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The efFects of exchange and correlations on the diamagnetic susceptibility of an interacting electron

gas are investigated using the double-time Green's-function method. The equation of motion of the

appropriate Green's function is linearized using a moment-conserving decoupling approximation. The
many-body corrections to the diamagnetic susceptibility at metallic densities are found to be small. The
present expression reduces to the exact result in the high-density limit. Many of the results of earlier

calculations also follow from our expression for the diamagnetic susceptibility.

I. INTRODUCTION

The diamagnetic susceptibility of an interacting
electron gas has received lesser attention than the
spin susceptibility. The problem here is to calcu-
late the effect of electron-electron interactions on
the free-electron diamagnetism (i.e. , Landau dia-
magnetism). The first rigorous attempt in this di-
rection was made by Kanazawa and Matsudaira~
and Fujita and Usui. The authors have obtained
the result which is only valid in the high-density
limit. Stephen and Isihara and Tsai have also
calculated the orbital susceptibility using perturba-
tion theory. Their' result is correct to O(r, ),
where r, is the average interelectronic distance.
Rajagopal and Jain have obtained an expression
for the diamagnetic susceptibility by solving the
equation for the appropriate vertex function using
the variational procedure. A moment-conserving
method has also been used by Rajagopal and Rath'
to calculate the orbital susceptibility. But apart
from other approximations, the moment relation
used by them is an approximate one. Philipaas and
McClure' have given the proof of the Sampson-Seitz
prescription for calculating the diamagnetic sus-
ceptibility, using the Green's-function method.
Their result for the many-body effects on the dia-
magnestism of free electrons is the same as ob-
tained by Rajagopal and Jain. ' All these calcula-
tions give the exact result in the high-density limit.
However, most of the above ' results for the dia-
magnetic susceptibility are not expected to be good
at metallic densities.

In this paper, we present a calculation of the dia-
magnetism of an electron liquid at metallic densi-
ties. Recently, we have derived' an exact moment
sum rule for the transverse-current-density re-
sponse function. This function is directly related6'~'

to the diamagnetic susceptibility of the system. The
sum rule is used to decouple the equation of motion
of the appropriate double-time Greeq's function. In
the high-density limit, our expression for the dia-
magnetic susceptibility reduces to the exact result. '

Further, if we completely neglect the potential con-

tribution to the first-moment sum rule, the present
result exactly agrees with the result of Rajagopal
and Jain and Philippas and McClure. The result
of Rajagopal and Rath' can also be obtained, pro-
vided we calculate the potential contribution to the
first-moment sum rule in the Hartree-Fock approx-
imation.

The general formulation of the problem is given
in Sec. II. The calculation of the diamagnetic sus-
ceptibility is also described there. The results are
presented in Sec. III and various special cases are
discussed. ' Section IV contains the discussion and
the conclusions.

II. GENERAL THEORY

The linear response of the system to a space-
and time-dependent external transverse probe which

couples to the current-density fluctuations in the
system is described" through the transverse-cur-
rent-density response function. It is defined in
terms of retarded Green's function as'

x,(q, f) = &«,(q, f); ~',(q, 0)&&

= —fe(f) &l.~,(q, f), ~,'(q, 0)j &, (l)

where 8(t) a.nd J,(q) are the unit step function a.nd

the component of the current density perpendicular
to q, respectively. In the second-quantized form,
Z,(q) is given by

J,(q) =—P k„a,. a
kg

1
I i, of,(q),

ky

where q is chosen along the x axis and a„-, ak are
the electron creation and annihiliation operators,
respectively. The single angular brackets in Eq.
(l) denotes the equilibrium ensemble pverage, ap-
propriate to the system Hamiltonian:

H = Hp + Hy ~ (dk Qk ~I
k
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where &u-„= k~/2m, P(k) =4me~/k, n is the uniform
electron density, and

p(k'l=g ~', (k)

is the electron-density-fluctuation operator. For
simplicity, we omit the spin indices and take them
to be included in the suffixes k's.

In the static and long-wavelength limit, the Fou-
rier transform of the transverse-current-density
response function is relatede'~~ to the diamagnetic
susceptibility of the system through the relation

x, (q, ~) = x',(q, ~)+, g &» Gj',,(q, ~)
1

&& + ka„G~; j;,(q, &o) .
R2t R3

This equRtlon CRn be solved exRctly by iterRtlon,
using Eq. (10), and the result is

x,(q, ~) =x',(q, ~)+p(q) (12)

where G; (q, u&) = (n.„,- n„-,;,)/[&o —&u(k, , q)], js the
free-electron Green's function. Using Eq. (10) in
the Fourier transform of Eq. (5), we obtaj, n

X.&.(e, 0) = -(e'/cV)(X, (4, 0)+s/~) .
It follows from Eqs. (1) and (2) that

x,(q, f) = —, ~i, ~a, Ga;, ~,(q, f)
1~

(4)
where

x'(q, ~) =Q G.;(q, ~)
kj

is the density-density response function in the non-
1,nteractlng CRse Rnd

Ga, , j;,(q, f) = «p„. (q, f); p'(q, 0)&) (6)

is the two-particle Green's function. The Fourier
transform of its equation of motion is given by

nf~ Sk~+g

(d —Qp(ky, q)

,«[pi, (q), If~1;pr', (q)&&

M —(d(k&, q)

where ~(k, , q) =urf, „.—~p, . Finally, the equation
for the transverse-current-density response func-
tion can be seen to be

x,(q, ~) = x',(q, ~)+—,
(8 —(d(E), q

xQu„j„«[p„;(q), a,];ps(q)». ,

where

(9)

is the transverse-current-density response function
of the noninteracting electron gas. Equation (7) for
the two-particle Green's function involves, in turn,
the three-particle Green's function, and so on. We
now proceed to terminate this infinite hierarchy of
equations using the approximations described below

A. Random-phase approximation (RPA)

If we linearize the second term on the right-hand
side of Eq. (7) in the RPA and pair off the equal
momentum operators by setting &a„-a„-&=n„- . The

ky kg kg '
result obtained is

G', , -;(q, ~) =G;,(q, ~)

x&.(q, ~) = —g I i, G;,(q, ~) {13)
kg

is the transverse-current and density-response
function of the noninteracting system. It is inter-
esting to note that Eq. {12)involves three different
response functions of the system. The second term
in this equation can be seen to be zero only in the
static case, so that the diamagnetic susceptibility
in the RPA is the same as for the noninteracting
system.

One can also linearize Eq. (7) using the Hartree-
Fock-like decoupling approximation (i.e. , the RPA
including exchange). The resulting equation is

n" -n
(q ~) kf k1tl

kg, kp r (~ ~)

X 5k k+ q. — ki-k3 Gk hq
(14)

where we have &u(k, , q) =9~;~ —&p, and

(dg& = (of& —gP(k )sj",&g.

is the one-particle energy including the exchange
self-energy. Equation (14) has been solved by Raja-
gopal '6 using the variational procedure.

B. Moment-conserving&ecoup1ing approximation

We shall now Iinearize Eq. (jj) using the moment-
conserving-decoupling approximation. '4 '7 We make
use of an A.nsu@ proposed by Rajagopal et al. ~:

kg O' Pk q Qg 'P q
"2

= [A;,(q) +»&,(q) 1
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"g kl, ka, «p.;(q); p'„;(q)». .
k2, kP'

It is necessary here to retain both the coefficients
A}.„(q) and BI,(q). If either of them is taken to be
zero, one obtains a nonzero coefficient of the I/ur'
term in the high-frequency expansion of the trans-
verse-current-density response function. Thl8 kind
of term is not present in the exact asymptotic ex-
pansion of X,(q, R)}." Further, it is also found that
the transverse-current-density response function
obtained by using only a single coefficient in Eq.
(16) does not even formally satisfy its exact first
frequency moment. Therefore, the reason for the
chosen form of the coefficients in Eq. (16) is that
it formally gives the exact expression for the first
frequency moment and also yields the correct as-
ymptotic behavior of the transverse-current-density
response function.

We now substitute Eq. (16) into Eq. (6) and obtain

x,(q, ~) =x',(q, ~)/[I —F(q, ~)1,

F(- „} &f,(q)+»', (q)
ur —&u(k, , q)

is the function which takes into account the effect
of exchange and correlations on the transverse-
current-density response function of the system.

The coefficients Bf,(q) and &r,,(q) in F(q, co) are de-
termined respectively, from the condltlons that
the Eeroth and the first frequency moments of both
sides of Eq. (16) must be equal. As the even mo-
ments of 1t,((T, (d) are zero, we obtain„;~ k„k„&[[[p;,(q), ff, ],If], p';, (q)l&

,. ; ~ k,„k„&[[p;,(q), ~,], p';, (q)]& (20)

(x')=xm(ktx-(kkk)+ —I ((k}(qxk}

x [k(i-k) -S(k)]). {22)

In Eq. (22), S(k) is the static structure factor and

&Tx & is the exact kinetic energy per electron of the
system. The various commutators in Eqs. (19) and
(20) can be handled easily. The only complicated
commutator28 is

&~,'&= g k»k&„&[[pf,(q), If], p„-',(q)]& (21)

is the first frequency moment of the transverse-
current-density response function for which we have
recently obtained an exact expression20:

I I o.,(i), »I, Hk}=p ( (i )II«k(i~) «, -;,—k,.;,k(i )kk,:.},Hk )=Q ((i~)(Ix(k„i —i,)k', k(ii)«, :,k,
Q2 q2

-x(k, i„i-i)k';;((i)«, -I++ x(i„i )Ik',k(ii)«, - -, -kI, ,;k(iJ«, .;I) (»
%2

The averages of the product of four operators are decoupled in the usual Hartree-Pock-like approxima-
tion, as has mostly been done in the past. v'" '7 (In Appendix A, we present a method'~ of calculating the
lowest-order corrections to the Hartree-Fock-like decoupling. ) After a lengthy calculation we find

F(q, (d) = g (t)(kl) "'" "' "1'"2" "'+ [k',,u&(k„q}+k»ka, (() —(ka»+k» ka, )(d(k, +kz, q)] .
Iklk }72 (k) —(k)(kl, q) (()k

This expression reduces to that obtained by Rajagopal and Rath, 7 provided we use the Hartree-Fock struc-
ture factor in the evaluation of &(d,'&.

In the static and long-wavelength limit, the integrals involved in Eq (24) can .be done exactly by following

Rajagopal. 23 The result is

„-2
d' d

F(q, o)=,q;, „--,— -„—b'[v4" (k„ka)--.'4"'(k, kW)])

where &u3~ = 4})ne'/m, kr is the Fermi wave vector, and

y = ——dk(S(k) —1) .2k„o

In Eq. {25), (t) (krak, kp-x) Rnd Q (kr, krx) Rl'e 'tile VRI'ious expRnsion coefficients when one expands 'tile

Coulomb potential in terms of spherical harmonics and are given by
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0"'(k„k&)=(I+—.) dip&(V)4(ki-k2).
-a

(2&)

Here P, (p.) denotes a Legendre polynomial of Ith order and p, is the cosine of the angle between the vectors
k, and k2. Equation (25) simplifies to

(28)

where o r, = me /kz, so that o = (4/9w)'~'.
It can be seen that F(q, 0) is divergent for the

bare Coulomb potential, as in the case of earlier
calculations. ' This divergence might have been
expected also due to the fact that all the averages
in F(q, z) were calculated in the lowest-order ap-
proximation. Thus the screening of the Coulomb
potential is essential to get a finite result, as has
already been emphasized. 6 Kanazawa and Matsu-
dairaz gave a phenomenological way to screen the
Coulomb potential in the Green's-function formal-
ism. In general, the potential should be screened
by the frequency and wave-vector dependent dielec-
tric function. Hut to make contact with earlier cal-
culations ' on diamagnetism, we take the Coulomb
potential to be screened by the Thomas-Fermi
screening function. " Therefore, we use

Q(k) = 4we'/(k'+ $'k~~), (29)

+ ln z ~ 1+ y (30)

In order to see the effect of screening the Cou-
lomb potential by a different dielectric function, we
have also carried out the calculations by using the
RPA screening function. The integrations involved
are very complicated and have been done numerical-
ly.

III. RESULTS

The expression for the diamagnetic susceptibility
of the electron liquid is obtained by using Eqs. (30)
and (1V) in Eq. (4) and then taking the q- 0 limit.
The result is

Xg„=XJ.(l+ p), (31)

where X z = —e~k~/12w wmc ~is the Landau diamagne-
tism and

o.r. w+ 3 0/(4+ (') —(ig+-,' 8) ln(1+4/]')
I +w(nr, /w)y

(32)

where we have the dimensionless parameter $z

=4~r, /w. Making use of Eq. (29) in (28) and carry-
ing out the integrations, we obtain

qz ox, 2 1F(")=-4", .'3 34, & i

gives the corrections due to the exchange and cor-
relation effects. Now we proceed to discuss our
results in the following special cases: (i} In the
high-density limit (i.e. , r, & 1), we obtain

yd„=y~{l+(or,/6w)[4+In(o, r, /w)]], (33)

which coincides with the exact high-density result. '3

(ii) If we entirely neglect the effect of Coulomb po-
tential on the first frequency moment of X,(q, ~),
then y = 0, and it can be easily seen that

1+ 4+ z 1+ $ ln 1+

(34)
This result is exactly the same as that of Rajagopal
and Jain and Philippas and McClure. (iii) When
one treats the effects of the Coulomb potential on
(&u~} in the Hartree-Fock approximation, then S(k}
=So(k), where So(k) is the Hartree-Fock structure
&actor of the system. We then obtain

X,dna-Xr,

I+(o,r, /6w)[4+2$ /(4+ $ ) —(1+ 2 ( ) In(1+4/5 )]
1+-,' ~r, /w

(35)
This result coincides with that obtained after sim-
plifying the expression of Rajagopal and Rath. 7 (iv)
We now calculate the orbital susceptibility from our
expression (31). The only unknown input in this ex-
pression is y. This is calculated using our'0 self-
consistent values of the structure factor. It is rel-
evant here to use these values of the structure fac-
tor because they are obtained by solving an integral
equation, derived also by using the moment sum
rules. The values of y thus obtained are presented
in Table I. These values are quite close to those
obtained by Vashishta and Singwi. ' %'e now esti-
mate the diamagnetic susceptibility of the electron
liquid over the entire metallic density range and
present the results in Fig. 1. The results of Kana-
zawa and Matsudaira~ (KM) and Ishihara and Tsai'
(IT) are also plotted for the sake of comparison. It
is interesting to note that the effects of exchange
and correlations due to electron-electron interac-
tions are very small, so that the present results
are quite close to the results for Landau diamagne-
tism. The results of Rajagopal and Jain' [i.e. , Eq.
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TABLE E. Values of y.

0.46386 0.50624

3

0.53580

5 6

0.55845 0.57666 0.59172

(34)] are not plotted because they are also very close
to the present results. Although the results for the
diamagnetic susceptibility in some of the above cal-
culations are quite close, the exchange and corre-
lation correction is appreciably different. To make
this apparent, the results for the exchange and cor-
relation correction factor P are presented in Table
II. We have also calculated P numerically by screen-
ing the Coulomb potential with the RPA dielectric
function and the results are given in Table II. The
values of p, thus obtained, can be seen to be the
smallest of all. Thus, while the exchange and cor-
relation are crucial for the proper treatment of dia-
magnetism, their numerical effect on the diamag-
netic susceptibility seems to be small.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have confined ourselves to the
calculation of the steady diamagnetic susceptibility
of an interacting electron system in the ground
state. It is proved explicitly that the susceptibility
in the RPA (excluding exchange) is the same as for
the noninteracting system. This is expected phys-
ically also because in the static case there is no

l.O
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dielectric screening of the transverse field, and
further the single-particle excitations in the RPA
are unchanged from their free-particle values. The
exact first frequency moment sum rule' is then
used to calculate the diamagnetic susceptibility us-
ing the moment-conserving decoupling approxima-
tion. The particular form of the decoupling Ansatz,
Eq. (16), is chosen to get formally exact first fre-
quency moment and the correct asymptotic behavior
of the transverse-current-density response func-
tion.

The important conclusion of the present work is
that the exchange and correlation correction to the
Landau diamagnetism is numerically small. 'Ihis
is in contrast to the Pauli paramagnetism which is
appreciably enhanced~~ due to the effect of electron
correlations. Our result for the diamagnetic sus-
ceptibility does give the exact high-density result. "
Further, the results of the other earlier calcula-
tionse also follow from the present results, if we
treat the effect of Coulomb correlations on the first
frequency moment in various approximations.
Therefore, it is hoped that the present results will
be good for metallic densities. It is also known

that the moment-conserving decoupling approxima-
tion" yields a positive pair-correlation function up

to r, &3. Thus validity of our results in the metal-
lic density range may be believed to be good.

The averages of the product of four operators in

Eqs. (19) and (20) have been evaluated in the sim-
plest approximation, as has also been done in the

past by others. Such a decoupling approximation
neglects altogether the effect of electron-electron
interactions. We have given a method for finding
lowest-order corrections to such a decoupling ap-
proximation in the Appendix. An explicit result is
derived for the corrections to the average of the

product of four operators. It is hoped that this re-
sult can be useful in estimating the corrections to
the present as well as earlier results.
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APPENDIX: LOWEST-ORDER CORRECTIONS TO

THE DECOUPLING APPROXIMATION

FIG. 1. Diamagnetic susceptibility vs xg.

On solving the commutators in Eqs. (19) and (20),
one can see that they involve the averages over the
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TABLE II. Exchange and correlation correction factor P for simple metals.

Present results
Present results
Bajagopal and Jain
lsihara and Tsai
Kanazavra and Matsudaira

3.22
0.017
0.014
0.023
0.101
0.300

3.96
0.016
0.012
0.024
0.256
0.392

4.87
0.015
0.010
0.025
0.554
0.510

5.'l8
0.015
0.009
0.025
0.687
0.551

5.57
0.014
0.008
0.025
0.874
0.604

'These results are obtained vrhen the Coulomb potential is screened by the
RPA (instead of Thomas-Fermi) dielectric function.

product of four operators. Such averages have usu-
ally been evaluatedv'" ' in the Hartree-Fock-
like decoupling

&ag', af„ak,ag,& = &ak,a1, ) &ak,ar, &
—&ak,at, & &ak,at, ).(Al)

This decoupling is true only when the average is as-
sumed to be taken with respect to the noninteracting
part of the Hamiltonian. It altogether neglects the
effects of interactions. It is clear that when the
above equation is used in evaluating the various av-
erages in Eqs. (19) and (20), all those terms are
retained in the summations for which the pair of
subscripts of the operators are equal and the re-
maining terms are neglected. We shall now find

the lowest-order corrections" to Eq. (Al) in which
none of the subscripts are equal.

It is known that the equal-time correlation fun. c-
tions are independent of time, which implies that

'd &a~k, (f)ak, (t)ak, (f)ak (t)&' =o,

where the prime on the average reminds us that the
terms for which any pair of subscripts of the oper-
ators involved are equal, are not allowed. Making
use of the Heisenberg equation of motion, we obtain

& [ag, H]af ak ar, ) + &ak [af, H]ak a= )

+ &akpkk[a~ H]ak, &+ &ae,arkak, [ak H] &
= o. (A3)

After solving for the trivial commutators, the above equation reduces to

((dk + &dk —(Ok —(dk ) &ak ak ak ak ) = &f&(qg) (&ak ak ak ak ak ~k ak k ) + &ak ak a~ ak ~k ak k ak )
Cyk 43

/—&a~,aq, ~,a;,a;k„,-,ak, ak, &
—&af,„;,a; a; „-ak, ak, ak, ) ) . (A4)

In this equation the averages of the product of six operators are evaluated by making a decoupling approxi-
mation of the type given by Eq. (Al). The final result obtained is

&afFia~kkakk f4& [ k4, k&+kk-kk/(~k~ +
kk kk k4) ] [4 (kk kk) 4(k3 kl) ] [nkpkk(1 n3 —nkk—4)

—nkknk&(1 —
nkvd

—nkk) ],
(A5)

which gives the corrections to the average value of the product of four equal time operators and should be
added to the right-hand side of Eq. (Al). By taking into account these corrections one can hope to modify
the present as well as earlier results.

The method given is quite simple and general and can be extended to a larger number of operators. It is
equally applicable to Boson operators as well, though to be specific we have confined ourselves to Fermi
operators only.
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