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%e investigate the properties of pseudo-one-dimensional systems which exhibit Peierls instability at
T, (p,), where p, is the Fermi energy as measured from the middle of a conduction band. &e show

that, except at p, = 0 or jpj & T, the giant Kohn anomalies of the phonon spectrum do not occur at
2k r. For jjtj&& W, where 2W is the bandwidth, T,(p)decreases as jltj increases, and, for IV y jpj y T,
T,(p)/T, (0) = T,(0)/2. 26)pl. As Ip, I further increases tmvards 4', the decrease of T,(p,) tovmrds zero

need not in general be monotonic. The neutron scattering differential cross section showers a peak

arit magnitude proportional to (T- T,)

I. INTRODUCTION

For some time, investigations hRve been made
on those organic solids which, becRuse of their
peculiar crystal structures, show electrical con-
ductivities so anisotropic that they may be con-
sidered R8 one-dimensional conductors. The
charge-tx Rnsfer salts of tetracyanoquinodimethane
(TCNQ) and the mixed-vacancY planar (MVP) tx an-
sition-metal compounds are tmo fairly large class-
es of compounds'' that possess such anisotropy.
In both cases, planar molecules are stacked in
columns. The interactions between adjacent atoms
in a column are sufficiently strong to form bande.
'The columns are, however, relatively far apart so
that conductivities along the column are much lax'g-
ex than those perpendicular to it. Some of these
solids are meta. llic at high tempexature, and they
undexgo R metal-insulator phase transition' ' as
the temperature decreases, One of the possible
explanations for the phase transition is the occux-
rence of a Peierls instability' which produces lin-
eax superlattice distortion. ' '

So far in the literature on Peierls instability and
the Kohn anomalies in one-dimensional systems,
discussions have been limited to solids with exact-
ly half-filled conduction bands. ' ' In the present
moxk, me investigate"'" the effects of p, on vari-
ous propertie8 of pux'e one-dimensional conduc-
toxs, mhere jU, denotes the Fermi energy as mea-
suxed from the middle of the conduction band. %e
also investigate under what conditions is the tight. -
binding model equivalent to the free-electron mod-
el. One may apply methods similar to those pre-
sented here to calculate the effects of p, on fluc-
tuation conductivi. ty. ""

In Sec. II me observe that the Fermi energy p,

plRys the x'ole of perRmagnetic effect of R

magnetic field on superconductors. %'e investigate
the Kohn anomalies, Peierls instability, and neutx"on

scRttex'lng for vRx'lou8 values of p. p 18 R xDeasux'e
of the deviation from h3lf-filledness since p, van-
ishes for exactly half-filled conduction bands. %'e

show that, within the range j p, j «W (assuming T
«W), as jp, j increases, the transition tempera-
ture T, (p, ), at which a Peierls distortion or a soft
mode occul 8~ decreases~ 81Qce the QonvRnlshlQg
of p, produces a mismatching between the electron
state k and the states k a Q. For j it j &1.056T, (0),
the soft-phonon mode has wave number Q= x/d,
where d is the interatomic distance and T, (0) is
the transition temperature for an identical system,
but with p, =0. For jp, j&1.056T, (0), however, it
is the phonon mode with wave number equal to
9+qc {qc+0) that becomes soft first as T ap-
proaches T, (p.). As j p, j further increases, q, in-
creases, but Q+ q, is not equal to 2k~ until j p. j/T
becomes very large. Accordingly, the giant Kohn
anomalies of the phonon spectrum do not occur at
2k„ in one-dimensional conductors except mhen
p, =0 and jp. j»T. In general, the Kohn anomalies
occur at k=Q+q, . For W»W —jit j»T, the tight-
binding model becomes equivalent to the free-elec-
tron model, as far as Peierls instability is con-
cerned. At jp, j=W, T, =O; that is, there is no
Peierls distortion for a completely filled ox empty
band, as one would expect intuitively.

In Sec. III me show that the critical fluctuation
would produce in neutron scattering a central peRk
which diverges as (T —T, ) '.

According to some genexal theorems, "there can
exist at finite temperature no phase transition. in
one-dimensional systems for short-range intexac-
tions. This is probably true in general for stxictly
one-dimensional systems. %e assume, however,
that we are dealing here with a model system in
which, while the electron can move in only one di-
rection, the lattice is three-dimensional, so tha, t
mean-field theoxy may be employed to deal with
Peierls instability.
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II. PEIERLS INSTABILITY

In a one-dimensional electron-phonon system,
the model Hamiltonian may be taken as

R=Q E,a~ a„+0,Q btb,

+g Q Q a„„a„(b,+b~,),

and k —p. The coupling between states k and k+P
+ 2nv/d should not be included since one must keep
the values of b within the range ~k ~

&a/d. Using
Gs(i&@„,b) =(i&a, —E, +p+ I/27) ' and Eq. (1), one
obtains, after some straightforward calculations,

11 (0 + i 5, p) = -N(p)[ln(, 4e & W/nT) —'F(p, , q, T; p)

+ (-a'q'+ iQb)/AQ, '],
where

X = 2N(g)g'/0, , (2)

where g is the electron-phonon coupling constant
and a„and b, are operators for electrons and pho-
nons, respectively. In a tight-binding model, E,
= -Wcoskd, with d denoting the interatomic dis-
tance and 2W the width of the band; p. = -Wcosk~d
is the Fermi energy, and k~ is the Fermi momen-
tum. We shall use frequently the relation

where @=n/d When. p, = 0, Q= 2k+. Qo is here
equal to 0, because, for our purposes, only pho-

Ao

non modes with q=P, are important, where p, is
the wave number of the phonon mode which goes
soft at the temperature T„at which the Peierls
instability occurs. It is convenient to write

Po= 0+co

In this section we shall derive the equations de-
fining q, and T, .

Using the familiar random-phase approximation,
the renormalized phonon propagator is

D '(i0, p) = D, '(iQ, p) -g'll (iQ, p),

with the polarization propagator

II (iQ, p) = T g p G(ie „k)

XG(i(u„+iQ, 0+p),
and the bare phonon propagator

Do '(iQ, p) = [(iQ )' —Qo]/20O,

where

F(p., q„T;p) = —,
' Re P P(-,'+ p+i p, ) —g(-', ), (3)

p, , = (2p. + v~q, )/4~T,

p = I/4mTr,

a' = A, Q'n'
0 0&

o,'=-(vz/8vT)' Re+ g~'~( —,'+p+ip. ,),

b = A.QOB/8lrT,

B=Re "' —, +p+sp, .

(4)

(~)

(8)

(8)

D~(0, p) = 20,/(0' —AQ,'e —a'q'+ iQb),

where

7 is the lifetime of the electron states due to im-
purity scattering and the scatterings of those pho-
nons with wave number not near to p„v~ is the
Fermi velocity; y is Euler's constant; N(p, ) is
the density of states at the Fermi surface. Since
II(iQ, p) is an even function of p, , one readily ob-
serves that p. plays the role of paramagnetic ef-
fects" "of a magnetic field on superconductivity.
'The above relations are valid only when q,d «1.
In our calculations, we have, for simplicity, as-
sumed the relation

~ p, ~
«II'. It is not difficult how-

ever to relax this limitation. Near T;, at which the
Peierls instability occurs the retarded dressed
phonon propagator is

~ =Pa+& ~

To bring out the physics of our calculation, it is
preferable to write

T, and q, are functions of p, , obtained by solving
the following equations in the pure limit ~T»1:

II(iQ, P) = T g P G(i~„k)
u p&0 and

»(T, /To) +F(p, qo, T„'o) = 0 (13)

x [G(iu, +iQ, )t+P) +G(iver, +iQ, b —P)].
The first term represents the coupling between the
momentum states k and k+p, while the second
term represents the coupling between the states k

8vT, BF(p, q~, T„'0)
Vg go

= Im[g+(-', +i p. , ) —g'"(-', +i p )] = 0,

where g is a digamma function,

(14)
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T =T (0) =(4We)'/w)e 'i" (15)

Assuming I
I), I

=0.2 eV and T, =500 K, one obtains
T, -50 K. To make physical interpretations more
transparent, it is interesting to substitute the ex-
plicit expression Eg. (15) for T, into Eq. (19) to
obtain"

is the transition temperature of an identical sys-
tem, but with p, =0. Explicitly, 4e)'/@=2. 26. At

p, =0, q, =O, it follows immediately from Eq. (3)
that F(0, 0, T„O)=0. Since +(I),, q„T„O) is always
positive, T, is smaller than T0 for p. &0. Equation
(14) ensures that the minimum of F(p. , q, T„O), as
a function of q, occurs at q = q, . When J"())., q, T„'0)
is at its minimum as a function of q, it follows
from Eq. (13) that T, is at its maximum.

From these equations, one observes that for
I pl«W, u has the same effect as a magnetic field

on the phase transition of one-dimensional conduc-
tors. " We define p, ~ as the solution of the equa-
tion

l.e.]
Re|l) "(2 +i)),~/2mT) =0 .

In connection with paramagnetic effects on super-
conductors, Sarma' has solved this equation with

p, r = 1.056TO. (15)

q, vanishes for I)). I&)),~, but is nonzero for I p I

When lp I T, we expect II),- l«1 and lp+ I

»1. In such a case,

imgn)(-'+is ) = 14'(3)-u

Im)l)b)(—', +i)),,) —-I/g, .

Equation (14) therefore leads to the relation

g =[14'(3)p,,] '=0,
which is equivalent to

Using the relation I
—,Q —kr ld«1 and the definition

of p, , one readily obtains the relation

Accordingly, when I p, l»T, one may replace )), in

Eqs. (13) and (14) by )). =0 and use the approxima-
tion

Ref(-', +iy. ,) = Inp. ,
One obtains, then, from Eq. (13),

T Tt T.

where

T&
——(4e )/w) We ~~f,

with

(2o)

(21)

(22)

Tf may be taken as the transition temperature for
the free-electron model. As we have used the rela-
tion q,d «1 in our calculation, Egs. (20)-(22) are,
strictly speaking, only &alid for lp I

«W. As I p, I

approaches W so that W»W —l)j, l»T, one obtains

T.() ) =(1 —I) I/W)(2e'W/~)e "'& (23)

from the equation

0,/2q'+II(0, f)) =0.
At I p, I

= W, T, =0. The physical meanings of the
above derivations are as follows. The Peierls
distortions are due to coupling between the elec-
tron states k and the states k+ po. We shall con-
sider only 4 &0; the reasoning for k &0 is similar.
At p. =0, P, = @=20~. 'The states k and k + Q are
symmetric with respect to the Fermi surface; by
"symmetric, " we mean E» —1), = -(E„e—I), ). Such

symmetry gives rise to optimal coupling effects.
T, ())ijs accordingly largest at I), =0 (assuming )).

constant). At p =0, the giant Kohn anomalies of
the phonon spectrum occur at 2k+. As I p, I

in-
creases but is still smaller than p, ~, p, remains
equal to Q. However Q no longer equals 29~ and

consequently the coupling between k and A'+$0 is
not symmetric with respect to the Fermi surface.
Such a mismatch is reflected in the reduction in
T, as I p, I increases, T, being determined by Eq.
(13) with q, =0. The Kohn anomalies occur at
Q(&2k~). As I)), I further increases so that I)), I

& p, ~, the wave number of the soft phonon becomes
P, = Q+q, with q, &0. In this way, the electron
states k and k —P, become more symmetric with

respect to the Fermi surface. On the other hand,
k and k+$0 become less symmetric, giving rise
to a further reduction in T, . T, and q, are now de-
termined by Egs. (13) and (14). The Kohn anoma-
lies occur at Q+q„which is again not equal to
2k„. In the limit I p. I»T, P, =Q+q, =2k„. The
states 0 and k —P, become again completely sym-
metric with respect to the Fermi surface. Greater
mismatching, however, exists between k and k

+P, . 'The transition temperature now has a very
simple form, namely Eg. (19). The Kohn anoma-



PE IE RLS INSTABILITY IN PSE UDO-ONE -DIME NSIONAL. . .

lies occurs again at 2k'~ in this limit. As far as
phase transition is concerned, the W»

~ p ~

» T
limit is not equivalent to the free-electron limit.
This can be most easily seen from Eqs. (20)—(22).
Tf has a form identical to T„ the transition tem-
perature for the half-filled case, except that A.

&

is now e(Iual to only half of A. . If
~ p. ~

were of the
same order as @', T, would be equal to Tz, and
this would mean that the coupling between k and
k —pp remains perfect while the coupling between
the states k and 0+p, becomes completely negligi-
ble. However, for W» ~)(, ~»T, T, »Ti,' which
means that the coupling between the states k and
0+/, remains nonnegligible in this limit. When
W» W —

~ p, (» T becomes true, the tight-binding
model is equivalent to the free-electron model for
the Peierls instability. As far as the phonon life-
time and the fluctuation conductivity" "are con-
cerned, it actually reaches the free-electron limit
when W» ~(((. ~» T, because only the states very
near to 4'~ are important in determining the phonon
lifetime (and conductivity). Thus, in this limit, the
lifetime 2/h of the soft phonon is twice as long as
in the case p. =0, because only the scattering of k

into k —Pp remains available.
In the above discussions, we have purposely kept

A, independent of p. in order to bring out the physics
of our derivations. For

~ i(, ~
«W, this assumption

is reasonable. When ~)(. ~
is of the order of W,

however, one must take into consideration the p,

dependence of A. , since g, Q„and N(p) are all
functions of p. . From the relations

N(p, ) = L/2vWd(l —p'/W')' '

and E(I. (2), X(l(, )/X(0) becomes large as I —g'/W'
decreases. Accordingly the decrease of T„(i(.) to-.
ward zero is, in general, not necessarily mono-
tonic.

In the presence of a magnetic field H, we re-
place )(,, by p,,' = i(, , +ay~/2iiT„where a =+I,
ye =eh/2m*c; e and m* are electron charge and

mass, respectively. In this case I", o,p Qnd B,
respectively, in E(ls. (3), (7), and (9) are replaced
by

2

+0'"(2+p+fI .)1,

For fixed p, , HI, is defined by the equation

When" p. =0, y~H~ =1.056T„when H H~, q, &0;
but, for H &H~, qp vanishes. In the presence of a
magnetic field, one may in general have qp&0,
even though ~ p. ~&I.056T, .

Using the model Hamiltonian

g =N()(, ) + g (Z, —p, )a „a

(25)

b. =2g(b, ),
to describe the quasi-unidimensional system be-
low T„one can easily show that the free energy
near T, is

r F =N(l(, )[ln(T/T, ) i A i
'+ ,'8 i A i'), -

where 3 is defined by E(Is. (Al)-(A4) in the Ap-
pendix and is never negative. The Peierls distor-
tion is therefore a second-order phase transition
for the various values of p, under consideration.
For completeness, we have given a more detailed
derivation for the free energy in the Appendix.

The differential cross section of neutron scat-
tering by lattice is given by"

where

. lv lk+k'I »

k' is the momentum of the incident neutron. N and
M are, respectively, the total number of the ions
and the mass of the ion. V(r) is the scattering po-
tential between the neutrons and the ions. 'The

magnitude of u' is independent of temperature but
depends on the individual system. Including only
one-phonon processes in the inelastic scattering,
one obtains the structure factor as



e ' ~ is the Debye-%aller factor; 0 is the recipro-
cal vector (parallel to the chain, G = 2nQ, with n
=1, 2, 3. . . ); 5„,o =1 if 4+6=5, and 5~, a=0 if
fc+GWO. i,j are the 3 directions of the phonon.

Choosing k parallel to the chain and k = Q+q„one
obtains

S(po, ru) = e &oPO Imp{Pa, &g)/(I —e ),

k+p

k-p

k.p0

k„

k-p

k

where D„ is the retarded propagator defined by
Eq. (11). One therefore obtains

2QpbT
((g' —A,Qoe) +(u2b (26)

FIG. 1. Solid lines denote bare electron propagators.

S, = Tg-[G(f &u„, k)]

As T T, the positions of the peaks of the Q+q,
phonon shift towards cv =0. In particular, when one
puts &v=0 in Eq. (26), one obtains

e-2' 2k I o
Z'O' T —T, '

0

which gives rise, near T„ to a central peak with a
magnitude diverging as (T —T, )

'
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XG(i&@„k f+&,)G(i&@„,k —p ) .

Integrating over k, one obtains

S, = Im[g"~(-,'+ip. ,) —g~'~(-,'+ip. )]. (A2)]6vTg q,

j
The contribution from Fig. 1(c) is

(A3)

S, = TQ [G(-i&a„, k)G(i(u„, k —P,)]'

%e observe that, for p, & p.~, 8, =0 because of Eq.
(14). For p, &p.z, however, q, =0 and

APPENMX , Re g g'"(-,' +fp, ) . (A4)

where

8 = -~(2S, +S2) (A1)

and II(0, p, ) is the contribution from Fig. 1(a), S,
from Fig. 1(b), and S, from Fig. 1(c). 'The contri-
bution from Fig. 1(a) is simply

II(0, P,) = -N(0) [ln(4e&W/vT) —F(p, , q„T„O)].
The contribution from Fig. 1(b) is

Using the model Hamiltonian (25), one may write
free energy near T,

Since 8, and 8, are never positive, the Peierls
distortion is a second-order phase transition.

A similar calculation has been carried out by
Nakanishi and Maki" for superconductivity in the
presence of high magnetic fields, They show that
the sinusoidal solution of the order parameter,
A(r) = b,, coeur, gives rise to lower free energy
than the solution, A(r) = h,e"", and the phase tran-
sition is of first order. Because the electrons can
only move in one dix ection in our model, however,
Peierls instability is a second-order phase transi-
tion, as we have shown. In passing, it is intexest-
ing to note that the sinusoidal solution implies re-
sistance steps in superconducting thin films or
whiskers in the presence of high magnetic fields.
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