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Electron localization on a liquid-helium surface
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A theoretical treatment is given of the localization or self-trapping of the motion of electrons bound
in extrinsic surface states on liquid helium. For a thin helium 61m (- 100 A) on a substrate we find a
trapping energy of about 8 K. %'e investigate the breakdown of very thin films and show that in the

bulk case an earlier estimate of the trapping energy by Shikin must be revised.

I. INTRODUCTION

%hen a charged particle approaches the surface
of R dlelectr1c medium 1t ls RttrRcted by long-
range polarization forces (e.g. , the image force).
Near the surface shorter-range interactions come
into play; for the case of an electron approaching
liquid helium the effect of the short-range forces
is to interpose an energy barrier Vo= 1 eV, pre-
venting the electron from entering the liquid. The
net potential thus formed has a minimum near the
surface which can bind electons: Their states have
become known as external surface states. The-
oretical work by Cole, ' Shikin, ~ and others and a
series of remarkable experiments' ' have given
a clear picture of the states. The energy of bind-
ing to the surface of the liquid z~ is about 0.65
meV, and the electronic wave function peaks at a
distance a~ =76 A above the surface. In all ob-
servations thus far electons seem to be free to
move parallel to the surface.

Shikin' pointed out the possibility that surface-
state electrons could become localized on the he-
lium. He argued that the presence of an electric
field might make it energetically favorable to
create a small dimple on the surface; a deep
enough dimple would localize the particle and

greatly reduce its mobility parallel to the sur-
face. This is quite analogous to the three-dimen-
sional self-trapping which is well known for elec-
trons in solids. Shikin gave only rough estimates
for the fields necessary to cause self-trapping
(which we will argue, furthermore, are incorrect).
The effect has not yet been observed. In this paper
we reinvestigate the problem and point out situa-
tions in which observations of the self-trapping
should be possible.

It mill be shown that the electric fields necessary
to give significant binding are very large (-l0'
V/cm). We suggest that this difficulty can be con-
veniently overcome by using the well-knomn ten-
dency of helium to form films on substrates. If
the film is not too thick, say, on the order of 100
A, and if the substrate has a reasonable dielec-

tric constant, the image field due to the sub@A ate
will lead to self-trapping. Accordingly, we con-
sider the theory of an electron bound to a film
on a substrate, though we will treat the bulk case
as well.

In Sec. II %'e will discuss val ious contributions
to the total energy of an electron on a "dimpled"
helium surface in the presence of a substrate;
the nature of the electronic wave function will also
be considered. In Sec. III a variational solution
will be given for the wave function and the deforma-
tion of the helium. Section IV will be devoted to
proposals for experimental tests of the effects
pl edlcted.

II. ENERGY AND %AVE FUNCTION OF
ELECTRON - HELIUM SYSTEM

Our treatment of the self-trapping problem will
be variational. Accordingly, we must choose R

reasonable form for the wave function of the sys-
tem, and display the total energy as a functional
of the wave function.

In what follows the helium will be treated as a
classical incompressible fluid. The quantity play-
ing the role of its wave function is its spatial con-
figuration and, in particular, the surface deforma-
tion, to be denoted by ~. The fluid ln the Rbsence
of deformation is flat; its surface will define the
plane z =0. %e will use a set of cylindrical coor-
dinates mhose origin is on the undisturbed surface
(exactly where will be defined more precisely
below). We take 5 to be a function of the radial
coordinate r only. Thus the deformed surface
whose shape is to be determined is specified by
s =6(x). The deformation 5 is assumed to be small
compared to a~ Rnd the thickness of the film. Also,
it is assumed that

~
d& jdr ( «1 and that 5 -0 as
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For the flat surface the electronic wave function
has the form

4=q(&) x(~) .
For the flat film y is a plane wave; here we seek



In this equation o' is the surface tension of helium.
In our situation we consider the fluid to be acted

on by body forces, i.e., the Van der %aals force
which holds the film on the substrate and gravity,
Let the total potential energy per unit volume be
denoted by V. In our case

V=Pgk- C/(k+d)s . (Sa)

Here d is the thickness of the film and p is the
mass density of helium. The form of Eg. (Sa) is
standard for the van der VVaals potential from a
semi-infinite substrate. The constant C which we
use below has been derived from the work of
Anderson and Sabisky. e

The effect of t/' on the energy can be divided into
two terms. The first is an energy due to the shift-
ing of the liquid,

conditions for which y is localized. The origin
of our cylindrical coordinate system, where x=0,
is the centroid of the localized wave function. The
assumption that y and ~ are both independent of
angle is in accord with physical expectations, pro-
vided this origin is chosen.

A reasonable form for y in the case of distortion
is that of Shikin2 which we adopt; we take the wave
function which we mould calculate for a-flat surface
and replace z by z —6. Thus, for example, if Vo

is taken to be an infinite barrier we can put y(0)
= 0, and then g will vanish on the distorted sur-
face z =&, as it must. It is implicit in our dis-
cussion that surface tieformations never impart
sufficient energy to cause significant mixing of
cp's corresponding to different states. This will
occur if the self-trapping energy e~~ is always
much less than c~, as will turn out to be true.

We now display the total energy in terms of g
and 6. The energy is referred to the situation
in which the electron is at rest far enough from
the helium so that all electric fields are essen-
tially zero, and in which the Quid is undisturbed.
We seek the largest nonvanishing contributions to
the energy in terms of the small quantity 6 and
the wave function.

There are several terms in the energy of the
system which we will now discuss, starting with
the energy of the helium. First, the surface area
of the distorted film is larger than that of the flat
film. This gives a contribution to the energy Of

the fluid;

d~

- mo' r&'—

A second term must be derived from V(k) because
we have not, so far, satisf ied the requirement
that the total amount of fluid be conserved in the
deformation; that is, a "dimple" at the origin
must give rise to a small rise in liquid level else-
where. It is straightforward to show that the en-
ergy which results is

—2v V(0) r dr &(r) .

The sum of Egs. (2), (Sb), and (Sc) gives the en-
ergy of the liquid, mhich we denote ~~.

%e now turn to the electronic energy and the
interaction terms. The electronic kinetic energy
arising from applying the Lapalacian in cylindrical
t,oordinates to the product yy is

dZ P 2 d 2 (4b)

which contributes to E~. Here 7I is the dielectric
constant of the substrate. The energy arising from
Eg ls

Sn dk re iy(k —&)(' iy(r)I'eE, k

dz p z 8Egz +2'

In add1tlon there are terms resulting from apply-
ing the radial Laplacian V„ to qr(k —&). These are
several expressions involving first derivatives of
p, which may be converted to vanishing boundary
terms, and a smaB term of order ~d&/& ~', which
we neglect. '

The potential energy of the electron arises in
part from the electric fields it experiences. In
our situation they may be applied externally-or
may arise fromthe image field of the helium or the
substrate. %e will postpone for the moment a
discussion of the image field of the helium, and
we will completely neglect the corrections due to
"multiple images, " i.e., due to the finite thickness
of the film. Each such correction involves some
power of the small factor c —1, where I(. is the di-
electric constant of helium.

The remaining electric fields are lumped to-
gether and called E~; the subscript indicates that
only applied fields normal to the surface are to
be considered. The substrate gives rise to an
image field at the surface,

—,
' e'(71 —1)/(17+ l) d',

V(k) dk . (Sb)
{5b)
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In this equation we have neglected the dependence
of E~ on position and replaced it by its value at
the surface. This is justified provided that a~,
the scale on which y varies, is small compared
with d. Recall that a ~ is =76 A for bulk liquid;
for a thin film the strong image fields further
confine the electron and justify our assumption.

Collecting terms from Eqs. (4a) and (5b), we

have an energy functional governing the motion
of the electron parallel to the film,

has the interpretation of a force, but the total
force of the electron on the helium must vanish.
Thus hc is exactly zero.

To make the result explicit consider the case of
bulk helium and take a particular simple model for
U(z), namely, a barrier of infinite height at the
liquid surface and a pure image force outside. The
downward force on the helium surface gives a con-
tribution to hc which may be expressed in terms
of an "electron pressure, "

(6) , I' dy0) '
2v r dr5 (X ('

2m dz
(Ba)

Finally, we turn to the energy terms associated
with the electron-helium interaction. Part of this
effect has already been mentioned, namely, the
electric field which the electron experiences due
to the induced polarization of the helium. At large
distances from the helium this takes the form of
the field due to an image charge, but close to the
surface it changes form in a way which is poorly
understood. Well inside the helium the interaction
is well approximated by a large positive constant
potential Vp.

It is fortunate for our purposes here that the na-
ture of the interaction is not relevant to the self-
trapping problem; that is, the associated energy
is independent of 5. Specifically, we use our vari-
ational Ansatz and denote the interaction potential
by U. For a flat surface U depends on z alone.
For a deformed surface we argue that we can re-
place U(z) with U(z —5). For the short-ranged re-
pulsive forces which the electron experiences when

entering the liquid this replacement is clearly val-
id; for the longer-range forces outside it will hold

only if the scale on which the deformation varies
is very much larger than a~; in this limit the elec-
tron sees a nearly flat surface at a position z = 5

below it, instead of z =0. Shifting the coordinate
by 5 than properly changes U. In Sec. III we show

that we are indeed in the proper limit.
The expectation value of U(z —5) using the wave

function y(r)y(z —5) is clearly independent of 6.
Thus all the interaction terms do not depend on 6.

The conclusion we have just reached has conse-
quences which will be useful below. Therefore
we consider it worthwhile to point out that the re-
sult is more general than our variational Ansatz.
For example, whenever the deformation is small
enough that its effects can be considered in per-
turbation theory, we can draw the same conclu-
sion. For, in perturbation theory, we must con-
sider the quantity

I X I'
I q I'««& [ U(z —6) —U(z)] (7)

The first-order term in the expansion of U(z —5)

The long-range forces give

dp
(Bb)

If the external field is zero, the coefficient of
5 ~y ~' may be calculated from the hydrogenic wave
functions y, which have often appeared in the lit-
erature"; it is in each case the same, 2Qe'/a~,
where Q =(x —1)/(v+1). Thus the sum of Eqs. (Ba.)
and (Bb) vanishes. Parenthetically, we note that if
the barrier at the surface is taken to be of finite
height V„ then the electron pressure is replaced
by V, ~y(0)~'. We thus find a consistency require-
ment on the electronic wave function, V, ~y(0) ~'

= 2 pe'/a', .
We have given stress to the stationary property

of the interaction energy because we believe that
the serious discrepancy between certain of the re-
sults given in Sec. III and the 4ork of Shikin' may
be traced to this point. In Shikin's work the elec-
tron pressure [Eq. (Ba)] was used to derive a
source term in an equation determining 5. But in

doing this Shikin neglected the equal and opposite
term of Eq. (Bb).

We conclude this section by noting a very conve-
nient feature of the results: The energy functional
of Eq. (4b), the first term of Eq. (5b), and the in-
teraction terms depend on y but not on g and 5.
Thus the problem of the z motion may be solved,
once and for all, for a flat surface, as has been
done by Cole. ' The self-trapping problem is com-
pletely independent and may be solved by minimiz-

ing 61, + E'~ = E'
(~

~ The determination of the minimum

value of z
I~

and the associated wave function is the

subject of See. III.

III. VARIATIONAL SOLUTION

Gur strategy in this section wi11 be to do a para-
metric variation of e ~~. We choose for 6(r) the
form

& = -6,/cosh'(o. r) .

Here 5p is the maximum depression of the surface
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and I/n is the distance scale for the depression;
they are both positive variational parameters.

The wave function y satisfies the Schrodinger
equation derived by writing the Euler-Lagrange
equation for e, . After the substitution }t =G/v'x,
we have

Finally, we turn to the case of the surface of
bulk helium (d -~). This case is also analytically
tractable. Note that there is no self-trapping un-
less an external field is applied. If a field is ap-
plied, the dimple becomes very large and shallow;

is well approximated by

d'G 1 2meE, '

~ 2m@,
dy2 4y 2 (10)

(13b)
If the term I/4r' were replaced by —,'n' sinh'(nr),

Eq. (10) would be exactly soluble. In fact, in that
case we have

G =Dtanh"'(o. r)[ 1 -tanh'(nr)]~' ' ", (lla)
li' ', K'a' 1 2meE 5, )"'
2m 2m 4 I'a'

(11b)

In Eq. (11a) D is a normalization constant. The re-
placement is justified if nx «1 within the region
where t" is large; this will turn out to be true for
the variational parameters we find. We have fur-
ther checked by using the difference between the
two functions as a perturbing potential. The cor-
rections to e, are always small.

All the terms in e~ IEqs. (2) and (3)] are simple
integrals of 5(r) which can be expressed in terms
of the variational parameters. For example,
combining Eqs. (2) and (9) gives 0.188wcr5', for the
surface contribution to e~. The resulting para-
metric variation problem for e'I, +e, is not difficult.
Numerical calculation gives the results plotted in
Fig. 1 for varying film thickness and several elec-
tric fields. The physical parameters used for the
substrate, i.e. , R and C, are appropriate to CaF, .'
For example, for a film 100 A thick e „/kz = 8 K.
Note that we satisfy c

~~
«e~ by a large margin;

for this thickness Cole' finds e~ /kz =200 K.
There are several special cases of the general

problem solved numerically above which are
analytically tractable. For example, if no exter-
nal field is applied and 5, /d is small, we find

e „ /kz = -C,/d

5O = C2/d

I/o. =C, d'.

(12a)

(12b)

(12c)

The coefficients Cy Cp and C, are solutions of
complicated transcendental equations, and we have
been unable to give general expressions for them.
However, for CaF2 Ci=8.3x10' KA', C, =7.8
x10' A', C, = 0.34 A '. We should point out that a
substrate different from CaF, will not give rise
to gross differences in the results. For example,
a metal will have roughly the same van der Waals
constant C and an image field only about one-third
larger than that of the dielectric CaF, .

IV. PROPOSED EXPERIMENTS

The theory we have outlined can hopefully be
subjected to experimental test. The most direct
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FIG. 1. (a) Dimpling energy and (b) parameters for
films of various thickness. The lower curves in (b)
represent 50, the upper 1/0. . The applied electric fields
are given in V/cm.

In the last expression e „/ks is given in K and E
in V/cm. Equation (8) is in disagreement with
Shikin's estimate, which is linear in E; our es-
timate is smaller for small E~. The differences
can be traced to our different treatment of certain
terms in the energy which we have mentioned
above.

In Sec. II we mentioned several conditions which
had to be satisfied in order that our relatively
simple discussion of the energy be valid. An ex-
amination of Fig. 1 shows that they all do hold.
For example, in order to replace U(z) by U(z —5)
we required that a~ be much smaller than the ex-
tent of the deformation, i.e. , than I/n. Since

0

a~ ~76 A, Fig. 1 bears out our assumption even
for very thin films.



test would be to attempt to observe the mobility of
the electron along the surface. When self-trapping
sets in the mobility should greatly decrease; the
self-trapped electron should have an effective mass
on the order of a helium atomic mass because of
the fact that it must drag the liquid deformation
along as it moves.

The main obstacle to such an observation seems
to be the small size of z

~1
for bulk fluids in moder-

ate electric fields; we must have e g/kg + 7 if the
electron is not to be thermally excited from its
dimple. For thin films the situation should be
quite different. Films 100 A thick will have e p /ke- 8 K; the mobility decrease should be observable
in this case.

With our results in hand, we can also inquire
about the breakdown of very thin helium films.
Cole' found that a flat film would allow electrons
to tunnel to the substrate at a thickness of about
10 A. This result should be modified if for no oth-
er reason than that thinning of the film due to dim-
pling would assist tunneling. It seems likely, how-

ever, that another process should lead to break-
down at still larger thicknesses; namely, tunnel-

ing not directly to the substrate but to the bubble

or negative-ion level in the liquid. The energy of
the bubble is modified by the image field of the
substrate and can be lowered from its usual posi-
tion, about 0.1 eV above the vacuum, to equal

~+a ~~. Suppose the bubble level is thus resonant
with the extrinsic state for bubbles at some dis-
tance x above the substrate, and that d —x is rea-
sonably small. We might nevertheless predict
that bubble formation would be very unlikely, since
the electron must not only tunnel, but also nucleate
a large (-15-A radius) void in the liquid. However,
if dimpling occurs as we have predicted, the elec-
tron will excavate, as it were, its own bubble, and
remove the tunneling barrier as well; the dimple
should be an efficient nucleation center. We argue
that this "bubbling" process becomes favorable
when d - 6,= x. Prom our results above, the cri-
terion is satisfied for films with d =40-50 A. The
prediction of breakdown at these reasonably large
thicknesses could also be subjected to test.
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