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Brillouin-Wigner perturbation procedure for elementary excitations in liquid 4He
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The energy spectrum of elementary excitation. . in liquid He is studied using the Brillouin-%igner
(8%') perturbation formalism in conjunction with the method of correlated basis functions. Phonon

functions and interaction matrix elements associated with three- and four-phonon vertices are derived.

Iteration of the 8%' energy series is carried out by including: (i) two one-ring types of second-order

energy corrections evaluated with the inclusion of the leading correction to the convolution

approximation for the three-particle distribution function, and (ii) six two-ring types of second-, third-,

and fourth-order perturbation energies obtained with the use of the convolution approximations for the

three- and four-particle distribution functions. The entire formulation is developed in terms of the

liquid-structure function generated by the optimum Bijl-Dingle-Jastrow type of trial wave function. The

resulting energy spectrum is found to agree with experimental results more closely than many earlier

theoretical calculations.

I. INTRODUCTION

Considerable progress has been made recently
in the theoretical study of elementary excitations
in liquid 4He. In particular, the excitation-energy
spectrum has been derived by many authors using

a wide variety of approximabon methods including
variational and perturbation approaches. One of
the useful procedures which yield the spectrum in
semiquantitative agreement with experimental mea-
surements is the Brillouin-Wigner {BW)perturba-
tion procedure employed by Jackson and Feenberg'
(JF) in conjuncbon with the method of correlated
basis functions. Some novel points of this ap-
proach are (i) the unperturbed solution is not based
on the approximation of the Hamiltonian operator,
but rather on an appropriate variational choice of
the wave function with the complete Hamiltonian,

(ii) the two-body interaction potenbal, whose sin-
gular behavior near the origin often presents diffi-
culties, does not appear explicitly, (iii) the entire
formulation is given in terms of the liquid-struc-
ture function, which has no singularities yet con-
tains nearly all of the correlation effects of the

system, and (iv) addition of the two one-ring types
of (second-order) perturbabon corrections to the

Bijl-Feynman (BF) excitation energy brings the

computed spectrum considerably closer to the ex-
perimental results, indicating that the energy se-
ries probably converges rather rapidly.

The exact liquid-structure function (which is
generated by the exact ground-state eigenfunction)
is needed in the JF procedure, but such a liquid-
structure function is quite difficult to obtain ac-
curately. An attempt to overcome this difficulty

has recently been made in Ref. 3, where the JF

formalism is s].ightly modified through the use of
the optimum liquid-structure function, which is
generated by the optimum Bijl-Dingle- Jastrow
(BDJ) type of ground-state wave function. An ac-
tual numerical calculation of the optimum bquid-
structure function was carried out by Campbe&l and

Feenberg using the paired-phonon analysis. An-
other advantage of using the optimum liquid-struc-
ture function is found in connection with the need
for a formula expressing the three-particle dis-
tribution function as an explicit functional in the
liquid-structure function or the radial distribution
function. All available such formulas are derived
with the assumption that the ground state is de-
scribed by a BDJ-type wave function; very little
study has been made for the case when the exact
wave function is involved. A useful formula for
the three-particle distribution function employed
in many recent studies of quantum fluids is the
convolution approximation introduced by Jackson
and Feenberg. ~ Improvement of this approxima-
tion has also been considered, 6 8 but its applica-
tion to the calculation of the excitation spectrum
has been made only in the limit of smaH. wave vec-
tors.

In this paper the work of Ref. 3 is improved in
two ways: (i) the leading correction to the convo-
lution approximation for the three-particle distri-
bution function is included in the evaluation of the

two one-ring types of second-order perturbation
energies considered in Ref. 3, and (ii) iteration
of the 8% energy series is carried out by including

six important two-ring types of second-, third-,
and fourth-order terms in addition to the two one-
ring second-order terms (See Fig. l). Our selec-
tion of the two-ring perturbation energy correc-
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FIG. 1. Energy dia-
grams included in the cal-
culation of &(0).
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BASIC RELATIONS

The system under consideration consists of N
bosons interacting in a box of volume 0 through a
two-body potential v(r), its Hamiltonian being

a= - Z ~;+~ v(r„) . (12sz

Unless stated otherwise, it will henceforth be as-
sumed that the ground state is described by the
optimum BDJ-type wave function of the form

+ -=~ 0) = &II exp-'««(r; ),
f&f

(2)

where
N

1/2
A = exp««(r „)dr. .

m&n
(3)

The following basic quantities are useful in the
study of low-lying states of the system: the col-
lective coordinate

N

«r r",

f=1

tions are based on the observation that contribu-
tions from the matWjx element representing a zero-
to-three (or three-to-zero) phonon process are
much smaller than those arising from other types
of matrix elements. Consideration of the interac-
tion matrix elements is limited to those represent-
ing three- and four-phonon vertices.

the radial distribution function

g(r) =1+, [S(k) —lj e'"'d j27«p

=1+k(r),
the n-particle distribution function

P'"'(1, 2, . . . , n)

(6)

= K(N 1).~ (K-- n+ 1) 4'(&dr„,« „,3 ~, (7)

and the BF formula for the excitation energy

4:,(k) = haka/2mS(k) . (6)

+ h(r, a)h(raa) + h(raa)h(ra, ) + h(r„)h(r«a)

+p fh(r»)h(r»)h(r»)dr~), (9)

which has extensively been used in a number of
studies of quantum fluids. An improved approxi-
mation was considered in a recent investigation
of a long-wavelength-phonon spectrum in liquid
4He; the formula is given by

ln E«l. (6) p = K/fl is the particle number density.
A useful form of the three-particle distributio&

function is the convolution approximation

p,' '(1, 2, h} =p ((+h(r|, ) h(r»)rh(r»)

the liquid-structure function

s(k) =x-'(0
i p„-p -„i 0), k ~ 0,

s(0) =0 i
(6)

p( (1 2 3) =P 3&(1 2 3)+ 5P 3&(1, 2, 3),

where

(10)

hh''((, h, h)=p (h(r| )h(r», )h(r»)+p(h(r|r)+h(r )+h(r»)) h( )h(r»)h( )rd|rr&r»

+p ' dr4 drah(r43)[h(r«4)h(ra4) h(raa)h(r35) + h(r34)h(r«4)h(r«3)h(raa) + h(ra4)h(r34)h(r33)h(r«3) j
P

+ p J
' dr4 dr~ dr~h(r»)h(r»)h(r»)h(r»)h(r»)h(r»))



is the leading correction to the convolution approx-
imation. '

The contributions from 5P(s'(1, 2, 3) usually enter
into the formalism through the quantitye'9

which can be evaluated in terms of S(k) if P(s'(1,2,3)
is given as an explicit functional in g(r) .ln Ap-
pendix A we use the approximation of E(l. (10) for
p(s'(1, 2, 3} to derive

dr-. ..a(~„)a(~„)a(~„)e(("'( ""~ """3&

dp[S(P) —1][S(p+k)—1][S(p—k') —1],(2(()'p ~

in which (12)

(13)

III. PHONOS FUNCTIONS

The unperturbed normalized wave function

ik&=[ivs(k)j-'"p„-i o) (14)

describes the state with a single phonon whose en-
ergy is given by the BF formula {8). The leading
perturbation corrections to the BF energy are one-
ring diagrams, which involve only three-phonon
vertices. To evaluate matrix elements of such
three-phonon vertices, one needs two orthonorma, l
phor. on functions I

—k', -k") and I k, k', k") as well
as I 1(). It will be noted that because of the con-
straints of E(l. (13) I -k', —k") does not contain
the (orthonormal) paired-phonon components,
which is given by

lp, -p) =[»(P)j '[p;p;-»(P)]~0) (»)
The two normalized functions

i
-k', -k")=[w's(a' )s(a"))-'"p „;p „;,io) (1.6)

~k, k' k")=[+'s(a)s(a' )s(a")]-'"p-p- p- ~o) {lv)

can be orthogonabzed through the Gram-Schmidt
method. An important quantity in this procedure

S(3){k aI ktI} ~ p($&{1 2 3) e(b(r&+IF"r~+P "r3) dr~

(18)

s"'{a a' a")=[1+~(a a' a")]s(a)s(a' )s(k")
—s(k) —s{a')—s(k")+ 2 . (19}

It is rather straightforward to obtain

&k~ -k', -k")=(O~k, k', k")=&k, -k~k, k', k") (2O)

=[~-'s(a)s(a' )s(a")]'"[1+~(k, a', a")], (21)

in which use has been made of E(l. (19) and the re-
lation

p„-p„; p„;,- N(N-1)(N- 2) e'"'('" '~'" '3'

+ x(X-1)(e'"'(~+e'""'»+e'" '»)+ x,
(22)

where the arrow indicates equivalence in integrat-
ing over the vaxiables r~, r2, ... , r~. Although the
equality relations of the three matrix elements ex-
pressed by E(l. (20) are expected as in the second-
quantization formalism. We have actually shown
this to be the case by evaluating each matrix ele-
ment separately. The calculation of (k, -k I k, k',
k") is somewhat lengthy and involves P"'{1,2, 3,4, 5)
in such a way that one can use the approximation

P"'{1,2, 3, 4, 5) =P(2'(1, 2)p(»(3, 4, 5)

+ (distinct symmetric terms),
(23)

with the consequence that the resulting error is
smaller at least by a factor of O(N ').

E(tuations (20) and (21) finally yield

kr I)

=~ -k', -k")- ~k)(k~ -k', -k")
=[X S(k')S(k")] ' (p; p „-[1+8(ak' k")]

s(a' )s(a")p„-] I o), (24)

—(k", —k")&k", —k" (k, k', k") —)O)(O(k, k' k")

=[+'s(a)s(a' )s(a")]-'"(p„-p„;p„;, —[1+~(k,a', v')) [s(k')s(a"}p,-p „-+s(a)s(a")p- p „-

+ S(k)S(k')p„;,p „;,—2NS(a)s(k')s(k")] j i 0) .

It can be shown that these orthogonalized functions
are still normalized in the sense that

&-k, -k"
~
-k, k) =1+O'er ')-, -

(k, k', k"
~
k, k', k")=1+ O(iV-') . (27)

Other phonon functions necessary to evaluate
two-ring types of perturbation energy corrections
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ka, ks, and k4 are to be used in the rest of this pa-
per under the assumption that they satisfy

Qk;=0, k;404kl+k; (i,j =1, 2, 3, 4). (28)
k=1

FIG. 2. Some of the third- and fourth-order energy
diagrams neglected in the calculation of &(k). Each dia-
gram has at least one zero-to-three or three-to-zero
phonon vertex, which is generally far smaller than one-
to-two or two-to-one phonon vertex.

can be derived in a similar way. Nevertheless,
the derivation is somewha, t tedious, partly owing
to the fact that P'4'(I, 2, 3, 4) as well as P'4'(1, 2, 3)
is needed. The algebra can, however, be simpli-
fied by the use of the convolution approximations~~
fol' both p (1, 2~ 3) and p (1~ 2, 3~ 4). We sul'Bllse
that these approximations for the two-ring diagrams
considered in the present study introduce errors no
greater than those arising from the use of the ap-
proximation (10) for the one-ring diagrams and/or
the neglected terms [such as the neglected two-ring
diagrams (some are shown in Fig. 2) and three-
ring diagrams (all of which are neglected)].

Unless specified otherwise, the wave vectors k~,

Let us now introduce the normalized functions

= [&'S(&I)S(&1)S(&4)]'"P1,pf, p„;I o),

Ikl, k1, k4, k4}

=[&'S(~I)S(4)S(~4)S(~4)]I"p„;p;, p„;p;, I o& (»)

The orthogonalization procedure of these functions
involves

S '(kl, k1, k3, k4)

P '4'(1, 2, 3, 4) exp i g k& ~ r& dr, 4 4 4(31)
j~1

as well as S'4'(i4, k', i'I") defined by Eq. (18). Con-
volution approximations for p'4'(I, 2, 3) and p'4'(1,
2, 3, 4) lead to

S,"'(~, V, V')

= S(&)S(k')S(k")—S(k) —S(P) —S(I4")~2, (32)

4 3

S,"'(k„k„k„k,)= IIF(u;) 1-P F '(k )-I-PF(k, k+, ) —g [F(k„+k,)+F(k +k, )]
4=1 2 k&g lsmsn

X[F(kI)F(k4)+F(k„)F(i'I„)]+ Z [F(kl)+F(k,)]F(k4+k,)F(k )F(k„),
i, g~m, n

(33)

where

= &0I k„k„k„k4)=&k„-kl I k„k4, k„k4)

The primes oil slllllIQRiloll slglls ill Eq. (33) BleR11

(i) no two or more indices are equal, (ii) the lower
limit of each index is 1 unless specified otherwise,
and (iii) summations are to be carried out such as
to include all dis@wet terms. In the remainder,
primes on summation signs are to be used with the
same meanings. Equation (32) is simply the re-
sult of putting b (k, k', k") = 0 in Eq. (19). The der-
ivation of Eq. (33) is presented in Appendix P. It
may be pointed out tha, t the second term on the
I'lgh't-llRlld side of Eq,. (33) 18 R symmetric fllllc-
tion of k„k&, k3, and k, because of the momentum
conversation of Eq. (28).

Using Eqs. (32) Rlld (33) Rnd I'elRtiolls sinlilR1'
to Eq. (22), we find, after some algebra, the fol-
lowing results:

1/2

kx+ka +~ k&+ks

+ S(kl+ k4) —2],
&kl+k„k, Ik„k„k,)

= &kl+ ka~ ks~ k4I "l~ k4~ ks~ k4}

=[N-'S(n, )S(u,)S(k, +k,)P" .
(37)

(38}

Ag»n, Eqs. (35) and (3"/) are expected relations,
which we have obtained through actual evaluation
of each matrix element. It may be noted that, with
h(k, k', k")=0 in Eq. (21), results for the matrix
elements in Eqs. (21) and (3V) are identical.

Finally the orthogonalized three- and four-pbo-
non functions associated with four-phonon vertices
become
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Ikey, k., ks& = 1k', k..ks&- lki+k. , k.& &ki+k-, k. lk~, k2, k3) - I
-k4& &-k4lk, k., k.)

f, m, n

=[&'8(a,)s(a.)s(a )] '" p;, p„;p„;+28(a )8(a )8(a )p „- —2 8(a )8(a.)s „;c~,~ I0&,
ls men

lk„k„k„k,& = Ik„k„k„k,) -Q Ik„k,, -k, -k,&(k„k„-k,-k, lk„k„k„k,)
ICAL

—Z
I kg, —k( & (kg, —kg I ki, kq, k~, k4) —

I 0) (0 I ki, k, k3, k )

i/3 "
= N4 Sk~ p- p- p- p- — Sk&Sk& Xk k

jag ky k2 ks k4

— IIS(k) —ZS(k, +k,)-1 g p; p;/s(k;)-3 )A(D),
5=1 4 'CJ f=1

where

x(k, k') = p„-p„-,p;„ - 8(a)s(a')p„;,p „;,—8(a' )s(a")p„-p „-- 8(a")s(a)p„;p„p + 21))is(a)s(a')8(a"),

(40)

with k" -=—k —k'. As in the case of Eqs. (26) and

(27&~ One can show that the 01'thogonallzatlon pl'0-
cedure has altered the. normaB. zatlon relations onlJJ

hy o(1'-'):

&k„k„k,Ik„k„k,&
= I+ o(~- ),

(k„k3,ks, k4 I k~, k2, k3, k4& = 1 + o(N ) .

IV. INTERACTION MATRIX ELEMENTS

We can now proceed to the evaluation of the ma-
trix elements of the perturbation operator defined by

6II=a-&kl elk& . (44)

The algebraic procedures are rather lengthy. Ap-
pendix C gives details of the derivation of the fol-
lowing expressions for the matrix elements needed
for one- and bvo-ring diagrams:

(k, k', k"
I
6a

I
0) =(n'/4m)[1~is(a)s(a' )s(a")] '"([I+-~(a„a', a")]

x[ ——,
' (a'+ a"+ a'")8(a)8(a')8(a") + a'8(a')8(a") + a'38(a")8(a)+ a'"8(a)8(a')]

+ (k ~ k')8(a") + (k' ~ k")8(a) + (k" ~ k)s(a') +-,'s(a)s(a')8(a")I" (a, a', a")],
&
-k', -k"

I
6&

I
k& =(a'/4 )[xs(a)s(a')8(a" }1 '"QI+&(a, a', a")]

x[ --,'(a'+ v'+ a"')s(a)s(a' )s(a")+ "a{8a') (8)a+ a"'s(a)s(p) —a's{a')s(a")]

+(k' ~ k")8(a) —(k. k')8(a")- (k. k")8(a')+—,'s(a)s(a')8(a")I"(a, a', a")$,

I"(a, a', a")=, dp[p'+(p+k)'+(p-k')']E(p)1 (p+k)F(p-k'),

(45)

(46)

(4V)

3 l/3

(k~ykgl 6H
I

-k3p -k4&= s(a;) (k~+ks) E(kg+ks)+(k~+k4) E(kg+k4)+ (k~+k2)Sp 4

~ a,[I+ F(ag)] k~ k3 ks k4- p[E(kg+ks)+F(kg+k4)] ~
( )

-(k~+kg) ~

( )+ (a )
—

(a )- (a )
4

kg kg-~ ..""""' s(a, )s(a, )

i/2-
(i„i„i, (

m
(
-i,) = „II s(a, ) );+E (i; i )s(i, + ~,) , ', , - ))

(48)
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3
2 2 3

kg F(k;) kgF(k;) ~ k) ~ k4+~[o E(kg+k;)]
( )

+
( )

+ ~ (49)

(k„k„k„k,I
6H

I
0& =0 . (50)

V. PERTURBATION PROCEDURE

In Ref. 3, the energy spectrum was evaluated by
adding two one-ring diagrams («o, and «oo in Fig. 1)
to the BF energy formula (8). Both of these cor-
rection terms are second-order perturbation ener-
gies involving integrals of the form ff(k, k )dk .
Since there are no more nonvanishing one-ring dia-
grams, the next plausible step of improving the en-
ergy spectrum would be to include two-ring dia-
grams. However, there is an extremely large
number of two-ring diagrams and the task of calcu-
lating all of them seems quite formidable, particu-
larly because of the fact that they all contain inte-
grals of the form f fg(k, k„ko)dk, dk2 that can be
reduced (analytically) only to five-fold integrals.

In an attempt to simplify the evaluation of the
contribution from the two-ring diagrams, we first
observe in the second order that «»(k) is generally
far smaller in magnitude than «o, (k). In Fig. 2 are
plotted «2, (k) (dashed line) and «2o(k) (solid line),
which were obtained from the iteration of the trun-
cated BW energy series

«(k) = «o(k) + «2, (k) + «»(k)

by using the convolution approximation for p '(1, 2,
3), as was done in Ref. S. It is true that one can
show the ratio «,o(k)/«o, (k) approaches unity in the
limit of small wave vector (as indicated in Fig. 3),
but in the small-k region the BF spectrum is ex-
pected to be fairly accurate and thus the perturba-
tion corrections are not significant anyway. On the
other hand, in the roton region, which is a most
important part, «, o(k) is only about 1% of «o, (k).
The overall smallness of the ratio «2o(k)/«o, (k) is
mainly due to the fact that the matrix element rep-
resenting the zero-to-three-phonon process is gen-
erally considerably smaller than that representing

the one-to-two-phonon process. To demonstrate
this numerically, we have plotted (k, k, k l6HI0)
and (- k, —k 16Hlk) in Fig. 4 for the special con-
figuration of equilateral triangle k=k =k . We ob-
tained the results of Fig. 4 from Eqs. (45) and (46)
with &(k, k, k ') = 0 = I'(k, k ', k ), which corresponds
to the use of the convolution approximation of Eq.
(9) in the evaluation of the matrix elements. Ex-
cept for small k values, we find

I(» k' k "I6HI 0&
I
«

I
&- k' —k" I6Hlk)I.

This observation may be used in finding a useful
approximation to estimate the contribution from
two-ring diagrams. In particular, we note that a
great number of two-ring diagrams such as those
shown in Fig. 2 contain zero-to-three and/or
three-to-zero phonon processes, and only six two-
ring diagrams shown in Fig. 1 do not contain such
processes. In the present study, therefore, we
extend the work of Ref. 3 by adding only these six
perturbation corrections to the BW energy series
(51). We believe that the other two-ring diagrams
would make smaller contributions for the reason
mentioned above.

Thus our entire perturbation consists of the eight
energy terms shown in Fig. 1, and the energy series
to be solved is

«(k) = «,(k)+ «„(k)+«»(k)+ «„(k)
+ «„(k)+ «»(k) + «„(k)+ «„(k)+ «4o(k) . (52)

As discussed in Ref. 3, use of the Rayleigh-Schr'o-
dinger perturbation formalism often presents diffi-
culties associated with the vanishing of energy de-
nominators, whereas no such singularities are en-
countered in the BW formalism. We therefore
evaluate «(k) by iterating the BW energy series of
Eq. (53). The explicit expressions of the perturba-
tion energy corrections are

1 "
p l(kl6Hlk- k, k') I

2(2o)'p -' «(k) —«o(k —k ') —«o(k ') ' (54)

1 p l(OI6Hlk k, -k —k &I

2(2m) p„' «(k) —2«o(k) —«o(k') —«o(k+k') ' (55)

6(2o )op' .~

' ' «(k) —«o(k —k, ) —«o(k)o) —«o(ko)
' (56)

1
I

I" k
(kl6Hlk —kg, k, &(kg 16Hlkg2, k2&(k ks, ku, k2I6Hlk)

o4 o 2 (2m) p - ~ («(k) «o(k ki) —«o(kt)][«(k) —«o(k —ky) —«o(k12) «o(ko)]
(5V)
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( )
1

~
( k (kl6Hlk-kg, k, )(k —kg, kgl6Hlk-kg, k2)(k-k„k2I6H)k)

4(2n) p' ..~

' [&(k) —s0(k —k, ) —e0(k, )][a(k) —e0(k —k~) —&0(y2)]

1
~

~ dk ](klbHik —kq, kq)(kql6H]kqq, k2) [

2 (2m) p' „~ „~
' ' [e(k) —e0(k —k, ) —s0(g, )]'[s(P) —g0(k —k, ) —q0(&, z) —g0(Jp, )] '

(58)

(59)

)
1

~ ( ~ (kl6Hlk k—g, kg)(kgl6Hlky2, k2)(k —kg, kgb(6H[k k-2)(k- k2, k2[6H(k)
(2~) p'. I „I

"" "
[s(&)—so(k —ki) —eo(4)] [~(k) —~0(k —ki) —&o(ki2) —~0(4)] [e(k) —~0(k - k2) —&0(u2)]

'

(60)

VI. NUMERICAL EVALUATION

The matrix elements in the expressions for the
perturbation energy corrections (54)-(60) are given
by Eqs. (45)-(49). These results are derived under
the assumption that the ground state is described by
the optimum BDJ-type wave function. It is quite
obvious that if the exact wave function is involved,
one would obtain different results for the matrix
elements —for example, (k, k, k (6H10) =0. We
must therefore use the liquid-structure function
generated by the optimum BDJ-type wave function.
The form of such a liquid-structure function to be
used in the iteration of Eq. (53) is the Campbell-
Feenberg result obtained with the use of the hyper-
netted chain approximation, as it appears to be the
best available.

The two-ring diagrams in Fig. 1 involve, with the
exception of e&(k), one-to-two and/or two-to-one
phonon processes given by Eq. (46), and thus their
integrals are more difficult to evaluate than those
of other diagrams. However, within our desired
accuracy, the two-ring diagrams may be evaluated
using

= (5 /4m)[NS(k)S(k )S(k )]
'

x[- 2(k +k +k )S(k)S(k )S(k )+k 'S(k )S(k)

+k 'S(k)S(k )-O'S(k )S(k )], (61)

which is obtained with the convolution approximation
for p ~(1, 2, 3). In fact, as mentioned earlier, the
same convolution approximation is used in the deri-
vation of Eqs. (48)-(50).

We thus carry out the numerical iteration of the
BW energy series (53) by using Eqs. (45) and (46)
for the one-ring diagrams and Eqs. (48), (49), and

(61) for the two-ring diagrams. The iteration pro-
cess for each value of k begins with the starting
e(k) taken from the Cowley-Woods experimental
measurements' and continues until two successive
values differ by less than 0. 8'%%uz. The number of
iterations required for this accuracy does not ex-
ceed 4 for 4 & 2. 56 A ', the wave vector domain for
which e(k) is computed in the present study. In
most cases, three iterations were found to be suf-
ficient. The obtained numerical results are pre-

-IO

0
I l I I II

k (k')

FIG. 3. Comparison of &2~(k) (dashed line) and &2&(k)

(solid line) obtained from the iteration of the BW energy
series (51).

sented in Table I and in Fig. 5. Our numerical cal-
culations for several values of k show that the same
results for e(&) can be obtained by starting with the
BF spectrum a0(k), but in this case two or three
more iterations are necessary. Nevertheless,
iterations of the integral equation (53) generally
converge rather rapidly in a stable fashion. In the
numerical iteration processes, we have observed
no singular behaviors that could indicate the possi-
bility that the solution is not unique. Thus there is
no particular reason to suspect that our numerical
results for e(k) do not represent the true solution.

In Table I, &c~,~ means the total energy shift of
one-ring diagrams brought about by the addition of
the leading correction 6p, @(1,2, 3) to the convolu-
tion approximation p,'"(1,2, 3), and c2', I

=—cg +82~
—hq2, ~ is the contribution from both of the two one-
ring diagrams evaluated with the convolution ap-
proximation for p' '(1, 2, 3). Examination of the
results for &E2,~ and &z,"~ shows that addition of
6p,

' '(1, 2, 3) to p, ~'(I, 2, 3) changes the total one-ring
perturbation correction by less than 6 jq in the range
k & 2. 28 A ' and by about 8% near k = 2. 56 A '. This
may mean that the convolution approximation

p, '(1, 2, 3) is a reasonable form that can be used in
the study of quantum fluids, or that 5p,

' '(1, 2, 3) is
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FIG. 4. Comparison of (k, k', k"
I 6H I 0) (solid line)

and (-k', —k" 16HI k) (dashed line) obtained, respec-
tively, from Eqs. (27) and (28) for the configuration of
equilateral triangle k =k' =k".

only a small part of the total correction to p,'sI (1, 2,
3). Use of the better-known Kirkwood superposition
aPProximation Pz'(I, 2, 3) = P g(l, s)g(ws3)g(r„) would
lead to much more complicated expressions for the
phonon functions, matrix elements, and conse-
quently the perturbation energy corrections. The
importance of 5p,

' '(1, 2, 3) may also be estimated by
comparing h(k, k, & ) with unity, since addition of

5p,'sI(1, 2, 3) results in replacement of unity by
I+6(k, 0, 0 ) in many expressions. In Table II are
listed the numerical values of &(k, )'I, )'I ) for the
equilateral configuration k=4 =0

In Fig. 5, curve A represents the BF excitation
spectrum (8) and curve B (taken from Ref. 3) re-
sults from the BW energy series of ELI. (51). Curve
C is the result of the present calculation obtained
from the BW series (53). Curve D represents the
experimental result obtained by Cowley and Woods
at 1.1 K from inelastic neutron scattering. It may
be pointed out that another experimental result by
Henshaw and Woods' is nearly the same as curve
D. The solid circles correspond to the theoretical
values determined by Feynman and Cohen in a
variational calculation based on the backflow argu-
ment.

We find that our computed result for e(k) is in
relatively good agreement with the experimental
measurements. The minimum roton energy of this
computed spectrum is 9. GV 'K at k = 1.99 A,
whereas the experimental value is about 8. '7'K at
k = 1.9 A . Thus, it is seen that the addition of the
six two-ring diagrams and the use of the better ap-
proximation for ItL' '(1, 2, 3) in one-ring diagrams
bring a considerable improvement over the result

0
0 I

k (A)

FIG. 5. Theoretical and experimental results for the
energy spectrum of elementary excitations. CurveA rep-
resents the BF spectrum &0(k). Curve 8 (taken from
Ref. 3) results from the BW energy series of Eq. (51),
and Curve C is the result of the present calculation com-
puted from the BW series of Eq. (53). Curve D repre-
sents the experimental values obtained by Cowley and
Woods (Ref. 13). The solid circles are the variational
results evaluated by Feynman and Cohen (Ref. 15).

obtained in Ref. 3. In particular, we note that all
the corrections increase sharply beyond 4 =2. 28
0

A '. Further improvements are expected to be
made by including more perturbation energy cor-
rections and by using still better approximations
for pi"'(1, 2, . . . , II) (II = 3, 4, . . . ), but the computa-
tional procedure would become extremely compli-
cated as the degree of accuracy is increased. Also,
use of an optimum liquid-structure function evalu-
ated more accurately could yield an improved ex-
citation spectrum.

As a final remark concerning our numerical re-
sults for the energy corrections listed in Table I,
we point out that the ratio of the fourth-order &4
= q4, + &4~ to the third-order correction &3= &3, + &3~
+ es, is larger than unity (except for k & 0. 3V A ').
Although higher-order terms in a converging per-
turbation. series are normally smaller in magnitude
than lower order terms, our case here is somewhat
different in that the magnitude of a perturbation-
energy term generally depends on the degree of
complexity of the term, or more specifically, on
the number of rings contained in the energy diagram
as in many formal perturbation series. This
means that &3 and &4 are to be treated as correc-
tions of the same order, since both involve two-
ring diagrams. The same argument can be gener-
alized to ez„„& and ca„, both of which contain g-ring
diagrams. Two additional remarks must be made
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TABLE I. Computed numerical values of the perturbation energy corrections. Wave vectors and
0

energies are given in units of A- and 'K, respectively.

0.37
0. 65
0. 77
0. 85
0. 98
1.10
1.22
1.34
1.46
1.59
1.71
1.83
1.91
1.95
l. 99
2. 03
2. 07
2. 11
2. 16
2. 28
2. 56

7.31
14.22
16.95
18.55
22. 57
22. 00
22. 80
22. 96
22. 53
21.68
20. 64
19.77
1.9.56
19.62
19.81
20. 14
20. 61
21.24
22. 02
25. 26
36.36

g (c)
2ab

—0.50
—l. 64
—2.36
—2. 87
—3.63
—4.30
—4. 84
—5, 20
—5.42
—5.54
—5. 74
—6. 00
—6.33
—6.51
—6. 69
—6.91
—7.14
—7.38
—7.65
—8.58

—11.86

—0. 02
—0. 05
—0.09
—0. 12
—0. ].6
—0.21
—0.27
—0.31
—0. 33
—0. 31
—0. 24
—0. 16
—0. 09
—0. 06
—0.03

0. 00
0. 04
0. 07
0. 11
0. 26
0. 87

—0.46
—0.56
—0. 60
—0. 62
—0. 65
—0. 68
—0. 73
—0. 80
—0. 90
—l. 04
—1.21
—1..41
—l.55
—1.61
—1.66
—l. 70
—l. 74
—l. 77
—l. 78
—l. 79
—l. 75

3a 3b

—0. 01
—0. 03
—0. 03
—0. 04
—0. 08
—0. 14
—0.22
—0.30
-0.34
—0.35
—0.35
—0.32
—0.28
—0.26
—0.23
—0.20
—0. 18
—0. 15
—0. 12
-0.07
—0.16

E'3

—0. 07
—0.20
—0, 22
—0.21
—0. 16
—0.11
—0. 05

0. 02
0. 07
0. 09
0. 06

—0. 01
—0. 07
—0. 11
—0. 15
—0.20
—0.25
—0.30
—0.36
—0.59
—l.44

~4a

—0. 03
—0.23
—0.39
—0.51
—0.68
—0. 80
—0. 88
—D. 94
—1..00
—1,01
—l. 00
—0.94
—0.90
—0. 89
—0. 89
—0. 90
—0.92
—0.94
—0.99
—1.22
—2.57

64b

—0. 00
—0. 06
—0. 11
—0. 15
—0. 22
—0.27
—0.31
—0.36
—0.41
—0.45
—0.46
—0.46
—0.47
—0.48
—0.49
—0.50
—0.53
—0.56
—0.60
—0.76
—l.44

6.21
ll. 45
13.15
14.03
14.99
15.48
15.50
15.08
14.21
13.08
ll. 69
10.47
9.86
9.71
9.67
9.72
9.89

10.21
10.64
12.51
18.02

here. First, because of the inequality of Eq. (52),
there are many exceptions to the above general
rule. For example, the one-ring diagram &» is al-
most always smaller in magnitude than most of the
two-ring diagrams shown in Fig. 1 (see Fig. S and

Table 1). The second point has to do with the fact
that energy dominators are negative definite (since
they do not vanish for a convergent term) and hence
whether or not the integrand of a perturbation-ener-

gy correction term changes the sign as integration
variables vary depends on the form of the product
of the interaction matrix elements. Therefore,
among the energy corrections with the same num-

ber of rings, perturbation terms with the entire
product of the matrix elements in the form of a
square of an absolute value would be larger in mag-
nitude than other types of perturbation terms. This
is consistent w ith our numerical results given in

Table I, since &2, and «4, are larger in magnitude
than all the other two-ring diagrams in Fig. 1 (ex-
cept for small values of k). This second remark
suggests that I e,„/s~„, l is generally larger than

unity, since the product of 2g —1 matrix elements
in &~„, cannot be put as a square of an absolute val-
ue. Our numerical values of E3 and &4 are also con-
sistent with this observation.

APPENDIX A: EVALUATION OF S~3i(k, k', k")

It is convenient to define a linear transform op-
erator Y as

Y{f(r,, r, r )}

=N 'p3 dr, 2,f(r, , rz, rs)e"" '&'" '~'" '", (Al)

so that

+(ky k i k ) F(k(+12)k(+83)k(+3/)}

S '(k, k, k )= 'Y(p'"(1, 2, S)}.
(A2)

(AS)

F(1}= F/k(~„)}= 0,
&(k(r, s)k(r„)}= F(k)F(k ),

(A4)

(A5)

TABLE II. Numerical values of A(k, k', k") for the
equilateral configuration k =k' =k". Wave vectors are

0
given in units of A" .

0. 08
0. 16
0. 24
0. 33
0.37
0. 65
0. 67
0. 77
0. 79
0. 85
0.98
1.10
l.22
l.34

a(k, k', k")
—0.669
—0.664
—0. 655
-0.641
—0. 633
—0. 544
—0.536
—0.491
—0.481
—0.452
—0.390
—0.327
—0.265
—0.207

1.46
l.59
l. 71
l. 83
l. 91
l. 95
l. 99
2. 03
2. 07
2. 11
2. 61
2. 28
2. 56

&(k, k', k")
—0. 155
—0. 110
—0. 0735
—0. 0449
—0. 0302
—0. 0242
—0. 0188
—0. 0143
—0. 0104
—0. 007].7
—D. 00455
+0. 000129
—0. 00121

Evaluation of Eq. (AS) with the use of approximation
formula. (10) is rather straightforward, although it
involves somewhat lengthy algebra.

The following results are obtained through re-
peated applications of the Fourier-integral theorem.
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~ P hrf4kr24kr~dr4 = —EAEk Ek", A6

& pa r„~ ~ r„ I r24 e r„dr,
= —S(k")~(k, k', k'),

F p''~ hr&4 hr34 A, r» hr» hr4& dr4d~&

(Av)

= —S(k)S(k')S'(k")~(k, k', k"),
where S'(k) is defined by Eq. (34). Substitution of
the above relations into Eq. {A3) yields an expres-
sion, which can finally be simplified as given by
Eq. (19).

Another useful (luantity closely related to 8' '(k,

=S'(k)S'(k )&(k, k, k ), {A3)

~ P ~
h rg4 h r25 A r36 h r45 A r56 h r64 dr4dr5drs

(A9)

kl kit)

N (OI p p p„- IO)

=[1+&(k,k, k )}8(k)8(k )8(k ), (Alo)

which follows immediately from Eqs. (22) and (19).

APPENDIX 8: EVALUATION OF S«~(k),kg, k3,k4)

4
—N p ( dry )) 3 4f(rg ) la i rgq r4) exp () kg o 1~

&~i

Bj( )
Thus E(l. (31) becomes

8 (kq, kq, ka, k4) =p Z{p (1, 2, 3, 4)}, {B2)

which is to be evaluated here with the use of the
convolution approximation

The convenient definition of the linear-transform
operator used in this appendix is given by

Z( f(ri r2, ri, r4)}.

4 4 4

P,"'(1,2, ), 4)=P'(( g a(t';;)+ g R(r,„)h(r,„)+P P' (a(rz)a(r»)a(r, )dr&
ftJ ~fgt ftg f

4P' h(~,~)h(~„)+ P' h(v;~)h(~~ )h(~„)+ g' h(~, )h(~& )h(y„„)+p I gh(~„)dr5
k,g, m, n $ sy, fff syf 4 d, m, tf

~ p g' ' ll( „)ll( „)/l(, )il( .)d, ~ O' P' l(ll( „)a( „)I(„,))1( „,)ll( „)d,((,) . (HS)
i,y, fft, n" f fg sfw jtf +

Ne need the following formulas of the Z trans-
form, which can be derived without much difficulty:

ph rg4 lg r)g dry =Ii k)+k4 E Q~, BP
)~2 gs1

Z(1}= Z(h(~„)}= Z(h(~g, )h(~2g)}

S

(a( „)ht ))= (( f1a( „)d,I=, ( 4)
jaj,

4

Z p I g h(~„)dr, = Q S(k,),

~ p
~

& r&$ @ r26 ~ r35 ~ r46 @ rsvp dr5 dre

(BS)

Z(h(t, )h(r )h(r )}= —S'(k, )S'(k )S'(k, +k ), (B5)

z gh(~, ,) =- gs(k, ),
jag y-"1

(B9)=--s(k, +k, ) Qs(k, ) .
ps(g

Using Eqs. (B3)-(B9), it is easy to show that Eq.
(B2) reduces to the result given by Eq. (33).

APPENDIX C: EVALUATION OF INTERACTION MATRIX ELEMENTS

The results given by E(ls. (45)-(50) can be derived by extending the procedure first developed by Davison
and Feenberg in their study of the ground state of liquid He. The following basic definitions and relation~
are useful:

N @2
W(p) —= exp p P o(r,&)

— P V„u(r&&)8m „.I
f(p) =-(oI &(p) I»

8(k; p) =- [»(p)]-'&0
I ~(p)p„-p=, Io),

(cl)

(c2)

(c3)
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d—$(n; P) = [1 —8(u)], (C4)

b (k, k', k"; P) =—

2 ~ I d P[8(P; P) —1][8(P+k; P) —I][s(P —k; P) —1], (c5)

(c9)

r(a, a', a")-=, (
—„~(a,a', a"; 8) {c6)

Q=O

e2
{Se,~5a~ge, &

= e', [(Vp*) (~,g) --,'~', (S*g)]dr...,....„+ — (Se,
~
W(p)

~
Beg (C7)

v' 8=0

It may be remarked that the result for I'(It, k, k ) given by Eq. (4V) follows directly .rom Eqs. (C6) and (C4).
The interaction matrix elements are evaluated with suitable choices for functions 7 and g in the formula of
Eq. (Cv).

To simplify lengthy algebraic expressions in the remainder of this Appendix, we let

8=$(k), 8.=8(k ), $„=$(k„),
~=~(u, u', u"), I"=I'(n, u', u"), (C6)

s(p) = $(u; p), s'(p) = $(n'; p), ~(p) = ~(I, f ', ~"; p) .

Evaluation of (k, k, k I6HIO& begins with our choice of the functions 7 and g as

5'=(N $$'8") ~ [pgp„.pp& ( 1+4)( 8' 8" p„p„+88"pgp g. +$$'ppip „" 2N$$'8")],

/=1
We thus have

(~P*) ~ (~,S) =0,

V, (V*/) 2(N SS S ) ' f-2(k +k +k )p p -.p -" —(k ~ k )pI p „- —(k k )p-~p ~ —(k ~ k )p-„"p

+ (I+d)[k S 8 (p~ p „- —N) + k '$$ (p„p „- - N) + k ~88 (pp p „-"—N)]],
and consequently

Ã8 eo[(+p'*) ' (vi&) —4+86'*~)]d~&,2, ...,@

(clo)

(Cl 1)

(C12)

(Nss8 )
'~ [ 2-(I24+)(k~-+k 2+0 ~)88 8 +(k ~ k)S +(k ~ k )S+(k ~ k)S

4m

+(1+4)(k 8 8 +P ~8 8+0 88)],
in which Eq. (AIO) is used. Using Eqs. (Cl)-(C6), we also find

&6eo
~
~(P)

~Beg�&

= (Nss'8") "'1(P)([1+~(P)]$(P)$'(P)$"(P) —(I+&)[8'8"8(p)

+ s"ss'(p) + ss 's "(p) —288'8"]],
1 A 888

(C15)

Substitution of Egs. (C12) and (C15) into Eq. (CV) leads to the result given by Eq. (45).
Next, to evaluate (-k, - k I6H lk&we ,let

6 =(N S'8 )
' [p „~p p~ —(I+6)8 8"pg],

8 = (NS)-'~'p„- .

The relations

(VP'*) ~ (V, B) —(N SS S ) '~ [(k ~ k )p„"p „"+(k k )p„~p p+N(1 +b)k 8 8 ],
Vi(f+g) 2(N 8$ 8 ) [- ~(k +0 +0 )pf pfipI" —(k ~ k )pI"p pi —(k ~ k )pf p )

—(k ~ k)ppp „- +(1+4)k 8 8 (p„p „- —N)]

can be used to obtain

(C16)

(cia)

(C18)

(C19)
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l
+(')I (&P*). (&I~) —l &I(6'*~)]arl,a, ...,~

4m
yrss'8")-I~'[-', (I+a)(a"+u"'- u')88'8" —(I+~)a'8'8" +(k'. k")s- (k k')8" —(k k")s'] .

(c2o)
It is rather straightforward to shoe

&9+, [ &(0)[8+,) =(»8'8")-'"f(p)( (I-+~)s(p)s'8"+ [I+~(p)]s(p)s'(p)s" (p)], (C2I)

( (6:e, i w(p) ig e, ) = —,„„,f-,'rss'8"+(I+~)[u"8"8(I - 8')+u"'88'(I - 8")]] .', , 4m XSS'8" I» '
C22

Combining Eqs. (C21) and (C23) we ohtain Eq. (46).
Tile PI'ocedllre of evRluRtlllg otllel' IQRtl'ix elellleflts (wllicll rePlesents foul'-Pllollon vertices) illvolves

somewhat lengthy algebra, but the method is basically the same. Therefore for each case we present only
I'esults fol tile two teI'Ills 011 tile I'igll't-ilRlld side of Eq. (Cv). Tile collvollltloll Rpproxlmatlons RI'6 used fol'
p("(I, 2, 3) Rnd p(4'(I, 2, 3, 4).

For 111R'tl'ix elelllellt, ( klk)l)6HI —k1) —k4)) we ilRve

P = (N 8183) (pfl p),1
—8181pflgf1) )

9 = (x'8,84)-'i'(p:„,p „-,- s,s, p „-, ;,),
(C23)

(c24)

4~0[(VIP*) ' (VI/) ——,'Vl(6'"9)]arly (I = —~N (81828384) I
~ [E(kl+k3)+E(kl+k4)] Q 1,

&~1

2 4

+ (kl+k1) —+———1-——(kl+kl) + Q Qs(k(+kI)
~3 ~3 4 ' '

g-~ g=s

(c26)

c„—",', &()&.I)('()))le~.) =,' "".'") ((Il+IB)'~(»+Is)+(» ~ &c)'r(&1»)
go 4m N

3
—[E(kl+kl)+ E(kl+kg)j Q

Equations (C25) and (C26) readily lead to Eq. (48).
In the case of (kl, kz, kll6H) —k4), the function 6: is defined by Eq. (39) and

i kl, kl, kl) = P
i 0) .

The other function 9 is given by

8=[vs,]-'I'p „; .

After some algebra, , one obtains
r

~

+o[(&16'*)' (~IS)- -'&l(6'*8)]d», a,...,~ =2~1 (SISA84)'" Z 8
'+

8]

(c26)

(C2v)

+ Q (k( ~ kI)8(kI+kI) —I
4&j

(
d (%co) w())))8%,) II'

( )pig g y I „) k'gag ).',)",
dP f(P) II () 4m' ' ((I ' I 8( SI

and consequently Eq. (49) is obtained.
Finally, for (k„ka, k1, k4i6Hi0), we determine the function 6: from Eq. (40) such that

i kl, k2, k1, k4) = 6'
i 0) .

Also)

(C29)

(c3o)

(C3l)
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—1
i»[(&P ) '(»8) ——.»(&"8)]d i s.....~-2~&(&A&A)

'
Q[Z(»+V) ~ l](»+g)'-Qa]),

(C24)

Equation (CV) then becomes
4

(kg, ka, kg, kg)5HI]0) = — k, ~ +k, , (C25)

which reduces to Eq. (50) because of the momentum conservation expressed by Eq. (28).

+Present address,
/Present Rddr ess: Dept of Physics National Tsing HuR

University, Hsinchu, Taiwan 300, China.
~H. %. Jackson and E. Feenberg, Bev. Mod. Phys. ~34

686 (1962).
2E. Feenberg, Tkepyy pf Qgggfgm E/ufds (Academic,

New York, 1969).
SD. K. Lee, J. Low Temp. Phys. 12, 597 (1973).
4C. E. Campbell and E. Feenberg, Phys. Bev. 188, 396

(1969).
~A study on the three-particle-distribution function gener-

ated by the exact wave function was recently made for
the weakly interacting boson gas in P. Berdahl, Phys.
Bev. A 10, 2378 (1974).

D. K. Lee, Phys. Bev. 187, 326 (1969).
C. E. Campbell, Ph. D. thesis (Washington University,
1969) (unpublished).

SK. Y. Chung (unpublished).
F. J. Lee and D. K. Lee, Phys. Bev. A 9, 1408 (1974).

~ The function 6p~3 (1,2, 3) is the leading correction in
certain types of ordering schemes discussed in Ref. 9.
The convolution approximation for p (1,2, 3,4) is given

by Eq. (83).
Most of the energy diagrams shown in Fig. 1 were also
considered in H. %. Lai, H. K. Him, and C. -W. Woo,
Phys. Bev. A 1, 1536 (1970). In. this reference, the
wave function t 0) is assumed to be the exact ground-
state eigenfunction, and consequently &2t„&2~, &3„and
~3Q

vani sh identically.
B. A. Cowley and A. D. B. Woods, Can. J. Phys. 49,
177 (1971).

~4D. G. Henshaw and A. D. B. Woods, Phys. Bev. 121,
1266 (1961).

5B. P. Feynman and M. Cohen, Phys. Bev. 102, 1189
(1956).

~GBesults given by Eqs. (12) and (A10) were first derived
by Chung in his independent study of the g-particle dis-
tribution function (Ref. 8).

~VD. K. Lee, Phys. Bev. 162, 134 (1967).
F. Y. Wu and M. K. Chien, J. Math. Phys. 11, 1912
(1970).
T. B. Davison and E. Feenberg, Ann. Phys. (N. Y. )
53, 559 (1969).


