) 0 20 40 60 TI. 80 100 120
Temperature (K)

where n","""'""is calculated with Eq. (44). Hence,
if the carrier density is larger than n,"'"""~"but

smaller than 4n,"'"n"'", the system can be nonme-

tallic at low temperatures and metallic at high

temperatures, the transition occuring where the
long-range magnetic order disappears, i.e., at
or close to 7.'~. A more accurate calculation, in

particular, a better theory for screening, will

FIG. 1, Critical carrier density as a function of
temperature. Curve A: normal Mott transition with

exchange split bands below Tc= 69 K. Curve B: Mott

instability toward formation of a BMP using the
Ornstein-Zernike susceptibility in the screening func-
tion and @=0 in Eq. (52). Curve C: Same as B, but

using the Kawasaki-Mori instead of the Ornstein-
Zernike susceptibility. Curve LH: reproduced here
for comparison from Ref. 13.
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is written

(&g3)-x/2e- r/a (47)

a Eu spin cluster to form. The interaction en-
ergy is of the form

52 32e2 " dk
2ppg+Q if@ g Q (h 0)(h2 y 4/g2)2

I 8
+ — Qy 5s-d'k

(2s}' k (48)

This electron interacts with the doubly charged
screened vacancy, with the Eu" spins, and with
the tightly bound electron. The latter interaction
gives rise to Coulomb and exchange terms, as in
the helium problem. If 4 is weakly bound, the
Coulomb term just cancels one charge of the
vacancy and the exchange term proves to be neg-
ligible. Neglecting the interaction with the other
conduction electrons, we obtain for those contri-
butions to the energy that depend on the variational
parameter a

Q J,„R„~s, ,

where B„are the localized Eu ' spins, s, is the
spin of the tightly bound electron in the vacancy,
the sum extends over the spin cluster, and Z,„ is
an exchange coupling constant which is of the order
of the s finte-raction I. Since IS= 0.1 eV, the
spin cluster may persist far above Tc in a nearly
saturated configuration. From a mean-field view-
point, the spin cluster breaks the translational
symmetry of the spin system, giving rise to a
nonuniform perturbation of the Weiss molecular
field in the neighborhood of the vacancy. At low
temperatures, when the total spin system ap-
proaches saturation, the spatial uniformity of the
effective field must be restored. We represent
these effects by writing

where Q„ is the Fourier transform of ~4'~',
h(r) =Je &"(1 —o,)/gps, (51)

qt;=(18/&')(h'+4/s') '. (49)

The first term in Eq. (48) is the kinetic energy,
the second is the potential energy in the field of
the screened vacancy where one charge has been
canceled by the tightly bound electron. It is the
third term that lead us to call the electron de-
scribed by 4 a "magnetic polaron" since it arises
from the exchange binding due to the local spin
polarization CSEE. There are two effects that give
rise to the local spin polarization. One is the
electric potential of the vacancy which induces a
spin polarization 6SI„ that is to be obtained from
the second of the linear response formulas given
by Eq. (13}, with

p(k, 0}=4ve/z, h' . (50)

The other effect that gives rise to local spin po-
larization is the localized charge a,nd spin density
due to the electron 4 itself. According to Yanase
and co-workers" it can be described by an effec-
tive molecular field which must be determined
self-consistently. Under certain circumstances
this field can cause a magnetic polaron to form
near the Curie temperature and will lead to self-
trapping of charge carriers. Its contribution to
DS& could be obtained from the second of the linear
response formulas given by Eq. (13) by an appro-
priate choice of h(k, 0).

However, the vacancy gives rise to another non-
uniform magnetic field of exchange origin. This
occurs because the tightly bound electron inter-
acts with the Eu" ions near the vacancy causing

where h(r) represents the spatial deviation from a
uniform field. The exponential factor reflects that
nonuniformity exists only near the vacancy and
the factor (1 —o, ) accounts for the restoration of
spatial uniformity when the Eu" spins approach
saturation (u, 1). Above Tc, h(r) will fluctuate
with a time characteristic of local spin relaxation.
But this time is expected to be much larger than
that characterizing the electronic relaxation so
that electrons see an essentially constant per-
turbation near the vacancy. At very high temper-
atures such fluctuations will become important,
however, and h(r) will become a rapidly decreas-
ing function of temperature. In our treatment we
neglect this effect and treat h(r) as a, function in-
dependent of temperature.

We believe the molecular field due to the tightly
bound electron, Eq. (51), to dominate the Yanase
molecular field, which has been shown to give
rise to self-trapping only in a few rare cases that
are not likely to be realizable in the Eu chalco-
genides. " We therefore neglect its effect.

It is now easy to substitute the second of Eqs.
(13) into (48), using the Fourier transform of (51)
for h(k), p$) as given by (50}, and the response
coefficients I» and I» as given by (29) and (30).
The result can be expressed in dimensionless
form by dividing with the crystal Rydberg

= h2/(2~+ s&)

where ao is the crystal Bohr radius. The quantity
to be minimized can then be written
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4E=-—=n' —64' n r '
E 0

0

"[I —2I'}I,", (k, 0)}t,~(k, 0)/(Ng'p2e)] dk

](k, 0)(g',k'+4n"")'

+q(1-o) ."' ' dki.0 . (g2k2 + g2$2)2(g2k2 +4~2)2 )

The functions $(k, 0), }(,", (k, 0), }(„(k,0), and
}t„(k,0) are defined in Sec. II by the Eqs. (32),
(40), (22), and (36), respectively, and u is the
variational para, meter n = g, /g. The quantity q is
given by

7} =IJg30&'/2E g g2e . (53)

The variational E is numerically minimized; if
1» 0 the metallic phase is stable if X&0 the
conduction electrons become localized in helium-
like impurity states, whose actual ground state,
however, we cannot infer from our calculation.

To establish contact with Leroux-Hugon's cal-
culations, "we at first ignore the magnetic field
perturbation and set 7) =0 in Eq. (52). Further,
we replace }t"„(k,0) by the Ornstein-Zernike
susceptibility, }to (k) which for T& Tc can be writ-
ten"

where g' =3ke/S(S+ 1), ks being Boltzmann's con-
stant. All terms in Eq. (52) involving I' can be
combined to give a factor

at 7.'=0 than ours. The different shape is due to
his different estimate of the other numerical con-
stants. Furthermore, in Ref. 13 it was assumed
that only the spin-up band was populated, so that
n, shows no tendency near 7.'~ to decrease to the
paramagnetic va, lue (which should be 4 times the
T =0 value as discussed above. ).

In curve C of Fig. 1, }t"„(k,0) given by Eq. (40)
is used, again assuming a simple molecular-field
magnetization for 0,. The same numerical con-
stants were used as in curve 8 and magnetic ef-
fects of the impurity as well as self-trapping ef-
fects were ignored (i.e. , r} =0). At T=O, for a
carrier density of n=3 &10' cm ', our calcula-
tion predicts metallic behavior for temperatures
up to 40 K; between 40 and 66 K, the system is
found to be insulating; above 66 K the metallic
phase is again stable. Systems with a carrier
density in excess of n=0. 17x10" cm ' should be
metallic in the paramagnetic state. No phase
change is expected for carrier densities in excess
of n=1020 cm 3

The curves of Fig. 2 show the effect of the mag-
netic perturbation, given by Eq. (51). Using the
same numerical constants as in Fig. 1 with J
= 0.027I and a01= 4, we obtain curve A and wi~h

J =0.12I and a0Y=3. 15, we obtain curve B. At low
temperatures the situation is qualitatively similar
to the case q=0. Above T~, however, the insula-
ting phase may persist far into the paramagnetic
region. In the case of curve B, a system with a
carrier density of n =3 &10"cm ', is metallic up
to about 30 K, but then insulating up to -100 K.

j = (IS)'It,/4vNe'c~, (55)

where c~ =2JL' for a fcc ferromagnet of lattice
constant l and nearest-neighbor exchange consta, nt
J. In the notation of Ref. 13, j =PE;'. Using, for
&0 the static dielectric constant of EuO, ~0 = 23 ~ 9,"
IS = 0.26 eV,""l = 5.15 A "and J= 0.58 && 10 ' eV "
we obtain j =90. This value is much too large,
implying, in contrast to the conclusions of Ref.
13, that divergences in the response functions are
expected below T~ which indicate instabilities in
the translationally invariant electronic and mag-
netic systems. We therefore reinterpret j to be
an effective coupling constant and carry out the
calculation with j =0.9. We return to this point
in Sec. IV. The result of this calculation is shown

as curve B in Fig, 1 which gives the critical car-
rier density as a function of temperature. Ap ef-
fective mass m*=0.55m0 was assumed and, for
simplicity, a simple molecular field magnetization
was used for 00. This curve should be compared
with the curve labeled ltI, which is taken from
Ref. 13. Owing to Leroux-Hugon's choice of m*/m,
=1, his critical-carrier concentration is higher
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FIG. 2. Critical carrier density as a function of tem-
perature. Mott instabil. ity toward formation of a BMP
using the Kawasaki-Mori susceptibility in the screening
function and including effects of the tightly bound elec-
tron. Curve A: J =0.027 I and aors=4 in Eq. (52).
Curve 8: J =0.12 I and aors=3. 15. Curve C: same as
8 but now an external. magnetic field of 10 kOe is
applied. gnashed portion: interpolation near Tz to
indicate expected behavior. )
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Curve C in Fig. 2 shows the effect of a,n ex-
ternally applied magnetic field; it was computed
with the parameters of curve B and an external
field of H,„,=10kOe. The IMT at low temperatures
is seen to be shif ted to a higher temperature, the
shift being larger for larger carrier densities.
(The dashed portion was drawn near Tc, where
numerical results became unreliable, to indicate
the expected behavior. )

IV. DISCUSSION

We have calculated the longitudinal charge- and
spin-density response of a system of conduction
electrons in an s band coupled by s fexch-ange to
a lattice of localized spins. The approximation
used was the RPA, which means that in the limit
of a vanishing s fcoup-ling constant the dielectric
function reduces to the standard self-consistent-
field expression" and the susceptibility reduces
to the expression of Kawasaki and Mori. " The
main weakness of our calculation is the neglect of
spin-flip terms in the s fexchange H-amiltonian.
Their effect can be studied in detail at low temper-
atures using the spin-wave approximation. The
linear response coefficients are then found to be
of the general form of our results, Eqs. (27)-(32),
provided one reinterpretes the s fcoupling c-on-

stant I as well as the electronic and magnetic sus-
ceptibilities, Xo and g„, to be renormalized.
Consequently, the value of the quantity j will no
longer be given by Eq. (55). We have not been
able to determine the renormalized terms quanti-
tatively. Therefore, there is no convincing argu-
ment to reject the value ofj obtained by Eq. (55)
in favor of one that is substantially smaller. The
work of Nagaev and Grxgxn, "furthermore, sug-
gests that the coupling constant j might even be
dependent on temperature and carrier density. At
any rate, since it is the product of the quantity j
with the electronic and magnetic susceptibilities
of the tmo subsystems that appears as a measure
of the coupling strength between spin- and charge-
density fluctuations, it is plausible that the re-
sponse obtained without spin flips between the two
subsystems is too strong. Our reduction of j is
hoped to correct for this in a phenomenological
way and avoids instabilities in the response coef-
ficients of the translationally invariant system.

Using the HPA results of See. II, we attempted
in Sec. III to describe the IMT in Eu-rich EuO.
We calculated the instability of the metallic phase
toward formation of BMP' using a variational
technique. In particular, the doubly charged oxy-
gen vacancies in Eu-rich EuO mere assumed to
trap one electron each in a tightly bound state, the
other electron being in the conduction band in the

metallic phase. At first me neglected the effect
of the tightly bound electron, except for a cancel-
lation of' one vacancy charge. The critical carrier
density was then computed as a function of temper-
ature by varying the binding energy of a conduc-
tion electron in the field of the vacancy screened
by the dielectric function. In addition, the vacancy
polarizes the spins of the Eu". ions in a region
around the vacancy where the electron is about to
become localized. This and the dependence of the
dielectric response on the long-range magnetic
order make the critical carrier density tempera-
ture dependent. This is qualitatively in accord
with the calculation of Leroux-Hugon, " But since
Leroux-Hugon (besides using different numerical
parameters, an Ornstein-Zernike expression for
the longitudinal susceptibility, and the Thomas-
Fermi approximation) neglected the spin-down
conduction band, mhich will be populated close to
the Curie temperature T&, his results do not
show a strong decrease of the critical carrier
density at Tc. Based on the simple Mott criterion
we showed, however, that this decrease is an
essential property of calculations of this type,
but it is not in aeeord with experimental results.

One could ar gue that short-range correlations
of the magnetization close to T~ will smear out
the deCrease at Tc (cf. Fig. l) and shift it to higher
temperatures. However, one can roughly estimate
the correlation length with the Ornstein-Zernike
relation and compare it with the crystal-Bohr
radius, It is plausible then that short-range cor-
rela, tlons will have no effect on the binding energy
once the correlation length is well below the
crystal-Bohr radius. This way we obtain an esti-
mate of the shift to be of the order of 1 K. This
is still much too close to 7.'&, especially in view
of the peak in the resistivity above T~." It is also
unlikely that self-trapping of the charge carriers
of the type considered by Yanase mill alter the
decrease of n, near T& substantially since it is
estimated not to occur in the Eu chalcogenides. "

When the tightly bound impurity electron is not
neglected, it can be shown to give rise to a devia-
tion from the Weiss molecular field. This devia-
tion of the molecular field is believed to dominate
self-trapping effects since it i.s strongly localized
at the impurity. It is found to increase the critical
carrier density for the instability of the metallic
state towards formation of a triplet impurity state,
even well above Tc (Fig. 2). Since local spin
deviations are mainly responsible for increased
electron binding of the impurity, the localizing
effect is strongest near T~ mhere the magnetic
susceptibility is large and large spin deviations
from the mean value are easily realized. The in-
stability of the metallic state toward formation of
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a triplet impurity state does not preclude that the
actual ground state of the heliumlike impurity is
a singlet in the nonmetallic state, since our cal-
culation can only give the ins~ability of the metallic
phase.

Our results allow a range of the carrier density
for which the IMT occurs below T& and activated
behavior persists well into the paramagnetic regime
as is observed in same samples. Also it should be
noted that the density range over which the IMT can
occur ls substantially wider than that indicated in
Fig. 1 or predicted by previous calculations. "
Although the curves of Fig. 2 give qualitative agree-
ment with experiment, the prediction that the IMT
occurs near 30 K is not in agreement with the ob-
served transition temperature of about 50 K. It
also appears that samples which are metallic at
very low temperatures are pxedicted to undergo a
second transition to a metallic state at about 100 K.
This transition is not observed experimentally. If,
however, the exchange parameter Z [Eg. (51)] is
chosen even larger than we did and/or if the spa-
tial extend of the tightly bound electron is in-
creased, this second transition temperature can
be increased easily to much higher temperatures
where the conduction electrons cease to be de-
generate (one can estimate the Fermi temperature
of the samples under consideration to be about

400 K). Furthermore, Fig. 2 indicates that for
carrier densities n below sx10" cm ' the IMT
temperature should decrease rapidly with de-
creasing n, a fact which has not been experimen-
tally observed. " One reason for this couM be our
choice of ~~ =0.55~,. Decreasing w* further
would lower the set of curves in Fig. 2, thereby in-
creasing the IMT temperature, but an m* of 0„5~m,
seems already rathex small. ""Inaccuracies
in our description —besides the temperature- and
carrier-density independent coupling constant
j—may also stem from the use of Eq. (40) for the
longitudinal susceptibility. Although it is clear
that a correct longitudinal susceptibility should be
used below &c, it is not clear that E|l. (40) serves
this purpose best, partly because it is a long-
wavelength approximation and partly because it is
not too well estab~ ished experimentally. ~
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