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Assuming that the B phase of superfluid *He is described in terms of a spherical triplet state of
Balian and Werthamer, the Goldstone bosons associated with the general gauge transformation of the
B phase are studied theoretically. Particular attention is paid to spin waves, which are the Goldstone
bosons associated with (partially broken) gauge invariance of the original Hamiltonian against the
rotation of the spin space. Spin-wave dispersions in the hydrodynamic regime of the B phase are

determined.

I. INTRODUCTION

We have shown recently that spin waves exist in
the A phase of superfluid *He.»?® These modes can
be considered as Goldstone bosons associated with
the rotation of the spin space, since the condensate
of the A phase, being triplet, breaks the rotation-
al invariance in the spin space in the original Ham-
iltonian. (Strictly speaking the above invariance is
partially broken due to the dipole interaction ener-
gy and the resultant spin-wave spectrum acquires
a finite energy gap.) A recent experiment on the
ringing of the magnetization in the B phase by Webb
et al.® has definitively shown that the condensate of
the B phase comprises triplet pairs. Therefore we
expect, from the generalized gauge invariance of
the theory, the existence of spin waves in the B
phase.

This work is devoted to a study of the collective
modes (or Goldstone bosons) in the B phase of
superfluid %He. We will pay a particular attention
to spin fluctuations, which reflect in details the
character of the triplet condensate. We assume
here that the condensate of the B phase is described
in terms of the spherical triplet state proposed by
Balian and Werthamer (BW).* Furthermore we
limit ourselves to the hydrodynamic regime, which
seems to be most likely the case, if we are inter-
ested in the low-energy fluctuations (say w~10°-
10® Hz).

In the absence of the dipole energy, the ground-
state energy of the BW state is invariant against
the following nonAbelian gauge transformations of
the triplet order parameter A(Q):

K(Q)~e™Ry(a, B, YIR(', B,y IA(Q), 1)

where ¢ describes the change of the phase of the
order parameter, Ro the rotation of the spin space,
and R the rotation of the coordinate space. Here
(a, B, ¥) and (a’, B’, ¥') are Eulerian angles de-
scribing the rotations of the spin space and the co-
ordinate space, respectively. Therefore the BW
state admits three different classes of Goldstone
bosons: the zero sound, the spin waves, and the
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orbital rotational waves. A local phase transfor-
mation can be described in terms of phonons or
sound waves (i.e., the zero sound) in the super-
fluid *He. In a neutral superconductor (with singlet
condensate) the corresponding mode is known as
the Anderson-Bogoliubov mode.® A local rotation
of the spin space generates spin waves in the BW
state. We will study in details these modes in the
following. Finally a local rotation of the coordinate
space (i.e., the orbital axis of the condensate)
generates the orbital modes, which has been con-
sidered by de Gennes® previously in the case of the
A phase,

We will consider in the following the situation
where the orbital part of the condensate is fixed in
space, for example, due to the pinning at the wall
of a container, and concentrate on a local rotation
of the spin coordinate. A local gauge transforma-
tion which describes rotation in the spin space in-
troduces a perturbation Hamiltonian, which con-
tains both the linear and the bilinear terms in the
derivative of the local Eulerian angles [a(;, t),
A(x, 1), ¥(r, D).

A similar transformation has been considered
recently by Combescot, 7 in his study of the spin
waves in the B phase. The shift of the free energy
due to this perturbation is easily calculated. This
additional free energy (which is now bilinear in the
derivative of the local Eulerian angles) together
with the dipole interaction energy determine com-
pletely the spin fluctuations in the BW state. In the
linear regime and in the absence of the dipole in-
teraction energy, the present result agrees com-
pletely with a recent calculation of the spin wave in
the hydrodynamic regime by Combescot.” In the
presence of the dipole interaction energy, the
ground state is no longer degenerate against sepa-
rate rotations of the spin space and the orbital
space, although it is still degenerate against a si-
multaneous rotation of two spaces.® When the gauge
variables are separable, as in the case of the A
phase, 2 the dipole energy introduces simply an en-
ergy gap to the spin-wave dispersion equal to the
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nuclear -magnetic-resonance energy. In general,
however, the dipole interaction energy introduces
the coupling between different modes and therefore
alters the spin dynamics completely. As already
pointed out, the dipole interaction energy is not
adequate to determine the equilibrium spin-orbital
configuration of the B phase. ® However, in the
case of a cylindrical vessel with the symmetry axis
parallel to external magnetic fields, ® two distinct
configurations are very likely to be realized; the
Leggett configuration and the wall-fixed configura-
tion in the low-field region.® Therefore, we will
study in some details the spin waves in these par-
ticular configurations. In the Leggett configuration
the spin wave with longitudinal spin polarization
(i.e., 851 H,, where H, is a static magnetic field)
has rather simple dispersion:

w2=1§5%0—) q-%‘—‘-mz,, (2)
where

(Ds)ux/0=(0s)yy/P=5(ps/Placs »

(5)ea/P=2(ps/Pscs> 3

( ps)xy = ( px)yz = ( px)zx = 0 2

and  is the Leggett longitudinal resonance fre-
quency in the B phase, ® X is the static susceptibili-
ty in the BW state, and N(0) is the density of states
at the Fermi level. In the absence of the dipole en-
ergy (i.e., €,=0), the above dispersion reduces to
the one obtained by Combescot.” In the wall-fixed
geometry, on the other hand, one of the transverse
spin waves has a similar dispersion. However, in
general, the spin-wave dispersions are more com-
plex.

II. FORMULATION

We will start with a model Hamiltonian??
H=H0+HL+HI+Hd’ (4)

where H, describes both the kinetic energy and the
BCS-like pairing interaction energy, H; is the
Larmor energy in the presence of a magnetic field
along the z axis, H; is the spin exchange interac-
tion, and finally H, is the dipole interaction energy
between nuclear spins of *He atoms. In the absence
of the dipole interaction energy the above Hamilto-
nian is invariant against separate rotations of the
spin space and the coordinate space. In the super-
fluid phases of liquid *He, where the condensates
comprise the triplet pairs, the ground state is
transformed into a different state by a rotation of
spin space or the coordinate (i.e., orbital) space.
Thus the original symmetry of the Hamiltonian is
broken in the superfluid state. This symmetry is
formally restored by the existence of the collective
modes (i.e., the Goldstone bosons) which have gap-
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less energy spectra, Therefore it is quite natural
to expect the existence of both spin waves and or-
bital rotational waves in both the A phase and the B
phase of superfluid *He. Until now we neglected the
dipole interaction energy. In the presence of the
dipole interaction energy, the original Hamiltonian
is no longer invariant against separate rotations of
the spin and the orbital space. However, the dipole
interaction energy does not inhibit the existence of
the Goldstone bosons associated with these rota-
tions, but introduces finite energy gaps in the en-
ergy spectra of these bosons. In the following we
will be concerned with the transformation properties
of the Hamiltonian associated with the local rotation
of the spin space only. The general transformation
describing the above rotation is generated by R (we
dropped here the suffix ¢ indicating the rotation of
the spin space).

znbu( I‘) = Ru u‘pv(-f) s
R = g~ia0%/2 o=i80Y/2 5-ira%/2

(5)

where ¥ ,(r) is the field operator of *He atoms, «,
B, v, are the local Eulerian angles, and the o are
the Pauli spin matrices. Furthermore, repeated
suffixes imply the summation over these suffixes.
A similar transformation has been considered by
Combescot” previously (in the linear regime)., The
transformation (5) introduces additional terms in
the Hamiltonian (5)

H-H+AH,
where
AH=H,+H,, (6)

Hﬁ% f PPNy » X, (F) A7

He= g [ [F0UDEEI0,E) - 0L0)G, KOF4,6)
+EPLOG 0 A A G, (D] dr
- Paladr, @

w, = —sina f+cosa singy,

w, = cosa g +sina sinBy, (8)
w3 =0 +CcosBY,

Af=—sina(B,;) +cosa sing(y,),

Aj=cosa(g,)+sina sinf(y,), (9)
Aj=a,+cosp(ry),

and j, s ‘(F) is the spin-current operator:
Joy= (/am) (90,100, () - #(F)o, 59, (F)

+3ULDAB,D], (10)

and
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9
a;= a, pp= 69 and Yl=§?l’yy (11)

o,
and a dot implies the time derivative.

Equation (7) tells us that the time variation of the
Eulerian angles introduces spin polarization (i.e.,
magnetization) and the spatial inhomogeneity of the
Eulerian angle generates spin current.

We want now to calculate the change of the free
energy due to spatial-temporal variation of the
Eulerian angles describing rotation of the spin
space. Since the spin polarization and the spin
current in the equilibrium configuration in the ab-
sence of an external field vanishes identically, we
will calculate the correction to the free energy by
perturbation, The change in the free energy in the
hydrodynamic limit is formally obtained as (see
Appendix A)

AF=({AH)
= %X”f A3rlw(F, t) w,(F, 1))

12
+3(x7) j adrAj(F, t)AT(, 1), 12

where x; ;= sy, s,]) is the static spin susceptibility,
and (x")i7=([i%, j%]) is the static spin-current
correlation function., In the above derivation we
neglected the spin-spin-current correlation func-
tion ([j};,s,;]), which vanishes in the static limit.
In the BW state (and in the weak-coupling theory)
the static susceptibility and the spin-current cor-
relation function (i.e., the superfluid density as-
sociated with the spin current) are given by (see
Appendix B)

Xi;=X804;, Xp=N(O)[1-3¥Y(MAL-T[1-57(D]},
(13)
(X7)im= (N/m)Y(T)(0;,0;; = 3 (ke Sif ), (19)
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rin= 2’”2 AZW (%), -

T =IN(0), N is the density of He atoms, and  is
the mass of *He atoms. The f; are obtained from
k; by

(6-f)=R(G-K)R™, (16)

K is the unit vector in the direction of the quasi-
particle momentum P and finally (A ) means the
average of A over the direction of . In Eq. (10)
we have taken into account the random-phase-ap-
proximation (RPA) correction to the spin suscepti-
bility due to the spin-exchange interaction. !

In the absence of the dipole interaction energy,
the free energy (12) completely determines spin
fluctuations in the BW state. In the presence of
the dipole energy a local rotation of the spin space
(but with the fixed orbital space) introduces an
additional energy (i.e., potential energy). Assum-
ing that we start the rotation from the special BW
state with J=0 (i.e., the BW state with the spin and
the orbital components are parallel to each other),“
the dipole interaction energy for the present con-
figuration is given by (Appendix C)

where

(15)

(HY= [d*rEfaG, 0, BF 0, 7F D), (7)
and
Eja, B, )
=& xs%({(1 +cosp)[1 +cos(a +1)] - 3¥ - §),
(18)

where 2, is the longitudinal resonance frequency of
the B phase.® Combining Eq. (12) with Eq. (17), we
obtain the effective Hamiltonian which describes the
rotation of spin space (i.e., spin components of the
condensate) in the hydrodynamic regime:

Hee= [ dw(% Xa(@) +2-Nn—1 Y(TYARAY -3 (kyke, fif DALAT) + E @, B, 7>

- f dar@ Xa(G2 + §2 +7% + 287 cosp) @% YT {(Ta) + (VR +(Vy) +2(Va)(Vy) cosp

LA +(ALAYT B, 6 7))
where
Al= -, sinBcosy + B, siny,
Al=q,singsiny + g, cosy,

Al=y,+a,cosp .

(19)

(20)

The first term in Eq. (19) is the same as that for a spherical top.? The equations for @, 8, and y are most

easily obtained from the Lagrangian:

L= [avre),

£(r)=3xX5 (6% + B +72 +ay cosB — 2wg(a +cospy ) + i)
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— @N/sm)Y{(Va)? + (VRY + (V¥)? +2(Va)(Vy) cos - 3[(A1)2+ AIA] }- Efa, B, 7), (21)

S
kA ﬁ +6_ ?.£ _?E:oy ete.
at\aa/ ox,\%a,/ O«

Here we added an additional Lagrangian linear
in wy due to an external field H, where wy=yH is
the Larmor frequency.

III. SPIN WAVES

Although Eq. (22), obtained in the preceding sec-
tion, describes the general motion of the spin con-
figuration in the B phase, it is rather complicated
to analyze in details. Therefore in this section we
will be concerned with aninfinitesimal oscillation of
spin components around the equilibrium configura-
tions. These oscillations can be described in
terms of spin waves.

Among many possible equilibrium configurations
which yield the lowest dipole interaction energy,
we will consider two special configurations which
are of particular interest. In particular, in the
I

(22)

cylindrical geometry as in the recent experiment
by Webb ef al.,® we believe that these two configu-
rations are very likely to be realized.®

A. Leggett configuration [a=cos ' (- 5),3=7=0]

We will consider small oscillations around this
special configuration. This configuration is very
likely to be realized in strong magnetic fields. If
we retain the lowest-order deviation from the equi-
librium configuration we will have

Wy = ¢, = - sina B +cosa By
Wy = ¢y = cOSa B+ sina By (23)
wy=dg=a +y(1 -3z ),

and similar expressions for A},

Substituting these into the expressions for the
Lagrangian density we have

£(r)= %XB[((ijl - we) + ¢§ - wolbas - (1.’34’2) + ¢’§] - (2N/5m)Y[($¢1)2 + (efl’z)z + (6(1’3)2 +3(y + \/1_5¢1)($¢>1)($¢3)

2\8z "9y " 8x 2 29z

2
_l(&m+m+m_a¢ 8_%) ]_axan%&.

(24)

The equations of motion for ¢,, ¢,, and ¢; are then given as

- 19 (op, 8¢ a¢) 5
_p2le2s 2 1,12, 73|
¢,=c¢ [V b4 2 92 (az * oy *ox Q304,

SRR S Lf_a_mmm)
¢Pp=—wods+C [V%‘z 5y 8z+8y+ax ,

e v o? o2 simaﬁz_mﬂ
3= Wy +C [V s =3 ax(Sz Ty TTex /)

where
c? =4 v%[N(0)/x s IV(T), (26)

v is the Fermi velocity, N(0) is the density of
states at the Fermi level, and Y(7T) has already
been defined in Eq. (15). Equation (25) implies that
these modes are coupled to each other even in the
limit of small oscillation. When the spin wave is
propagated along the z direction (i.e., along the
symmetry axis of the cylinder) with the wave vector
g, these modes are decoupled into the longitudinal
and the transverse mode and we have:

. 1 , 02 - 3
¢1=§C a'z‘2¢1—91¢1,
. 27

. . )
. 2
¢.=tiwgp,~C 822 Oy -

(25)

Or the spin wave dispersions are w®=3zc%¢® + @ for
the longitudinal mode and

w(w £w,) =c’¢® (28)

for the transverse mode. These modes reduce to
those obtained by Combescot” in the absence of the
dipole energy (i.e., 2,=0).

B. Wall-fixed geometry

We will consider another situation where the
boundary condition at the wall of the cylindrical
vessel plays a prominent role in fixing the equilib-
rium configuration (@ =y =0, cosg= - 1). This con-
figuration is very likely to be present at low tem-
peratures in the B phase of superfluid He.® In this
situation we approximate w by :
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wy=—af+singy, wz=a +cospy, etc. . (29)
Wy = ﬁ +a singy, The Lagrangian density is then given by

1]

£(r)= 1x 5 [(& +cospy — wy)? + B2 +sin?By 2] - (2N/5m)Y(T) {[Va + cosﬁ({;y)]2 +(VBY +sin?p(Vy)?

-3 [ B, +sinpa, — cospa, +2sing cos By, + (sing — cos®B)y, P} -3 x93 8 - B, (30)
where cosgy= -3. Introducing new variables by
d1=a+Y, Pa=a~vy, ¢3=-F, (31)

we can rewrite Eq. (30) as

£ (M =3xs(3(1 +cosB)¢.>§ +3(1 - cosp)PE + ¢§ — wol(1+cosp)p, + (1 - cosp)p,] +w?)

2N

a2 Y(T)(z(l +CoSB)(V )% +5(1 - coSB)(Tby)? + (Vb — {af; +(1;C2°S—‘”[ (%) - cosﬁ(%)]

(L= cosp) _ZCOSB) [sinﬁ(a:;:) cosB(wz )]} )— 2Xs505 . (32)

The equations of motion are then given by

g Y 1 ) 9 9 3 9
¢‘='@w°¢3+02{v2¢"§<m5?+5>[5§"’“§5<m6x o )orgy (T8 5 )m]}

ox oz
. . 1 8 9\[o 3
o= F o005 (7 3 30) 5 003 (8 g )on o (8 o ol
and
. JiI5 . . 5 8
by= 45 wo(¢1—¢2)+cz{va¢a— 3 3y [ay b3+ (\[“38_x_+$>¢1+§5§<\/'1—5~ai ) )¢>2J} s e

where we took sinfB, = fl;i

In general, these modes couple each other even in the linear approximation. In a special situation where
the spin wave is propagated along the z axis (i.e., the symmetric axis of the cylinder) the dispersion is de-
termined by

w? — c??(1 - 38) 5£cq? i /% wow
3tc?q?, W -2P(1-58), -i'Rww [=0, (34)
iV ww, iVE o w? - @2 ~ P
or
[0 = c2g?(1 - 88) [ (? - 2@\ (? - c?q® - ) - 20%wh] =0, (35)

where £=(256)"). Therefore, in this particular case the spin-wave dispersions are given by
w?=c?¢?(1 - 8%),
for the longitudinal mode, and
w?=c?q? + zwd+ £ [(wd + QB + 422 W32, (36)

‘for the transverse mode.

In the present configuration the longitudinal mode W= wd+ Q2+ [1+wd/(wi+ QD)2 (37)
is gapless, while the transverse modes split into
the gapless one and the other with a finite energy IV. CONCLUDING REMARKS
gap: . Analyzing the gauge invariance of the original

[ Q2 Q o( gt Hamiltonian (in the absence of the dipole interaction
=i/ (w0+ )]C ¢ +0(q") energy), we obtain microscopically the effective
and Hamiltonian which describes the motion (i.e., the
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rotation) of the spin configurations of the condensate
in the BW state. The resulting equations of motion
for the local Eulerian angles are rather complicated
in general. We have studied a small oscillation in
the Eulerian angles around two equilibrium con-
figurations in the B phase of superfluid *He, which
are very likely to be realized in the high-field re-
gion and in the low-field region, respectively. In
particular, we found rather simple spin-wave dis-
persions when the wave vector is parallel to the
symmetry axis of the cylinder. The present re-
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sults on the spin-wave dispersion reduce to those
obtained by Combescot,” if we neglect the dipole in-
teraction energy term.
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APPENDIX A: DERIVATION OF THE ADDITIONAL FREE ENERGY ASSOCIATED WITH ROTATION OF THE SPIN
CONFIGURATION

The shift of the free energy due to AH is calculated by perturbation as

-1 -1 -1
TYAF')= - fo dt (AH )gon +% j(; dr, fo ar (T, {AH(T1) AH(T3)}eon »

(A1)

where AH(7) is AH in the interaction representation; 7, 7;, and 7, are imaginary time; 7T, is Wick’s

time-ordering operator; T is the temperature.

The suffix con implies taking only the connected diagrams.

The first term in (Al) vanishes identically, while the second term is simplified as

r-1 r-1
T*(AF’):%]O a, [ am, fdsrl fdarz{(T,(s,(l), 55(2))) [wy(1) w,(2)]

+(Te(s4(1), 75,(2)0))w,(1)AT(2)+ (T, (4,,(1), 55(2))A[(1) y(2)

+(T(42,(D), SR ANDAT(2)},

(A2)

where (1) and (2) imply the four coordinate, s(1) is the_spin operator and fg(l) is the spin-current operator.
Assuming now that the spatio-temporal variation of w(1) and A(1) are much slower than the relaxation
time of the quasiparticles (i.e., in the hydrodynamic regime), we can simplify (A2);

, 1
ar’ =5 [a%r, [ a*rdxy(0) [0,1)ey@)] + (xHEOAKDATEY,

where

T-l
X1,(0) = jo dr (T (s,(Fy, i), 5,(Fs, O))

and
1

-
@)= [ ar (Tl i), 35 0D

are the static susceptibility and the static spin-
current correlation function, respectively. Here
we made use of the fact

=1
| an@is iy, i, G 0 =0, (as)

Furthermore, since in the hydrodynamic limit X ;,(0)
and (X”’); are approximated by local correlation
functions

X 15(0) =X;;0(r, - T,)

and

(A3)
(A4)
]
(X7)m(0) = (x?)im8(T, - 1), (A6)

we can reduce (A3) to Eq. (12) in the text.

APPENDIX B: CALCULATION OF x; AND (x”)4" IN THE
BW STATE

Since X ;; has been already discussed by Balian
and Werthamer* in their original paper, we will not
repeat here a similar calculation. We note only
that the effect of the exchange interaction is easily
incorporated into the theory!! yielding
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Xi;=Xg0; (B1)
and

Xs=NO[1-3Y(D]/{1-T[1-57v(D]}, (B2)
where ’

Y(T) 27TT ZW
and

I =IN(0). (B3)

The spin-current correlation function is calcu-
lated as follows:

J - s .m
0hiz= [ ar @G, o)

3
1% [ i e (w66, wa, 2266, @),
(B4)

|

where the o; are the Pauli spin matrices in the
four-dimensional representation, * and G(p, w,) is
the Green’s function describing the BW state;

GNP, w,)=iw, - £py —0ppA(a - £ ). (B5)

£=(1/2m)p? - u, w, is the Matsubara frequency,
p; and o' are the Pauli spin matrices operating on
the particle-hole space and on the ordinary spin-
space, respecnvely, and A is the order parameter.
Finally o -k is obtained from « -k by a rotation R
defined in Eq. (5) [0?in Eq. (5) have to be replaced
by a’].

a-f=R(a, KR, (B6)

where K is the unit vector parallel to ﬁ, the quasi-
particle momentum. The integral over d® in (B4)
is easily carried out by replacing d®p by N(0)(d2/
47)d§ and we have

N(0 1 ; i ~ . ~
(XJ)lm WE ). 2 poﬂ Z<m Trlalalkk, - o'k, (iv, + A0k, (iw, +A0)/(w,2,+A2)]>,
n

where
0=02py(a +f)
and

E"E/Po s

(B7)

(B8)

and p, is the Fermi momentum. We can further reduce (B7) to

2
(XY= 7T 2 gy (BuOum = 3 (b fuf)

= (N/m)Y(T)(ézj im = 3<klkmfifj>) ’
where

2
=2 o =(%),

Here we made use of the identity
N =5[N(0)/m]pg,

and N is the density of *He atoms.

(B9)

(B10)

APPENDIX C: CALCULATION OF THE DIPOLE INTERACTION ENERGY

The dipole interaction energy in the BW state is calculated as the ground -state expectation value of H,.

Ed(ay B, 7)=

where € =(r, - T,)/ IT, - T, | and v, is the gyromagnetic ratio of the *He nucleus.
*)o) can be expressed in terms of the Green’s function (B5) as

(i.e., (-

—Véﬁ f dr, [ A7, (W (FDat, b)) BT (7)) do0ss = Bese,)/ | T, - T 2, (1)

The above expectation value

Ed(a, B, ‘)/)= _77')’0 TZZ IW f (2‘”) TI‘[G(p, n)a G(p wm)aj] j(k k ), (CZ)

where A”(k k')=3nm; -5, is the Fourier transform of (3/47)(3e;e; - 8;) 75 i and n= (k k’)/k-Kk'!. Sub-
stituting the Green’s functmn in (C2) and carrying out the integrations over d3p and d3p’, we have

Ed(a’ 6’ )"' -

nm ij

1 * 2
LarvoF DT [ [ 9940 ALl IS - TR e T Glauls), @
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where

Al dlry= [ [ G FH@OM @, 2)5(@)
and
A(Q)=AF(RQ), etc. (cq)

In deriving (C3), we made use of the approximate gap equation
1
1 -gN(O)nT; P TaE (C5)
Substituting F defined by (B6), we obtain after a straightforward but lengthy calculation

Eqa, B, v)=Em(v3/g>)a%({(1 +cosp)[l +cos(a +¥)] -$}2 - %). (C6)

This result agrees with that obtained by Takagi, !> who used a slightly different method. So far we con-
sidered uniform rotation of the spin configuration in space. If the spatial variation of the Eulerian angle is
sufficiently slow, the corresponding dipole energy is easily obtained from (C6) by replacing the uniform
Eulerian angles by their local values. (C6) then reduces Eq. (18) in the text, if we identify

Q3= (317§ /g% )A%(T). (cn
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