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Hydrodynamic theory applied to fourth sound in a moving superfluid
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The hydrodynamic equations of superfluid He in a superleak are used to obtain an exact and general
expression for the velocity of fourth sound in the presence of a steady superfluid flow. This expression,
which depends only on the flow velocity and on static properties of the helium-superleak system, may
be simplified when effects due to the finite-pore dimensions are negligible. In that case the fourth-sound
velocity may be rewritten in terms of the flow velocity, thermodynamic properties of bulk helium and
bulk filler materia1, and some purely geometric parameters. The expression obtained disagrees with the
results of a previous calculation. A relation between the fourth-sound velocity at zero flow and the
Doppler shift at finite flow, predicted by the present theory, is in conflict with existing experimental
data. Possible explanations for this discrepancy are discussed.

I. INTRODUCTION

Much of the experimental work on the superfluid
properties of He, ' and more recently, 'He, '

has been carrLed out Qn helium 1n R superleRk,
While this facilitates experiments by increasing
the critical velocity by a large factor and by pre-
venting any normal-fluid Qow, it also makes theo-
retical interpretation more difficult. A growing
body of experimental results have accumulated on
superfluid Bow, 5 persistent currents, "3 6'9 "and
fourth sound' ' "in such systems. All of these
phenomena clearly arise from the existence of a

~ superfluid order parameter in the system, similar
to the one known to exist in pure bulk helium. One
would therefore like to have a theory that ties these
phenomena together and, if possibl, relates them
to the properties of bulk helium. One would like
the theory to be valid at Rll temperatures below T»
and also at finite velocities, thus enabling nonlinear
velocity effects such as the Doppler shift to be dis-
cussed.

Most existing theories have tended to restrict
their discussion to a limited class of phenomena.
Thus, Shapiro and Rudnick only discuss fourth
sound while Mehl and Zimmermanns only consider
superfluid flow. More recently, some attempts
have been made to relate superfluid flow and fourth
sound in the same system. Revzen et al. , + who
were the first to do this, have arrived, we believe,
at an erroneous conclusion. Qn the other hand,
Yanof and Reppy have succeeded in relating some
of the properties of persistent currents at low tem-
peratures to those of fourth sound in the same system
by using a linearized form of the equations of motion.

We will attempt in this paper to give a more corn-
plete theoretical discussion of the problem of fourth
sound in the presence of superfluid flow. Our
treatment will be based on exact hydrodynamic
equations for helium in a superleak which were de-
rived by Halperin and Hohenberg. " The main re-

suit is an exact expression for the velocity of R

fourth-sound wave superimposed on a steady super-
fluid flow. Our expression, appearing in Eq. (3)be-
low, gives that velocity in terms of the superfluid Qow
velocity and thermodynamic properties of the heli-
um-superleak system. . Furthermore, we show that
whenever size effects due to the finite pore dimen-
sions are unimportant, all of these thermodynamic
properties can be related to properties of bulk heli-
um Rnd bulk filler material, plus some geometrical
parameters. In practice, the properties of the fill-
er often have a negligible effect, and one can then
use a simplified expression for the fourth-sound
velocity, which includes a Doppler shift, at small
flow velocities. This expl esslon, given by Eq.
(39), depends on only one geometrical parameters,
which is simply the reduction factor for the effec-
tive superfluid fraction at zero flow in going from
pure bulk helium to helium in the superleak. At
very low temperatures an even simpler expression
is obtained [Eq. (13)].

Experiments for which this theory should be ap-
plicable have already been performed in a series
of measurements of the Doppler splitting of fourth-
sound resonances in a ring-shaped superleak, in
which a superfluid flow was induced by rotation
around the ring axis. ' " The theory can most
easily be applied to the region of low ring veloci-
ties, where the system exhibits completely revers-
ible behavior, which is believed to indicate that no
vortices are present. While the published quanti-
tative data are rather scant, there are indications
of R disagreement between theory and experiment.
Such a disagreement, if it were borne out by a
careful analysis of the data, could imply the exist-
ence of large, as yet undiscovered, relaxation pro-
cesses on the time scale of 10 ~-10 sec.

In Sec. II the hydrodynamic theory is introduced
and used to derive an exact expression for the
fourth-sound velocity in a moving superfluid [Eq.
(3)]. Section III discusses the simplifications that
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can be made in the theory when size effects are un-
important. The case of zero temperature is con-
sidered first, and a particularly simple expression
is derived for the fourth-sound velocity [Eq. (13)],
after which finite-temperature corrections are cal-
culated. The resu]. ts are compared with previous
theoretical work, and an erroneous result'2 previ-
ously obtained for the low-temperature limit is
pointed out. Higher-order corrections proportional
to the square of the Qom velocity axe brieQy dis-
cussed. Section IV reviews the experimental con-
sequences of the theory. It is first shomn how the
exact results can be checked in principle. For
comparison with existing experiments, the simpli-
fied expressions in Eq. (29) and, below l. 3 'K, Eq.
(13) should be accurate enough. An apparent dis-
agx'cement with available data is pointed out, and
possible explanations discus sed. The assumptions
undex'lying the hydrodynamic theory are reviemed,
and the effects of vortices and finite relaxation times
on its validity are estimated. Experiments are
proposed to help understand the discrepancies. In
Appendix A a more detailed discussi. on is given of
the averaging procedure by which the hydrodynamic
theory ean be obtained for small Qow velocities in
the absence of size effects. This discussion is
needed in order to justify some of the simplifica-
tions made in Sec. III. The important geometrical
parameter g is calculated for a simple model of a
superleak, and compared with experimental data. The
case of a real superleak is discussed qualitatively.
In Appendix 8 we extend the discussion of Appendix
A to include higher-order corrections in the flow ve-
locity for the case where size effects are unimportant.

H. EXACT HYDRODYNAMIC THEORY OF FOURTH SOUND

A thermal equilibrium state of a particular super-
leak containing liquid helium may be characterized
by the total helium mass, the total energy, and the
phase y of the superfluid order parameter, mhi"h

is independent. of position in the absence of super-
Quid flow. Owing to interaction with the porous
superleak, the helium momentum is not conserved,
and it therefore vanishes at equilibrium in the rest
frame of the superleak. A local equilibrium state
of the system, in which a superQow may be pres-
ent, is characterized by a helium mass density
p(y), an energy density E(y), and a phase y(r), all
of which are defined to be averages over a coarse-
gra.ining volume which is large compared to the
pore size, yet much smaller than the entix'e sys-
tem. The quantities p, E, q can be used to describe
phenomena whose mavelength is much greater than

the coarse-graining volume. Note that p and E are
defined as densities per unit volume of the whole
sample-with filler and pores included, A similar
convention is used throughout this paper for densi-
ties with a tilde.

Working in the reference frame of the superleak,
assuming that v „—= 0 (i. e, , the normal component
is locked to the superleak), that the superleak is
completely rigid, and neglecting the dissipative
terms, one finds the hydrodynamic equations":

—p+ V' ~ p, Q, =O (la, )

—u, +V(lu+-,'u, )= 0

(2c)

where S is the total entropy per unit volume of the
helium plus filler, and mhere

I, =—(I/m)vy (2a)

8E
B s=- (2b)

88s f p

g

WhileB s is not in general equal to the spatial aver-
age of the microscopic superfluid velocity, it fol-
lows from Eq. (la) that p,u, is the average helium
current or momentum density. (See also the dis-
cussion in Appendix A. ) Equations of this form
mere first given by Atkins, ' but he considered
them only for the geometry of a single straight and
narrow capillary, mhere all the quantities ~, ~s, ~
are the same as in pure bulk helium, and where the
main effect of the walls is to lock the normal fluid.
'}IItte, on the other hand, are using these equations to
discuss the more general case mhere the superleak
geometry may be disordered and the helium is
forced to follow a very minding and random f lorn

pattern, It turns out that, as far as hydrodynamic
phenomena ax'e concerned, this complexity only af-
fects the values of the thermodynamic parameters
appearing in Eqs. (1), "without changing the form
of the equations. The assumption of a rigid super-
leak is a very good one in view of the magnitude of
the helium compressibility as compared to that of
typical filler materials (e. g. , aluminum oxide,
CMN). Note the. t, since E depends on p, 8, and

Q„both p and p, defined in (2) depend on all three
of these variables. If me assume that there is a
space and time varying superfluid Qom 5us super-
imposed on a steady superfluid velocity u, as well
as a space and time varying density Qj5 superim-
posed on the static density p, linearize the equa-
tions in gus and gP, and take into account that 8
= const, ' me find that these equations have plane-
mave fourth-sound solutions whose velocity e4 is
given by

4 8- s s}} 8 1-2 + s}}

(3)
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where u™~,is the component of u™,in the direction of
the wave vector k, In obtaining this expression we
used the Maxwell relation

~(p+~i~-a 8(p us ape

(6)

where E, S, and p, are the energy density, entropy
density, and chemical potential of pure bulk heli-
um. From this and Eq. (6) we now get

III. FOURTH SOUND IN THE ABSENCE OF SIZE EFFECTS

Size effects arise from the existence of a helium
surface and from the interaction of filler material
and adjacent layers of helium. These effects are
usually negligible for pure bulk helium. For heli-
um in pores they are still unimportant as long as
the pores are large compared to the corxelation
length of bulk helium. That length is of the order
of interatomic distances, except very close to the
X line, where it is increased by a factor (~T —T~~/
T )-a/3

If size effects and finite-flow-velocity effects can
be neglected, then clearly

p=(Pp (6)

where the porosity s' is the free-volume fraction of
the superleak, and the local helium density inside
the pores is equal to the density of pure bulk heli-
um p. In Appendix A we show that in this case we
also have

~-gp ps
P P

where g is a constant factor less than unity, which
in general depends on the detailed geometry of the
superleak but is independent of the thermodynamic
state of the system (i e. , of T an. d/)). There are
indications that in practice g is generally deter-
mined by 0 for a variety of packing densities. "
Finally, since the energy and entropy of the filler
material are independent of p at constant T, we
find that

where EH —TSH is the Helmholtz free energy of the
helium only, per unit of the tota/ volume. When
u, = 0 and the helium inside the pores is just bulk
helium, the right-hand side of (/) can be replaced
by the pure-helium derivative and we get

Since no approximations have been made in de-
riving (3) from (1) (other than linearizing in the os-
cillating quantities), Eq. (3) is an exact expression
for the velocity of fourth sound, depending only on
thermodynamic quantities as mentioned above. It
includes finite-temperature and finite-flow-velocity
effects as well as size effects. The thermodynamic
quantities p, /i„P in general depend on the particu-
lar superleak under investigation and must be mea-
sured or calculated for helium in that superleak.

The second term of Eq. (3), which represents the
Doppler shift of fourth sound, then becomes

sp,
guep r=o, l, (12)

Equations (10) and (12) are still valid for small
TWO and for small u, 40, and we can therefore
write the following simplified form of Eq. (3):

)/3
C4 =g C )o+gu~~~ (13)

In order to compare the above result with previ-
ous theoretical treatments, we first note that pre-
vious discussions were usually restricted either to
fourth sound at zero flow or to steady superfluid
flow. Consequently, different and seemingly inde-
pendent concepts were developed to describe the
observed phenomena.

Fourth sound was first discussed in detail by
Atkins' for the case of a straight capillary, where
g= 1 and p, /p = p, /p. Later discussions of fourth
sound in a superleak adopted the equations of Ref.
14 but included the effect of random scattering by
the powder grains, which decreases the fourth-
sound velocity, by introducing an index of refrac-
tion n. This approach differs from our point of
view but is of course just as valid. Moreover,
from the first term of Eq. (13) it follows that

n =g

at least for low temperatures. From Eq. (23) be-
low and the subsequent discussion, it will be clear
that this relation holds at arbitrary temperatures

where K~ is the isothermal compressibility of pure
bulk helium.

A. Low temperatures

At T=O and low velocities u, we can now reduce
Eq. (3) to a very simple form: In the first term
we replace the partial derivative at constant S with
a partial derivative at constant T = 0, thus getting

P 8 @
)(3

P p
)/8

P
)/2

(10)
for the fourth-sound velocity in a stationary super-
fluid. Here c,o is the first-sound velocity at T = 0
and we used Eq, (9). At the same time since p,
= p, we find from Eq. (6) that
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(neglecting size effects).
Static superfluid flow in superleaks has invari-

ably been studied using circular geometries, i.e. ,
a sphere or a ring-shaped container, packed with
superleak material, in which a superfluid current
is set up by changing the rotation velocity of the
container. For a description of the steady super-
fluid flow, Refs. 5, 9, and 10 took the somewhat
microscopic point view that the superfluid fraction
is Locally the same as in pure bulk helium but that
some of it is dragged along by motion of the super-
leak. According to this approach, if we begin from
a state in which both the helium and the superleak
are at rest and then accelerate the superleak to a
final velocity v&, the bulk superfluid fraction will
end up moving at an average velocity v~ that lies be-
tween 0 and v&. Taking this point of view, the Dop-
pler shift of fourth sound in the rest frame of the
superleak was calculated in terms of these veloci-
ties and found to be

(vy vg) pz/p (15)

us= -vy

By comparing the two expressions (15) and (12) for
the Doppler shift, and using (14) and (16), we find

the following relation between v~ and e:

V&=V&(l e 3)

The connection between c«and the Doppler shift
was recognized in the treatment of Ref, 12, whose
result may, in our language, be written as

If size effects can be neglected, the quantity v„
may be identified with the space average of the
microscopic superfluid velocity vector, This
quantity is not in general equal to u„which we call
the (ma, croscopic) superfluid velocity in the pres-
ent paper, Note that a change in velocity of the
superleak has no effect on u, [see Eq. (2a)]. In-
deed, if no vortex lines are present, the net change
of y along the superleak (i.e. , the circulation
around the ring), as well as the gradient vip, are
unaffected by this motion, In describing the above-
mentioned experiment we would say that the macro-
scopic superfluid velocity u, remained zero in the

laboratory frame. Any microscopic flows of super-
Quid around moving obstacles are not considered
to affect the superfluid velocity, but are rather con-
sidered to decrease the superfluid fraction p, /P.

While the different points of view are largely a
matter of personal taste, it is important to point
out that since the Doppler shift and c«both depend
on g [see Eq. (13)], e~ is not an independent param-
eter. In our description we would say that, in the
rest frame of the superleak,

(20)

where we used dp=(P dp and

(21)

once again, S denotes the entropy per unit volume
of pure helium, whereas S„denotes the entropy of
pure helium per unit of the total volume. Let us
note that

88C=—T —= &C + (1 —(p) C
BT

P

(22)

where C„and C& are the constant-volume specific
heats per unit volume of pure helium and pure filler
material, Moreover, expressing the pure-helium
quantities 8p/Bp and 9 p/sT in terms of measur-
able parameters, and using (6) and (22), we finally
obtain

compared to Eq. (13) is due to the assumption that,
excluding the inertial drag due to potential Qow
around obstacles, the force which accelerates the
macroscopic superfluid current in a unit volume
of superleak is F,= —VP, where P is the pressure
[see Eq. (5) of Ref. 12]. This is incorrect, ' even
though it has been asserted' or implied' in some
well-known texts on theoretical physics and 3cous-
tics, in connection with the behavior of the flow of
a classical fluid through a porous medium. In
reality, this force must be obtained from Eq. (lb).
The correct expression for it, neglecting the sec-
ond-order velocity terms and using the relation
p d p = p d p, = dP, valid at T = 0 [see Eq. (8)], and Eq.
(5), is

F —= p —u =-p Vp=- ~ VP=-6 ~ V'Pp p™

df; p p
(19)

B. Finite temperatures

At finite temperatures, but when u, is small and
size effects are still unimportant, we can again
simplify the general expression of Eq. (3). The
resulting equation will have a form similar to Eq.
(13), and will depend on thermodynamic properties
of the filler material as well as pure h.elium, in
addition to the two geometric parameters charac-
teristic of the superleak, g and (P.

For the fourth-sound velocity in a stationary
superfluid (u, = 0) we find

1/2cg = (p g c yp+gu~(

As far as we can tell, the additional factor g

(18)

where 0. is the thermal-expansion coefficient of
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8p ps - 8 s p

The last term can be developed as follows:

8(P. p 8(p. p

(24)

8(p, p 8(p, p 8T

(—::),.-'(—::).('—:)
(26)

The factor 8T/BP can be evaluated in terms of
pure-helium and pure-filler quantities, as well
as+:

sT (p(n —SKr)+ (1-6')(n~ —SKr~)
sP y (p(Cp/T —~S)+ (1 —(P)(C~/T —aped)

n -SEz
(Cp/T) —aS+ (I -a)C~/O' T (26)

where the last form results from using the as-
sumed rigidity of the superleak, i. e. , a&=E~& =0.
Quite often one can neglect the filler specific heat
in (26) since (1—p)/(P is usually of order 1 while

C&«C~ for a filler such as aluminum oxide. We
then have

(27)

and consequently we can write for the Doppler shift

8 , p " p 8(p p (28)

The square brackets now contain only pure-helium
quantities and there is no dependence on +, only on

g. The second term in the brackets can be evalu-
ated by expanding the pure-helium derivative as in
(25) and using static thermodynamic data on pure
helium. Rough estimates indicate that this term,
while no more than a few per cent below 1.3'K,
can become quite significant above 1.4'K.

We can summarize this discussion by giving the
following expression for c4, valid for all tempera-
tures when size effects are negligible and C&(1-6')/
(p «C„:

pure helium. All of the quantities appearing in this
equation with the exception of g, g, and C& are at-
tributes of pure bulk helium. The second term in
the square brackets is always very small even if C&

is ignored. Taking C& into account makes this term
even smaller. Therefore, in practice the first
term is dominant, and g is the more-important
geometric parameter.

To calculate the Doppler shift for small u„at
finite T, we note that neglecting terms of order
6'„we have

c4= g~ 1+ S-—

+g —'us„ 1+— ' + O(us)pg - p ~ (pg/p) -p
p ps 8p s„

We would like to point out that while the tempera-
ture dependence of c4O was derived correctly al-
ready by Atkins, '4 a fully correct expression for the
temperature dependence of the Doppler shift is
given here for the first time. Kojima has made
an essentially correct analysis of this quantity"
but the final result that is quoted in Refs. 10 and 11
is not exact. Moreover, it turns out that one of
the terms omitted from his equation is quantitative-
ly quite significant. The fact that the same geomet-
ric factor g must appear in both parts of the ex-
pression for c4 does not seem to have been noted
before. However, a relation identical to our Eq.
(17), connecting n, the index of refraction for
fourth sound, with the dragging velocity v„of the
superfluid by the filler material in potential flow,
has been obtained before by Yanof and Reppy. '
(See footnote 6 of Ref. 8. )

C, Higher-order flow-velocity corrections

For sufficiently large flow velocities u„cor-
rections to Eq. (29) will appear due to the velocity
dependence of p and P„as is apparent from Eq.
(3). For the case where size effects are unimpor-
tant, these corrections are again obtainable in
terms of thermodynamic quantities of pure-helium
and pure-filler material, as well as geometric
factors of the superleak. A detailed calculation of
the O(u', ) corrections to the relevant thermodynamic
quantities is given in Appendix B. Here we will
merely point out that the contribution of p, to the
0 (us) corrections in c4 is enhanced by a factor 3
for fourth-sound waves traveling parallel to u, .
This is due to the appearance of the term

-2 8ps
ps+ +sjj 1-28~gs p g

in the first part of Eq. (3), rather than just p, . In
practice these corrections to c4 are always expected
to be very small, and in fact they have not yet been
observed.

IV. EXPERIMENTAL CONSEQUENCES

In order to compare our expression for the
fourth-sound velocity with experiments, the static
quantities appearing in Eq. (3) must be known. In
the general case, when size effects are important,
these would have to be determined separately for
each particular superleak, either by a measure-
ment or by a microscopic calculation. In order to
make contact with measurable quantities, we ex-
press the thermodynamic derivatives appearing in
(3) as follows:
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(30)

where all the derivatives are taken at u, = const.
The necessary quantities can be determined, in
principle, as follows: p is obtained by weighing
the filled and empty superleak, and p, can be found

be measuring the momentum of a dc superfluid cur-
rent associated with a known velocity u, . The
velocity is presumably known when the flow is gen-
erated by carefully bringing to a stop a superleak
filled with helium at 1' & T~ that had been set into
motion above T~. The chemical potential p, can be
determined by having helium in the superleak in
equilibrium with a pure-helium bath. Both p, and

p can thus be determined as functions of P and T.
Finally, C is just the total heat capacity of the filled
superleak. If all of that information is put into

Eq. (3), one obtains a definite prediction for the

velocity and Doppler shift of fourth sound.
It is much easier to make the comparison with

experiments when size effects are unimportant:
We have shown that in that case, and for low veloci-
ties u„c4 is entirely determined by pure-helium
and pure-filler attributes plus the two geometric
parameters g and 0, and that in most cases only

g is important. Using Eq. (29), it is clear that
if all of the pure-helium quantities are known,

we can investigate the validity of the theory, and

also get a value for g or p, /p, by measuring the

velocity of fourth sound and its Doppler shift. Such

measurements have actually been performed using
a ring-shaped fourth-sound resonator in which

superfluid flow was induced by rotating the ring
around its axis. ' " ' In this resonator one ob-
serves several regimes of superfluid flow. A com-
plicating factor is that at high velocities vortices
are apparently created and we cannot infer the

value of u, from the history of the flow. Further-
more, if the vortices manage to move around dur-

ing a single period of the fourth-sound wave, this
will change the fourth-sound velocity. But if all
velocities are kept low enough throughout the exper-
iment, the system exhibits reversible behavior and

its state appears to depend only on the present ve-
locity of rotation of the ring and not on previous
history. The reversibility is believed to indicate
that no vortices are present '' and that the flow is
a pure potential flow. From our point of view this

means that if the ring were first cooled below T„
while at rest, u, vanishes in the laboratory frame
throughout the experiment and is always equal to
minus the ring velocity in the ring frame of refer-
ence.

For this regime there are data available on the
temperature dependence of the Doppler shift in the
range of temperatures 1.2-2. 0 'K. " A comparison
of these results with Eq. (28) can be meaningful
since g is constant, even though its precise value
is not known. To make this comparison we must
have information about the thermodynamic quanti-
ties p, /p and [8(p,/p)/Bp]a. For the latter quanti-
ty we turn to Eq. (25), with S replaced by S, and
find that the result depends on a partial cancella-
tion between [8(p,/p)/BP]r and [8(p, /p)/BT]I, (BT/
BP)~. Unfortunately, the data which are available
for calculating [8 (p, /p)/BP]r are not sufficiently
accurate to permit a meaningful comparison be-
tween theory and experiment for the Doppler shift:
These data are measurements of the second-sound
velocity versus pressure ca(P) by Peshkov and

Zinoveva and by Maurer and Herlin, ' which seem
to be in fairly good agreement with each other on

the values of c,(P). These data. , however, allow a
range of values for (Bca/BP)r at P = 0 which leads
to a large uncertainty in the temperature-dependent
correction factor

p' 8(p./p)
P BP s

of Eq, (28). Measurements of the Doppler shift can
be used to obtain 1+D(T) by taking out the factor
p, /p and normalizing the result to be unity at low

temperatures. Denoting the value of D calculated
from the above-mentioned cm(P) data by D„„and
the value of D calculated from the Doppler shift
data of Kojima (see Fig. 46 of Ref. 11)by D„,
we find for two representative temperatures:

ggyt 0 05 at T 1 3

—0. 24&D, ,&0. 14, D,„=—0. 54 at T = 1.7 'K,

While D,~, seems to be outside the range of values
found for D,~„especially at the higher tempera-
ture, we feel that the evidence for a discrepancy
is not conclusive. More careful measurements of
[8 (ps/p)/BP]r are needed at P = 0 in order to test the

theory in this way.
The difficulties encountered above in trying to

compare the theory with experiment are alleviated
at temperatures below 1.3 'K, where the tempera-
ture dependence of all the terms in Eq. (29) be-
comes unimportant and p,/p = 1, so that we can use
Eq. (13) instead of (29). Since c, still depends on

the unknown geometric factor g, which can vary
from superleak to superleak, we need a measure-
ment of both c40 and the Doppler shift on the same
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system in order to make a meaningful comparison.
Such measurements have been published for just
one ring-shaped fourth-sound resonator (i. e. , the
resonator FSR IIIa described in Ref, 11). From
the frequency of the fundamental resonance in that
resonator at T = 1.2 'K we deduce g = 0. 808, while
from the Doppler shift (Fig. 27 of Ref. 11) at low
rotation speeds and T = 1, 3 'K we deduce g = 0. 65.
Other unpublished data collected in the above-men-
tioned potential flow regime~2 confirm and strength-
en this discrepancy between Eq. (13) and the ex-
perimental results: The measured value of g ob-
tained from c40 is consistently greater than the val-
ue obtained from the Doppler shift. The relative
difference varies in magnitude and is sometimes as
high as 40/o. In view of this discrepancy, we
now turn to an examination of the assumptions nec-
essary to obtain the hydrodynamic equations (1).

Except for the possible effects of vortex lines,
which were assumed to be absent in the hydrody-
namic theory, the neglect of normal-fluid motion
and other dissipative processes is expected to be
exact in the limit of long wavelengths and lom fre-
quencies. ~'2 At low temperatures, the relaxation
time involved in setting up the complicated flow
pattern is expected to be of the order d/c„where
d is the pore size and c, is the first-sound velocity
in pure helium. Therefore, if ~d/c, =kd «1, as is
certainly the case in the experiments of interest
here, this dissipative process is unimportant.
(Note that k= ~/c, since c4o is of the order of c,. )
This conclusion would change if there were a long
relaxation time 7'~ involved in setting up the com-
plicated potential flow pattern. In that case one
mould see a different effective superfluid fraction
p, /p depending on whether ~r~ is greater or less
than unity. The long-wavelength limit also as-
sumes that inhomogeneities in the superleak are
unimportant; this is expected to be the case when-
ever the wavelength is much greater than the pore
size, i. e. , we again have the requirement kd«1.

At higher temperatures, we also require the fre-
quency to be sufficiently low so that the charac-
teristic viscous and thermal decay lengths of the
bulk normal fluid inside the pores will be greater
than the pore size. This condition appears to be
well satisfied in the experiments of Refs. 6, 9-11,
and 19. Even if this were not the case, however,
the bulk p„/p is small at the temperatures in ques-
tion, so that the difference between the "low-fre-
quency" and "high-frequency fourth- sound ve-
locities would be small.

One may next ask whether the presence of vortex
lines could account for a difference between the ef-
fective p,/p which determines the finite-frequency
fourth-sound velocity, and the dc value of p, /p which
enters in our interpretation of the Doppler shift.
Such vortex lines apparently are produced in the

ring-shaped superleaks when these are rotated fast
enough. ' If, however, the vortices are complete-
ly pinned, there should be no effect on the velocity
or on the Doppler shift of fourth sound. If the vor-
tices becomeunpinned, thentheir motion will reduce
the apparent p, /p. In order for the vortices to be-
come unpinned, a minimum threshold velocity is
presumably required, since the Magnus force must
be greater than the pinning force. Furthermore,
since there must be a relaxation time v„associated
with the movement of vortices in the superleak,
the subsequent effects will depend on the frequency.
For high frequencies, &v „»1, we expect to see
no change in p, /p and only some additional attenua-
tion of fourth-sound waves. For low frequencies
~v„«1 (including the case of dc flow) we expect to
see changes in p, /p, since the vortex lines have
enough time to move across the flow and lower the
superfluid current during a single period. The ro-
tating-ring experiments are in qualitative agree-
ment with these expectations: At high rotation ve-
locities the fraction of helium which appears to be
dragged by the superleak increases, mhich is an-
other way to say that the apparent p, /p for dc flow
decreases. But the superfluid is never dragged
along completely-the dissipative mechanism that
allows more and more of the helium to be set into
motion by the superleak (some of this decay has
actually been observed experimentally' ) ceases to
operate when the difference in velocities becomes
too small. Presumably the Magnus force is then
no longer able to overcome the pinning force. The
velocity c40, which is determined from the average
of c4 for a fourth-sound wave traveling upstream
and downstream with respect to u„remains almost
constant at these high rotation velocities: It de-
creases by only 0. 3% as Q~ increases from the on-
set of irreversibility to its saturated maximum val-
ue of = 60 cm/sec. (See Fig. 52 of Ref. 11.) There
is also an increase in the attenuation. ~~

All of these phenomena, however, take place
only at high rotation velocities where the system
exhibits a history-dependent and irreversible be-
havior. They are completely absent from the low-
velocity reversible region, and indeed there is no
particular evidence for the occurrence of vortex
lines in this regime.

An alternative explanation for the discrepancy be-
tween the c40 and Doppler-shift measurements
might be found if for some reason the flow pattern
that appears in the system when it carries a per-
sistent dc current is quite different from the flow
pattern that is set up by a fourth-sound wave, thus
leading to different values of g for the two cases.
In this connection it should be mentioned that even
at the slowest ring velocities, the dc flow rates
are typically much greater than the oscillating
superfluid velocities in a fourth-sound wave (this
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is the opposite of the situation in bulk helium, where
the dc critical velocity is often exceeded in an in-
tense sound wave). Moreover, the total excursion
of a given element of fluid from its initial position
is also much greater in the dc flow. One could
therefore imagine that small macroscopic cracks
in the filler powder would create enough dissipa-
tion to make the flow in the superleak relax towards
a pattern which effectively circumvents these
cracks. This relaxation might only be effective in
the cape of the dc flow, owing either to the length of
the relaxation time or to the size of the critical ve-
locity associated with the relaxation. Since the
lowest rotation speeds for which the Doppler shift
was measured correspond to v& —= 4 cm/sec (see
Fig. 2 of Ref. 10), and sinceg wa. s a.lways found to
be constant over the entire regime of reversible
flow, the hypothesized critical velocity must be
less than 4 cm/sec. To a.ccount quantitatively for
such a value would require cracks or voids in ex-
cess of 20 pm, and it seems doubtful that cracks
of that size would have been overlooked. " While
the detailed mechanism just outlined probably does
not operate in practice, there may nevertheless
exist other mechanisms for producing a different
pattern for the dc and the ac flows.

If a discrepancy between p, /p obtained from c40
and the Doppler shift is to be explained in terms of
a relaxation effect —arising from either cracks or
vortex motion or from any other cause —then the
presence of relaxation or of a new critical velocity
should be manifest in suitably designed experiments.

In order to estimate the possible magnitude of
the relaxation time 7 that we are seeking, we note
that a lower bound to it can be obtained from the
width of the fourth-sound resonances in the ring-
shaped superleak. Since in the best cases this
width was about 2-4 Hz, e' ' ' but the hypothesized
relaxation involved at most 40% of the superfluid
current, we get a lower bound of 0. 03 to 0.02 sec
for v. An upper bound on 7. is obtained by noting
that no decay of a persistent current in the re-
versible regime was ever found from the Doppler-
shift measurements made beginning a few minutes
after the superfluid flow was set up. We may
thus infer that the relaxation time we are seeking
lies somewhere in the region 10 -10 sec. Part
of this range, i.e. , 7 &1 sec, is experimentally
accessible in the usual ring-shaped fourth-sound
resonator by using the technique of observing the
beats of a freely oscillating Doppler-split resonant
mode to measure the decay of the dc superfluid
flow. ' The other part, i.e. , 10 &y&1 sec,
could perhaps be explored by making fourth-sound
resonators whose characteristic periods were in

the above mentioned range and looking for disper-
sion and an enhanced dissipation.

A new critical velocity v„which must be less
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APPENDIX A: POTENTIAL FLOW OF HELIUM IN A
SUPERLEAK IN THE ABSENCE OF SIZE EFFECTS

When size effects are unimportant, the proper-
ties of helium flowing through a superleak are de-
termined by a boundary-value problem in the clas-
sical theory of potential flow.

We consider a macroscopic length L of super-
leak with a total cross sectional areaA [Se.e Fig.
1(a). ] Let 8 (r) be a function which is 1 when r is
a point occupied by helium and 0 when ~ is occupied
by filler material. Clearly

p= — end ~ (Al)

Let y(r) be the local value of the phase of the he-
lium order parameter, and v, (r) = (h/m)V p(r) the
local value of the superfluid velocity, defined on
a scale small compared to the pore size. In a
steady state we must have

v [8(r)vq(r)] = 0 (A2)

0

(a)
USL

(o)

FIG. l. (a) Schematic drawing of an open-ended, pow-
der-packed, cylindrical superleak with superfluid flow

along the cylinder axis in the x direction, and impermeable
boundaries at the l.ateral walls. The length is L and the
cross-sectional area is A. tb) A single, obstruction. —

free tube spanning the system. The volume of the tube

is Q.

than 4 cm/sec, would manifest itself if one did ex-
periments at rotation velocities below v, . One
would then find a new regime of superfluid flow for
extremely slow rotation velocities in which the
value of g obtained from Doppler shifts would ap-
proach the value obtained from c4p.
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inside the superleak. If we impose boundary con-
ditions

y(r)= 0 at x=0

(p(r)= (m/h)u, L at x=L
(A3)

e(p—=0
8ps

at the other boundaries

we will find a uni(lue solution of (A2) with p(r) lin-
ear in u, .

The excess energy of the superfluid due to the
nonzero flow velocity may be written as

(A4a)

-=p g p~+LAus = 2 psLA us ~ (A4b)

E &E[(p,]= ,'p, a LAu', — (A5)

A function which obeys (A2) and (A3) also minimizes
(A4a) subject to the constraint (AS). Hence we may
establish an upper bound to E by choosing the sim-
ple trial function rpo(r) = (m jk)u, x:

sity is then a second-rank symmetric tensor rather
than a scalar quantity.

From (A9), (A4b), and (Al) we find that another
way to calculate g is

[f8(sr'/sx)d'r]~ (s(p/sx)~
[f8(Vcp)'d'r](f8d'r) ((V(p) )

From this equation and the Cauchy-Schwartz in-
equality, it is again clear thatg &1 unless Vy is a
constant and points in the x direction. An expres-
sion of this type has recently been given by Yanof
and Reppy.

As a simple model of a superleak for which the
above discussion is applicable, consider a solid
permeated by a large number of nonintersecting
straight tubes free of any obstructions, with a
certain distribution of cross sectional areas and
with completely random orientations. Consider
first a single long tube which stretches from one
end of the system to the other making an angle 6
with the x direction [see Fig. 1(b)]. Given the
boundary conditions (A3), the velocity in that tube
will be

By comparison with (A4b) it follows that g &1.
The momentum carried by the flow is (h/m) lv(pl =v, =u, cos5 (A11)

P=p, — 8(r)V(pd r3 (A6)
The x component of momentum carried by fluid in
the tube is

which is obviously linear in u, . With the intention
of determining the exact dependence of P on u, we
use (A4a) to calculate the variation of E when u,
is given a small increment 5u, :

Qp, u, cos 5 (A12)

where 0 is the volume of the tube. The total volume
of all the tubes is just O'AL and the total momentum
carried in them is

2

5E=p, —
J

V (5y8Vy)der

B'AV ~ eVp d z (Av)

P„= O'ALu, p (cos 5)

Therefore, by comparison with (A9) we find

pa Ppg(cos 5) 3 (ppz

(A13)

The second integral obviously vanishes because y
obeys (A2). Since the first integral can be trans-
formed to a surface integral, we may replace 5y
by (m/h) 5u, x: Both functions are identical at the
ends and the integrand vanishes at the other bound-
aries. The V ~ operation may now be carried out
explicitly in the first integral

DE = p, —Ou, l, 8 d r -=5u, P„ey
4

(A8)

Therefore, using (A4b) for E, we find

Px= psusLA ~ (A9)

The momentum components P„and P, will vanish if
the superleak is isotropic. They will also vanish
even when the superleak is not isotropic but is
periodic in the x direction, as in the case of a
ring-shaped superleak where the x axis goes around
the circumference. In the general case, P„and
P, do not vanish and the effective superfluid den-

or

g= (cos 5)= —,
'

(A14)

This result should also apply to a system of in-
terconnected tubes if the sections between junctions
are straight and long compared to the diameter.
From measurements of c40, g is usually found to
be much greater than 3 in compressed powders. 4

In fact, these measurements indicate that g -=I/n
~0. 65. The value 3 is also outside the range of
values permitted by the empirical formula

(A15)

which was proposed to describe these experimental
results. Indeed, one might expect that the flow
pattern is less distorted by the presence of obsta-
cles in the form of a packed powder than for the
straight-tube model. The latter model might be
better suited to discuss superfluid flow in Vycor
glass, in which the channels may have more nearly
uniform cross sections and relatively fewer inter-
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connections. Some measurements in Vycor glass
7930 show in fact a large reduction in e4o relative
to the "bulk value" (p /p) ego. ' 6 If the observed
reduction were entirely due to geometric effects,
it would mean that g= 4 to —, . However, it is pos-
sible that for the narrow tubes (mean diameter of
about 40 A) used in these experiments, size effects
are important even at low temperatures. We should
also point out that while results from Refs. 25 and

26 are in rough agreement with each other, they
disagree with the results of Ref. 2V.

APPENDIX B:HIGHER-ORDER FLOW-VELOCITY

CORRECTIONS IN THE ABSENCE OF SIZE EFFECTS

In the absence of size effects, higher-order cor-
rections depending on u, arise from the velocity
dependence of the thermodynamic properties of
pure bulk helium. The discussion of these cor-
rections is facilitated by a proper choice of the
independent variables used to describe the bulk
helium inside the pores. W'e will use the variables
T, p = p, + —,

' v, , and v, . The advantage of using
T and p rather than S and p is that in a state of
steady flow in the superleak, the former are con-
stant everywhere whereas the latter vary from
place and have to be averaged over when passing
from the "microscopic" description of bulk helium
inside the pores to a macroscopic" description of
the homogeneous system of helium in the super-
leak. In terms of these variables, the basic ther-
modynaQllc equality becomes

(»)
where

is the grand canonical potential per unit volume of
~pure bulk helium.

The total grand potential of helium in the super-
leak per unit of the tota/ volume I'0 is obtained by
averaging I" over all the pores containing helium,

I" = dx8x I'T p, v

= a &I"&

where the averaging notation here and below is
used in the following sense:

J d'«(~) f(&)
f d'~ 8(r)

Since u, = (8/m) Vcp, and since p, now depends on

x through v, , y satisfies a modified form of Eq.
(A2) in the steady state,

[8p, (v, )wy] = 0

as well as the boundary conditions (A3). Using
these facts and the technique employed in deriving
(A8) from (A4a) in order to average the last term

of (B1), we can show that

As observed in Appendix A, there exist alterna-
tive methods for calculating P, . In this case the
best one seems to be to first calculate I ~ and then
use

The advantage of using this expression to calculate
p, stems from the fact that any solution of (B5) and
(A3) leads to a stationary value for the integral in
(B3a). Therefore, even if one knows y only to
lowest order in u, , one obtains I"~ and consequently

P, to the next higher order in u, . Since p, includes
only even powers of v, , the solution of (A2) and

(A3) thus enables us to get p, correctly up to O(u, )
by using (B8).

Introducing the notation

rp(x)= (m/5)u, p, (r)+ O(u,')
p (T p 5 ) p 0(T p) 2p (T3, i )v +O(5 ) (B10)

for the leading orders in the velocity expansions
of y and p, , we get the following expressions for
the thermodynamic functions of helium in the su-
perleak, including velocity corrections:

Ts(T, p, u, ) = &[I'0(T, p )+ 2a p.ou.'

8 +2psBus j+ O(us )

P. = +(Z p.o- kZa p.2II.')+ o(u.')
(B11)

(B12)

S=6'SoT, p, —&g g +0 gj

~prop=g' po T, p —pg — Qg +0 Q~

z -=&(&vi)'& (B15)

is the geometric factor originally defined in Eq.
(6) and discussed in Appendix A, and

z~ -=&(&vi)'& (»8)
is a new geometric factor. I"o, So, po are the bulk
helium quantities at zero flow.

Note that whereas we showed before that g &1,
all we can show in general aboutg2 is thatg2&g
(this follows from the Cauchy-Schwartz inequality).
For the randomly-oriented-straight-tubes model
of the superleak discussed in Appendix A we find

SH dT p d p' + p~ Q~ dQ (B8)

where Sz and P are defined by analogy with I'z, and

1
Ps"a=~f d ~pub's)"ax=a'&ps"~x&
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g, =(cos 6)=—', (B17)
In practice, we usually expect to findg~ of order
unity, although one can imagine situations where
it is much greater than that (e. g. , a straight capil-

lary made of alternating thin and thick segments).
Note also that Eq. (B6) shows that p is equiva-

lent to the variable LLt, + ~ u, , which we have used
throughout this article.
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