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A theory, based on the formalism of memory functions, is developed to describe the rate of thermal
mixing T 5' between two spin species, one abundant and one dilute, in double-resonance experiments on
solids. Cross-polarization spectra (dependence of T 5! on departure of rf field strength from conditions
for resonant mutual spin flip) are computed for CaF, in two experimental limits: one where the
abundant species is spin locked and the other where it is demagnetized in the rotating frame. Results
for the latter case are successfully compared with experimental data of McArthur et al. Modifications
expected from introduction of a third (abundant) species are discussed. An alternative theory, based on

information theory, is also presented.

I. INTRODUCTION

The term “spin dynamics” refers to the process-
es by which a system of spins, subject to some in-
ternal interactions but isolated from other degrees
of freedom (the “lattice”), proceeds from an exper-
imentally realizable but otherwise arbitrary initial
state toward a final state of (presumed) thermody-
namic equilibrium. This progress is imagined to
be monitored by means of measurable macroscopic
quantities such as magnetizations or energies. Be-
cause the time dependence f(f) of any such quantity
can always be formally represented through a Fou-
rier transform as a generalized spectral response
function f (w), discussions of these phenomena can
be cast in the language either of relaxation or of
line shapes. The richness of phenomena which can
be exposed in magnetic resonance experiments has
led to an enormous theoretical literature on spin
dynamics since the early phenomenological descrip-
tion of Bloch® and the moment expansions from first
principles of Van Vleck. ?

The present paper is concerned with a particular
situation of current experimental interest, one in
which two different species of nuclear spins, one
(I) abundant and the other (S) dilute, come to mutual
equilibrium through a process of cross relaxation
in a time denoted by T;s. Our direct motivation is
connected with a desire to understand and design
optimal experimental procedures which exploit this
cross relaxation to enhance the sensitivity with
which the NMR spectrum of the rare spins can be
detected. Such detection can be made indirectly®"
by observing the loss of I-spin order when the S-
spin resonance is excited, or directly®® by observ-
ing S-spin magnetization transmitted from the I
spins. While an understanding of the cross-relaxa-
tion process is indispensable to both, we shall em-
phasize the point of view appropriate to the latter.
In a typical experiment, the I spins, having first
been brought to their equilibrium Curie magnetiza-
tion My, by exposure to a strong field H; in the labo-
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ratory, are brought to a spin-locked condition® ¥

in a resonant rf field H,;, where they are charac-
terized by a low Zeeman spin temperature in the
rotating frame, By applying a second rotating field
of strength H,s at (or near) the S-spin Larmor fre-
quency, a thermal contact is established, ** and a
common spin temperature is reached with time con-
stant T;5. This time depends in particular on the
values of Hy; and Hg, and is shortest when the
Hartmann-Hahn condition® y,H ;;=ysH, is satisfied.
When H,g is made larger than this condition speci-
fies, the equilibrium is slowed down, but at the
same time the value of the S-spin magnetization is
enhanced, since it depends on rf field and spin tem-
perature 6 through Curie’s law, Mg=CgH,s/6. Thus
optimal design of an experiment may require depar-
ture from the Hartmann-Hahn condition, and re-
quires a knowledge of the dependence of T;s on

H,s. We shall refer to the variation of T7} with

wis —wy =¥YsHs—YH 1 as a cross-polarization
spectrum.,

Experimental and theoretical knowledge of such
spectra is in a fragmentary state: Lang and Mor-
an'! have made some measurements, but in a sys-
tem where the presence of a third (abundant) spin
species complicates the situation (see below). Mc-
Arthur, Hahn, and Walstedt® have made precise and
detailed measurements in CaF, crystals (I= '°F,
S=%Ca)ina slightly different regime: the I spins,
before thermal contact, are adiabatically demag-
netized in the rotating frame so that they are or-
dered only with respect to their local fields H ,',,.
T;s is then shortest when y,H;;~ysH,s. McArthur
et al.® have called the dependence of T; on w,s a
“dipolar fluctuation spectrum.” Experimentally
they observed that over a very wide range this
spectrum is exponential, i.e., is associated with
an apparently Lorenizian time correlation function.
Similar behavior has been observed in some organ-
ic solids, 8

This remarkable result, quite apart from its
significance for experimental design, calls for the-
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oretical understanding., No theory has up to this
point existed which attempts to predict the function-
al form of cross-polarization spectra, Hartmann
and Hahn® accounted for the general magnitudes of
T;s by a perturbation-theory approach, invoking the
spin-temperature hypothesis fully, and assuming

ad hoc a Gaussian form for the correlation function
of the fluctuating perturbation, Lurie and Slichter*
adopted a somewhat similar approach, assuming a
Gaussian I-spin “line shape” and a 5-function shape
for the S-spin. McArthur et al.,’® analyzing their re-
sults for the case of adiabatic demagnetization inthe
rotating frame mentioned above, simply parame-
trized the experimentally observed exponential form
of the cross-polarization spectrum by means of a
moment analysis.,

It is worth pointing out that cross-polarization
spectra in double resonance experiments are of
general theoretical interest because of the richness
of different experimental regimes which can be
realized, some of which are of greater theoretical
tractability than cross-relaxation problems con-
sidered in the past, =18 The richness derives from
the fact that properties, (e.g. heat capacities) of
the two spin systems, regarded as thermodynamic
entities, can be manipulated independently by appli-
cation of rf magnetic fields, continuousor pulsed, at
or near their respective Larmor frequencies. Sim-
ilarly, the nature and strength of the effective cou-
pling mechanism, as well as the initial states of I
and S systems, can also be varied by the experi-

“menter. :

Exact calculation of the required correlation
functions of dynamical variables is in general not
possible for strongly coupled many-body systems;
such calculation raises conceptual and mathemati-
cal difficulties typical of a certain class of many-
body problems in which the “self-energy” effects
due to the interaction are large compared to the
‘“unperturbed single-particle energies.” To over-
come this difficulty two main approaches have been
elaborated. One involves an attack on the micro-
scopic problem from first principles, making ap-
propriate mathematical approximations. A num-
ber of calculations of this type, applicable to spin
systems, have been attempted. "% In particular,
the theories of Resibois and DeLeener'® ' and re-
cently Reiter, 7% among others based on an infinite-
order perturbation expansion with selective resum-
mation, have met with some success, Also, for
the problem of the usual NMR absorption line shape,
a theory based on a Dyson expansion has been suc-
cessfully employed to calculate the short-time be-
havior of the free induction decay.?™2° The corre-
lation functions appropriate to the cross-polariza-
tion “line shape” are different, and, as we shall
see, this procedure is no longer applicable.

The other procedure is to adopt what amounts to
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a “fitting scheme”%~%¢ in which one postulates a

certain plausible and perhaps defensible shape
(e.g., Gaussian) for some suitable function (e.g.,

a spin correlation function, a memory function,
etc. ) and adjusts parameters to fit certain rigor-
ously calculable quantities such as moments, This
procedure is esthetically less pleasing from a fun-
damental point of view, but may be very useful if it
succeeds where other methods fail in predicting ex-
perimental results. We adopt this approach in the
present work, within the framework of a memory-
function formalism. We show that exact knowledge
of a few moments, together with a Gaussian memory
function, reproduces a wide variety of heretofore
unexplained experimental results with great accura-
cy. An alternative calculation based on information
theory, *"** is also presented.

II. BASIC THEORY

A. Hamiltonian and frame of reference

In this section we recall some details related to
the double-resonance Hamiltonians and representa-
tive quantum-mechanical interaction representa-
tions for later reference, Special attention will be
given to the relative magnitudes of different terms
in the total Hamiltonian.

The most common spin system encountered in the
double-resonance experimentsa"‘ contains two spin
species I and S with different magnetogyric ratios
vr and ¥g. The sample, which contains N; and Ng
spins (N; > Ng), is placed in a large static mag-
netic field H,. The field H, is supposed to be along
the Z axis. We discuss only the situations in which
we may neglect the relative motions of the spins,
and all the spin-lattice relaxation times of both
spin species are taken to be infinitely long.

The high-field double-resonance®* Hamiltonian
in the laboratory reference frame is

JC=361+3C5+3C15+:}CMU') . (2. 1)
The Hamiltonian 3¢; is defined as
36 =3z +%cr+ ¥ (2.2)

where 3z, = —wolz, wor =YrH, represents the Zee-
man Hamiltonian, 3Cc; is the chemical-shift Hamil-
tonian, and 3¢;; describes the magnetic interactions
between I spins. In accordance with many experi-
mental situations, *® especially for protons, ** the
chemical-shift contribution to the total Hamiltonian
of the abundant I spin is very small and can be dis-
regarded.

The Hamiltonian J¢g which characterizes the di-

lute spin system is
35 =3zs+¥Hcs+Hss (2.3)

where the terms have the same significance as in
Eq. (2.2). Because we are interested in the be-
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havior of spin systems on a time scale small com-
pared with the spin-spin relaxation time of the S
spins, we can neglect the term 3¢gs in Eq. (2.3).
This is also equivalent to considering the amplitude
of the effective field applied to the dilute spin sys-
tem to be much greater than the local field pro-
duced at one particular S spin by the other S spins.
If high-resolution spectra of rare spins®® are used
for investigation of the double-resonance spin dy-
namics the chemical-shift (or Knight-shift) contri-
bution to the Hamiltonian 3Cs has to be taken into
account, In this case the S-spin system consists

of a quasi-independent subsystems, where o repre-
sents the number of resolved lines in the high-reso-
lution spectrum. For each S-spin subsystem, with-
out loss of generality, we can include the contri-
bution of the chemical-shift Hamiltonian in the Zee-
man term, 3z s =~ wosSz (Wos =7 sH,).

The Hamiltonian 3C;s describes the interactions
between I and S spin systems. If we consider the
magnetogyric ratios y; and yg to be different, the
last term of Eq. (2.1), which describes the inter-
action of the spin system with radio-frequency mag-
netic fields of amplitudes H; and H,5 and frequen-
cies w; and wg, respectively, has the form

GC,,(t)= - ZUIX cosw,t—ZwlsSx Coswst 5 (2. 4)

where wy=vHy; ang W1s =JSH 1§ The total spin
operators are 1 =3,I; and §=3,S,,. For convenience
we have used in Eqs. (2.1)-(2.4) units in which
=1,
The time evolution of the statistical ensemble
having an explicitly time-dependent Hamiltonian
3¢ can be described by a density operator p() which
satisfies the Liouville—von Neumann equation
ap(t
1229 [5e,p(0)] . (2.5)
t

A solution of Eq. (2. 5) can be obtained if we de-
scribe the statistical ensemble in a new quantum-
mechanical representation defined by the canonical
transformation

prrt)=(TR)p¢)NTR) , (2. 6)
where

R=R;Rs, R;=e“vrzt Rg=eiusSt  (2,7)
and

T=T,Ts, T;= e(w,ly)’ Tg= e'i0sSy) (2.8)

The canonical transformation defined by Eq. (2.8)
tilts the Z axes through the angles 8; = tan™"[w ,;/
(wor—wr)] and 85 =tan™{w,s/(wes —ws)]. In the
tilted rotating frames defined by Eqgs. (2.6)—(2.8)
the Hamiltonian of the I-S spin system obtained
from Eq. (2.5) is

¥rr = (TRYC(TR)' +i(TR)(TR)" . (2. 9)
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A concrete expression for 3¢z can be obtained from
Eqs. (2.9) and (2. 1)-(2. 4) in which we consider on-
ly pure dipolar couplings between the spins:

Hrg=—wett, 11z = Wets,sS 2 +Py(cos b, pef, +3¢f5 +3¢, ,
(2.10)

where the effective frequencies are wy,s=[w%

+ Awﬂllz and Wee, s = [wis+ Awas]l" 2, with Awy=wer

—w; and Awg=wys —wgs. The off-resonance param-

eters can also include the chemical-shift effect,

In Eq. (2.10) the zero superscript indicates a trun-

cation® or zero-order average*! of the dipolar Ham-

iltonian

560y = 2 by @y e T, =300, (2.11)
124

with the interaction factor
bij = ‘)/Iah"}"”-:;Pz(COSG“) 9

The Hamiltonian 3¢, originates from I-S spin in-
teraction and has the general form

3C9= COSBI Cosos Z bimIiZSmZ + sin9, Sines Z bimIiXSmX
iym iom

- sin§ COSGSZ DindixSmz

iym

— cosb; sinbg ZbimIiZSmX ,

iym

(2.12)

with
Dim = = V1Y 77 1 "Py(c080,,,) .

In the above expressions the indices (,4) and m re-
fer to the I and S spins, respectively. 7;; is the
distance between i and j spins. 6;; is the angle be-
tween the vector T; 3 conn(ictingi and j spins and the
applied magnetic field HyZ.

The spin dynamics in a double-resonance experi-
ment can be, in general, analyzed in two extreme
conditions. The first corresponds to high effective
fields and is realized by transferring Zeeman order
of I spins from laboratory to rotating reference
frame using spin locking (hereafter referred to as
SL) procedures.  The second case corresponds to
a low-effective-field condition for I-spins and is
achieved by adiabatic demagnetization in the rotating
frame*? (hereafter referred to as ADRF).

In the SL case the nonsecular part of the dipolar
Hamiltonian

3 = ¢sin®6, ; bisWUixl 2 +1;215x)

- %Sinzergbuqixﬁx —ILivlsy) (2. 13)

(2
can be discarded in Eq. (2. 10) by truncation. ** This
term is responsible for coupling between Zeeman
and secular-dipolar I-spin reservoirs and establish-
ment of 2 common spin temperature, %1% 1t jg
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now possible to separate the spin systems involved
in a double-resonance experiment into two subsys-
tems characterized by the Hamiltonians ¥C; and 3C,
defined by

3€1= — Wete, 1z + Py(cos by YiCi;

(2. 14)
3= - wett, 55z

coupled by a Hamiltonian JC, given in Eq. (2. 12),
The general form of 3¢, makes it possible to discuss
ADRF as a limiting case of the SL procedure for /-
spin preparation. If H,; is changed adiabatically
from the value H,; > Hy, to the value H ;<Hy,,
-where HI',, is the local field at the site of I spins in
their rotating frame, the tilt angle 6; can be con-
sidered as approaching the value zero. Thus the
Hamiltonians of interest in the ADRF case become
from Eqgs. (2.12)-(2.14)

—n00
GCI_JCII, gca="0)effvssz 3 (2 15)

:}CP = Cosesizbimlizsmz - Sinesiz bimIiZsz .
' m om

Because N;> Ng and/or y; »vg, the terms which
are included in the 3¢, Hamiltonians are smaller
than either 3¢, and 3¢, and can be considered as per-
turbations. This imposes a further restriction to
the amplitude of the effective magnetic fields ap-
plied to the S spins in the sense that Hey, ¢ has to
be large compared with the local field at the site

of dilute spins determined by I-S interaction in the
rotating frame. For such a small coupling between
the subsystems the secular cross-coupling dipolar
term 3;, »0inlizSnz can be arbitrarily associated
with the Hamiltonians 3¢,. These Hamiltonians,
Eqgs. (2.12)-(2.15), are very general in the sense
that they contain terms which induce multiple quan-
tum transitions®**™* in the low and high orders of
perturbation.

We remark that the forms of the above Hamilto-
nians, Eqgs. (2.12), (2.14), and (2. 15), will be dif-
ferent in the intermediate effective field condition,
Hye~Hyy, or if the abundant spin system is sub-
jected to a periodic external perturbation in the
form of intense radio-frequency pulses. In the last
case the I-spin system can be properly described
by a time-independent average Hamiltonian*' and a
spin temperature®® in a frame of reference defined
by the external perturbation.

The presence of quadrupolar interactions for I
and/or S spins in the Hamiltonian of Eq. (2.1) will
introduce new features of double-resonance dynam-
ics, especially in low-field conditions or where
nearly degenerate transitions exist for other rea-
sons., A detailed analysis of this case will be re-
ported elsewhere.

B. Spin dynamics

The spin systems which participate in a double-
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resonance experiment can be described by their
thermodynamic coordinates which are represented
by the quantum-mechanical average of the observ-
able operators. The time evolution of the thermo-
dynamic coordinates as a function of the conditions
of experimental preparation and the physical char-
acteristics of the subsystems can be obtained from
the Liouville~von Neumann equation, Eqgs. (2.5)
and (2.6), for the density operator of the whole
system, This can be done by using very general
quantum-mechanical theories*® ¢ formulated in the
following manner: (a) Both subsystems described
by quantum-mechanical operators are treated in a
symmetrical way. (b) No statistical assumption is
made about the subsystems in interaction. In par-
ticular, the relative “size” of the spin systems can
be arbitrary and their states can deviate arbitrarily
from thermodynamic equilibrium. Also the as-
sumption of an instantaneous canonical distribution
description for the subsystems is not involved. (c)
The coupling between the subsystems is not neces-
sarily a small perturbation.

In a double-resonance experiment the subsystems
are represented by I- and S-spin systems. The
thermodynamic coordinates®® are defined by the
quantum-mechanical averages of the operators,

<3(31>z:Tr{3(319TR(t)}, <3cz>t=Tr{3CzPTR(t)} , (2.16)

where 3, and 3¢, are given by Egs. (2.14) or (2. 15).
From the definition of the thermodynamic coordi-
nates, Eq. (2.186), it follows that the short- and
long-time-scale behavior of the system are to be
described in the tilted-rotating-frames interaction
representation., To observe the macroscopic vari-
ables it is necessary to switch from tilted rotating
frames to the observation reference frames which
are represented by conventional rotating frames,
In the indirect®™" procedure of double resonance the
signal detected in the rotating reference frame of
the abundant I-spin system is proportional to the
Zeeman® or dipolar? energy described by the (3¢,),
coordinate, The time evolution of Zeeman coor-
dinate (3¢,), can be observed using the direct-de-
tection version of double resonance® in the rotating
reference frame of the dilute spins, All these ex-
plain requirement (a) of the theory.

The I-spin subsystem is generally represented
by an abundant spin system with strong internal
interactions. The large heat capacity of the I-spin
system compared with the S-spin subsystem, fast
correlation, and fast-spin diffusion a.pproximations5
will make the abundant spin system behave as a
thermal bath, characterized by a spin tempera-
ture. The presence of molecular motion®>" or the
reduction of I-I spin interaction by coherent radio-
frequency perturbation®” will radically change the
statistical properties of the I-spin system by re-
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ducing its heat capacity and increasing the corre-
lation time which characterizes its dissipative be-
havior, Condition (b) is also related to the fact that
for the dilute spin system during the irreversible
exchange of energy with the I-spin system an in-
stantaneous canonical distribution and an instanta-
neous spin temperature cannotbe defined. Because
the coupling between S spin is very small compared
with I-S cross coupling, the time evolution of the
off-diagonal elements of the reduced density matrix
operator of the dilute spins will decay on a time
scale comparable with diagonal elements, This
fact prevents us from treating the dynamics of spin
systems by using a thermodynamic model based on
the spin-temperature formalism.

The last condition (c) would permit the analysis
of spin dynamics in the cases of moderately dilute
spins, relative strong coupling, low-effective-
fields, or multiple-spin transitions.

An exact kinetic equation for the thermodynamic
coordinates defined by Eq. (2. 16) has been derived
in an elegant manner using orthogonal operator ex-
pansion® and projection-operator technique**® by
Shimizu, *®* A natural choice of the orthogonal op-
erators is in our case 3¢, and 3C, defined by Egs.

(2. 14) and (2.15). The orthogonality of the opera-
tors is defined in the following sense:

Tr{ese,}=0 .

The density operator in the tilted rotating refer-
ence frame, Eq. (2.6), can be expanded using the
projection operator technique:

Prr)=Pprgt)+(1-Plorr () . (2. 18)

The projection operator P (P%=P) on the subspaces
defined by the Hamiltonian operators 3C, and 3C, is

3 3
P=r R?}Tr{gﬁl" .}+T—r§C2—}Tr{3cz...} .

From Egs. (2.5), (2.6), (2.9), (2.16), and (2. 18),
with a minimum amount of operator algebra, an ex-
act kinetic equation for (3¢,), (i=1,2) which satis-
fies conditions (a)-(c) can be obtained:

(2.17)

(2.19)

9 . N . a“ A
o7 (%de = = iTr {0 R rPora(t)} = iTr {3,875 ()

t . A ,
X (1=P)prr 0} -fo dt’ Tr{se 5 reSt —1")

X (1= PYRrrPpre(t} ,
where the propagator S(¢) is
) 2.21)

and we shall denote a Liouville operator corre-
sponding to an operator O by 0. The operator
(1 - P)3c,p in (2.21) is a Liouville operator, al-
though not written as such for typographical rea-
sons. These operators operate in the space of

(2.20)

S(t) = et (1=P )% RE
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operators rather than states of a system, i.e.,
Op(®) =[0, p(t)] and e"*%%p(t) = e=*°tp(t) &' °F.

If we suppose that [3¢,,3¢,]= 0, the first inhomo-
geneous term in the right-hand side of Eq. (2.20)
vanishes, The second inhomogeneous term of the
integro-differential equation (2.20) is connected
with the initial conditions and is, in general, dif-
ferent from zero. In the study of double-resonance
spin dynamics the systems can be prepared initially
in different conditions. For this reason an analy-
sis of the inhomogeneous term behavior as a func-
tion of statistical properties of the subsystems and
initial conditions has to be done We suppose first
that an arbitrary coupling between spin subsystems
exists. Inthis case the second inhomogeneous term
is different from zero for the functional form of
experimental interest for prz(0). To analyze the
nonpathological case of small coupling it is more
convenient to rewrite the propagator S (¢), Eq.

(2. 21), in the following form:

S#t)=5S,#)S,¢) (2. 22)
where
So(t)= exp[- (e, +3C,)t] (2. 23)

¢ ! ’ ’
su=Tew (- a'be, ) - Bera)e]) (220
with
5C,(t) — (P3Cr)t)=S51¢)6C, - PiCrg) . (2.25)

The Dyson time-ordering operator T orders op-
erators of greater time arguments to the left-hand
side. In the lowest Born approximation for the
coupling Hamiltonian 3¢, we can consider that S(¢)
=~S,(¢), and the second inhomogeneous term of Eq.
(2. 20) becomes

I,(8) =4 Tr{(e,5¢;)S,¢)(1 - P) pr 0V} .

Assuming now that the spin systems are prepared
so that the initial density operator has a high-tem-
perature canonical form

prr(0)=(1-8,3C 1'Bz$cz)/Tr{1} ’ (2.27)

where 8, and B8, are inverse spin temperatures, it
is easy to prove that I,(¢t)=0. This is, in general, *°
the case in double-resonance experiments in which
a saturating radio-frequency irradiation is used®®’
to prepare the dilute spins before they are put in
contact with the I-spin system, If the high-temper-
ature approximation is not valid®® for the canonical
form of prz(0), the I,(¢) term is still zero. In the
case in which the S-spin system is not initially de-
scribed by a canonical distribution, but such a de-
scription is valid for the I-spin system, again I, ()
term is zero if [3€;,3C,]= 0 and Tr{§¢;,3¢,}=0. From
Egs. (2.12), (2.14), and (2.15) we can see that is
indeed the case. Thus, as we will see, a simple

(2.26)
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transport equation describes the long-time behavior
of coupled spin systems which is not affected by the
initial state of S-spins in the limit of weak coupling.
Of course, a particular preparation would be help-
ful in the cross-relaxation-time measurements,

In the second-order approximation of the pertur-
bation Hamiltonian, from Eqs. (2.20)-(2.26) and
the above considerations, we have

o ' -
o (%)= -j at’ Trisefeppdott =)
0

x (1= P), Porg(t'} (2. 28)
This general equation describes the short- and
long-time behavior of thermodynamic coordinates,
through the generalized collision operator which is
the kernel of the integral from the right-hand side
of Eq. (2.28). We suppose now that the generalized
collision operator can be characterized by the ex-
istence of a correlation time 7, defined mathemati-
cally such that this operator goes to zero for > 7.
On the short-time scale, for which{ < 7,, from Eq.
(2. 28), we have

t t! - -
<3€i>:=<3€¢>o~f0 dt’fo dt" TresereSot’ -t

X (1= P)ferpP exp[—i(,+5C, )" 1prr )} -
(2.29)

It is important to remark that this equation shows
“memory” in the sense that the values of thermo-
dynamic coordinates (3C;), at moment ¢ depend on
all earlier values, Also, the initial conditions of
preparation are important and are involved through
(3¢; )0 and pr(0).

If the fast-correlation assumption is introduced,
for times ¢> 7, the limit in the integral of Eq.
(2. 28) can be replaced by infinity. Also, itis pos-
sible to replace pyz(t') by prr() in Eq. (2.28). Af-
ter the change of variable ¢t —¢'~7, Eq. (2.28) be-
comes

d * PURIPN
o7 ¢H)e= - | ar TrfiedenSytr)

X (1= P)frrPorr®)} . (2. 30)

Suppose now that we are interested in the cross-
polarization dynamics of dilute spins.s From Eq.
(2. 30) the following equation can be written in this
case

8, (3) ° .
_S—f(%z)t_mif%ﬁ‘ﬁ dtC(Cy; 3y 5 T)

By (~ e
vap sy J, ATCEC; s T) , (2.3D)
where the correlation functions are defined by
C(Cy;5 3Cy5 7) = Tr{@ﬂcz)so('r)@%pmz)} )

CCy; 3Cy5 T) = Tr{(}?:p:}czﬁo(f)(j&;cl)} , (2.32)
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and for which the following relation is valid:

fo dr[C@Cy; 3¢ T)+CBCy; 3¢ T)]=0 . (2.33)
We can now define new thermodynamic coordinates
by

Bilt)= (3(31>t/Tr{3C?i} , Balt)= (SCZ),/TI‘{JCZ} , (2.34)

which in the high-temperature approximation have
the dimensions of inverse temperature (¢=1). For
these formal inverse spin temperatures®! the fol-
lowing equation is valid:

88,() _ By(t) = Byt)
ot Trs

(2. 35)

where the transport parameter T;s which charac-
terizes the cross-relaxation process is

w =1 (" AP
Tis 'T_r{:f_(?g_}- J; dr Tr{(3,3¢,) exp[—i (3, +3C;)7]

X (§e5eo)} . 2. 36)
The microscopic expressions for cross-relaxa-
tion times in SL and ADRF cases can now be easily
obtained from the general equation (2.36), valid for
T,< T;s and second order in the perturbation Ham-
iltonian. Using the particular forms of 3¢;, 3C,,
and 3¢, given in Sec. ILA we obtain for the SL case

-1_ i 2
Tts=sin0s cos®6; M, s1Jz(wett,s)

+% sin®6 sin®6; M, g,

X[Tx(Wets, s = Wete,r) + Ix (Were, s + Wete,1)] »
(2. 37)
and in a similar manner for the ADRF case®

(2. 38)

where M, s; is the Van Vleck® second moment of the
magnetic-resonance line determined by the cross-
coupling dipolar interaction. The spectral density
functions which describe the fluctuations in the
thermal bath represented by the abundant spin sys-
tem are given by

-1 _ 52
Tis=sin“0s My s1dz(wets,s) »

Jx(w)=f dt coswT Cx(T),
0

Jz(°~’)=j:d‘r coswT Cylr), (2.39)

which are the real parts of the Fourier transforms
of the dipolar fluctuation autocorrelation functions,

CylT)=Tr {(Z bilix) exp[- iPa(cose,)SE?,f]
7

x (}: bilix )} /Tr{(;bilix) 2} (2. 40)

and
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Cy(7)= Tr{(zb,-liz) exp| - iP,(cos6;) 3%, 7]

i

x Q:b,-liz>} Tr{(‘;bizizf} . (2.41)

The cross-coupling interaction factors b, which
appear as weight factors for individual spin opera-
tors in the macroscopic operators E,bilix and
2;b;1;; are short-hand notations for b,,. We as-
sume that the dilute spins are magnetically equiva-
lent and b,,, is thus independent of m. The correla-
tion times 7,, characteristic of these autocorrela-
tion functions, are determined by the I-I interac-
tions and are of the same order of magnitude as the
spin-spin relaxation time T,;.

The autocorrelation functions defined in Eqgs.

(2. 40) and (2.41) decay monotonically with time,
which makes Jx(w) approach zero for w7,> 1. Be-
cause in the high-effective-field SL case wgqy,s,
Wers,r > wrr~ 1/Ty, and 7,~ Ty, Eq. (2.37) can be
rewritten to a good approximation

T3 = 38in%6; sin0 s My, sy (Dw egs), (2. 42)

where Aw e = Wepy, s — Wetr,z- The above equation is
valid only for 6; values different from 6,

= cos™}(1/V3) at which memory effects in the ther-
mal bath become important in the case of dipolar
interactions., We remark parenthetically that the
same result can be generated if we neglect in the
general perturbation Hamiltonian, Eq. (2. 12), the
terms which oscillate with wess, 1, Wete, s, AN Wets,r
+Were, s frequencies in the double rotating reference
frame, *3

The formalism developed in this section can also
be used for evaluation of the cross-relaxation time
in the intermediate field case, in which the abundant
spins are cooled by a partial adiabatic demagnetiza-
tion in the rotating frame, Now weqe,; is of the same
order of magnitude as wy;, and a nonsecular con-
tribution to the dipolar interaction, Eq. (2.13), has
to be taken into account in the Hamiltonians which
lead to the decay of autocorrelation functions,

An inspection of the formulas for cross-relaxa-
tion times shows that the experimental parameters
are involved through the effective frequencies
Wett,s and Aweey r and the angle between the average
directions of the spin quantization axes. In the SL
case the I and S rotating reference frames rotate
with relative angular frequencies |w; - wgl|, which
have large values if w; #ws. An automatic average
over the equatorial angles is performed in Egs.

(2. 37) or (2, 42) through the truncation procedure, *!
leaving only the dependence on azimuthal angles.
The abundant spin system is ordered in the local
fields in the ADRF case, A supplemental average
over the local directions of the quantization axis is
also automatically included in Eq. (2.15) and thus
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in the cross-relaxation time expression Eq. (2. 38).
. The cross-coupling Van-Vleck second moment and
the dipolar fluctuation autocorrelation functions
make the cross-relaxation times dependent on
microscopic parameters of the sample, Also, the
high-resolution spectrum of cross relaxation
times®® is generated by the discrete (for a single
crystal) or continuous (for a powder) changes in the
tilted angle 65, M, s, and spectral density func-
tions,

In order to analyze the short-time behavior of
spin-system thermodynamic coordinates, we con-
sider that before these systems are put in contact
they are in a thermodynamic quasiequilibrium state.
This can be done by applying a saturation pulse to
the S-spin system until the initial spin temperature
is T5; = and the I spins are cooled to a spin. tem-
perature T;;. From Eqgs. (2.12), (2.14), and
(2. 29), using the high-temperature approximation,
the normalized magnetization developed along
Hg,, s at a particular moment of time 7 is

T ty
fj‘éls_(fk (L+€s)My, srj dta[ dt,
Syeq 0 0

x[cos0; sin?6 s coS(w s, stz) Cz(¢5)
+ sin®6; sin®0s COS (W ey, stz) COS(W ets, 1)
XCx(ts)] (2. 43)

where Mg (7)=Tr{yshS,0r(r)}. Usually for the SL
case we have 6;=7/2 and from Eq. (2.43) we get

r t
WD bointoy (L sy, [ at [ at,
Ms, e C '

X [cos(wets, s + Wets, 1)tz

+COS(Wett, s — weu,t)tz]cx(tz) (2. 44)
If formally we make wes,;~ 0 and 6;~ 0 in
(2. 43), the ADRF case is obtained:
T tl
Ms(t) _ gin20 5 (1+ €)M, srf dt,f dt,
Ms, > Jo 0
X CoS (Wete, st2)Cz (E2) . (2. 45)

In the above equations Mg ., represents the equilib-
rium magnetization obtained in the cross-polariza-
tion process® with I spins

Ms,q=[1/1+€5)ICsHeps, s/ T1;i

where Cg=3v2%2S(S+ 1)N; is the Curie constant and
€s;=CsH%q, s/CiH%, 1 is the heat capacity ratio of
S- and I-spin systems.

In this section the dynamics of the dilute spin
system in a double-resonance experiment was
mainly analyzed, but similar equations can be de-
rived for the thermodynamic coordinates. of the I-
spin system. Our interest in the S-spin system is
motivated by the fact that, if high-resolution spec-
tral intensities of these spins are to be obtained

(2.46)



4140

without distortion, the directdetection method® is
called for when it can be used.

IIl. EVALUATION OF CROSS-POLARIZATION SPECTRA
AND TRANSIENT OSCILLATIONS

In the computation of cross-polarization dynamics
one of the central statistical assumptions used in
Sec. II was the fact that the abundant spin system
can be considered as a thermal bath, A direct re-
sult of this is that the evaluation of the cross-re-
laxation time and the short-time behavior which is
represented by transient oscillations in the rotating
frame® is tantamount to calculating dipolar fluctua-
tion autocorrelation functions Cy(7) and C,(r), Egs.
(2. 40) and (2.41), whose shapes depend on whether
the I spins are in SL or ADRF conditions.

The fact that the functional dependence of the
cross-relaxation rates on the effective frequencies
Wete,s O Awey, Which we will call in general a
cross-polarization spectrum, is different for high-
and low-effective-field double-resonance experi-
ments, can be seen for instance from Eq. (2.41).

If a rotation of spin operators is performed using
the unitary operator '™/ 2y we get

Cz(1)=Tr {(Zbilix>exl)[- i (= 4503 + 305357 ]

X(Ei:bili,f)} /Tr{(Zib,-I,-x) 2} , 6.1

where 383 is given by Eq. (2.13) with 6;=7/2. We
can see now that the difference between functional
forms of Cx(7) and C,4(7) is, except for the time
scaling, determined by the nonsecular dipolar
Hamiltonian, which has the same order of magni-
tude as the secular part and provides a supple-
mental mechanism for dipolar fluctuation for the
I-spin system in the ADRF condition. Therefore
the presence of exchange interactions will differen-
tially affect the shape of autocorrelation functions
only through the dipolar Hamiltonian.

It is difficult to make any a priovi guess relative
to the functional shape of Cx(r) and C(7) before any
detailed theory for these correlation functions is
elaborated, Nevertheless, we can remark that if
formally we consider coefficients b, to be constants
independent of I-spin coordinates the Cx(7) func-
tion, Eq. (2.40), becomes the autocorrelation func-
tion for the free induction decay (FID) of I spins,
but it is scaled in time by the P,(cos#;) factor. The
Cz(7) function, Eq. (2.41), becomes independent
of fluctuation in the dipolar system. In conclusion,
at least for the ADRF case, the C;(7) shape es-
sentially depends on the punctual character of I-S
coupling.

The time evaluation of the FID,

G (7'): Tr {IXexp[_ i(fclsing +icm:)7]IX}/Tr {IJ%} ’
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is determined by Ising and exchange parts of the
dipolar Hamiltonian, Eq. (2.11), for which

[chsiny IX] #0 and [Zcem Ix] =0 . (3- 2)

Based on Eq. (3.2), if a Dyson expansion®® is used,
the zeroth-order approximation for FID is

G ® (T) = Tr{lxexp(" iﬁ!singf)lx}/Tr {IJZL’},

which, mainly because of the form of 3Cygype, 1S
close to a Gaussian. In the case of the SL auto-
correlation function we have

[zc,s,ng,}:bizix] #0 and [:’rcex,;bihx]#o , (3.3)
1

which makes a Dyson expansion less justifiable,
Nevertheless, using the limiting property of Cy(7)
when b ; becomes a constant and for short time (7
«T,), we can write the approximation

cPr)="Tr {(Z@"hx) exp[— iP,(c086;) Crg1neT]
1

(D el

Of course this is a very rough approximation for
Cx(7) and will give an incorrect second moment,
Even so, a direct evaluation of C{¥ (r) for a CaF,
single crystal shows a shape close to a Gaussian.
As we shall see, for longer times, in spite of Eq.
(3. 3), the functional forms of Cx(7) and FID are
similar and consequently less dependent on the
punctual character of cross coupling.,

A. Memory-function approach

Mori®® and more recently Lado et al,? have
shown that an exact equation of motion for the time-
dependent correlation functions C(r) of a statistical
system can be derived on the assumption of small
displacements from equilibrium,

dc(r)
dr

T
= iQ,C(r) -j dtK@-1)CE) , 3.4)

0
where Q, is the first moment of spectral density re-
lated to C(r) and K(¢) is a memory function. In our
case the dipolar fluctuation autocorrelation func-
tions C, (1) (@ =X,Z) are even functions of time and
Eq. (3.4) reduces to

dCy(T) _

- (3.5)

T
—f dtK,(r-t)Cy(t) .

0 .
In the absence of calculations of the C,(7) from first
principles a quite successful approach in practice
is to assume a plausible shape (containing a number
of adjustable parameters) for the memory func-
tion, 2%

On general grounds® it can be shown that the de-
cay time of the memory function is of the same or-
der of magnitude as or smaller than that of the cor-
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relation function. Consequently, any short-time
approximation for K, () will give a better long-time
behavior for C,(r). Moreover, in the shovt-time
region the memory function appears to have a sim-
pler structure than the correlation function itself.
To analyze the range of validity of the above as-
sumption let us define an autocorrelation vector in
the same spirit as in the extended Mori theory for
dynamical variables®?

cr)
cP )

Eu(T): M ’

(3.6)
cmi(r)

where C2™(r) is one of the autocorrelation func-
tions defined by Egs. (2.40) and (2. 41), but for the
dynamical variables (@®"/d7%™)[3;b;1;,(7)], with
a=X,Z and CP(r)=C,(r). It is easy to prove that
the autocorrelation vector satisfies the equation

o [akue-E.0

3.7
where K (t) is the memory-function vector associ-
ated with C (r). From a_lmowledge of the analytical
properties of the vector C,(7), it can be shown that
the memory-function vector is an even function of
time and has a finite initial value Consequently,
from a moment expansion for C () and K () with
Eq. (3.7) the following relations between the mo-
ments M{Z™ and N @™ of C&™(r) and KZ™(¢), re-
spectively, are obtained:

K((xbn)(o)zMéZm) ,
NéZIn) =M;ZM)[M‘§2?PI)/(M§2"0)Z _ 1] ,
Ninn) = Wézm))a[Méam)/(Méam))S _ ZM;Zm)/W;Zm))Z+ 1]’

M(Zm) 3M(2m)
N(Zm) M(zm) 3[ 4 _ 6
) (M§2m))4 W(Zm))!i
M(am) M(Zm)
+(3— (Méé”))z )) ’ etC. (3' 8)

Also the moments of C*™(r) functions can be re-
lated to those of C(r) by

ME™ /MG V' = MGGy M3 ™/ M3 ) . (3.9)

Let us consider now two normalized correlation
functions, a Gaussian, ¥ "¢, and a Lorentzian,
(1+72/72)"L, for which the moments up to any order
can be exactly computed. In order to test the
sensitivity of memory-function vector components
to the functional form of C?(7) we have plotted,
in Fig. 1, N /(N$#) and N{#™ /(N$#™)® versus m
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obtained from Eqs. (3.8) and (3. 9) for Gaussian
and Lorentzian input functions. From Fig. 1 we
see that K0 ¢) and K2 (t) are close to a Gaussian
function, i.e.,

EQ@¢) =K ©0)e*? | (3. 10)

where 5= ()N, For the mth (m > 1) component of
the memory-function vector which automatically
incorporates M3o,,, the Gaussian approximation
is no longer valid. Because the higher- -order com-
ponents of K (¢) are related to the long-time be-
havior of C{(r), through the higher-order mo-
ments, we can see that the Gaussian approximation,
Eq. (3.10), holds only for the short-time scale,

< (Z/NEO))I/Z.

Generally the initial time derivatives of the time-
dependent autocorrelation functions, which are re-
lated to the moments of the corresponding spectral
density functions by the relation M = (- 1)'d*
XC(r)/dr?"|,5, can be calculated exactly since
they can be expressed as equilibrium average prop-
erties of the system of interest, However, the cal-
culation of these moments involves the evaluation
of the traces of the squares of some complicated
quantum-mechanical operators, and there is no
general systematic pattern for evaluating the dou-
ble sums involved in different types of particle-
interaction terms. This fact makes difficult the
calculation of the moments other than the second
and fourth. That is one of the main reasons why we
consider here the solution of Eq. (3.5) with a
Gaussian approximation for the memory-function,
Eq. (3.10). Using Laplace transforms, i.e.,

100

(2m)
g
e 4

| | | | |

| 2 3 4 5
m

(2m)
N2n /(N
- o
O_l—o—'ﬁ—v—v—v—-(\\rlr
®©
[ Yo
® O
® O

FIG. 1 Ratios NEZ™/(N{¥™)" for the moments of the
mth component of the memory~function vector vs m for
a Gaussian (open circles and open triangles correspond
to n=2 and n=3, respectively) and a Lorentzian (full
circles and full triangles correspond to =2 and n=3,
respectively) autocorrelation function. For a Gaussian
memory~function vector N /(N2 =3 (continuous
line) and N(Z"')/ (N‘z’”) )°=15 (dashed line).
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Qa(z)=f:dte'“ca(t) , (3. 11)

where ReC, (z)=J,(w), the formal solution of Eq.
(3.5) is
_Qa (2)= 1/[2 +I_{a(z)] .

From Egs. (2.39) and (3. 12) a general expression
for spectral density functions can be derived®:

Je)=Ke@)/lw-KJ )P+ [K')E ,  (3.13)

where K; (w) and K;'(w) are the real and imaginary
parts of the memory-function Fourier transform.
With the approximation, Eq. (3. 10), we have

(3.12)

K;(w)=Ka(0)f dte™®t?coswt
0

. (3. 14)
K.'(w)=K,(0) f dt e sinot |
0

where § depends on the autocorrelation type through
the corresponding moments. In this form, aknowl-
edge of the second and fourth moments leads di-
rectly from Eqgs. (3.14), (3.13), (2.38), (2.42),

(2. 44), and (2. 45) to the microscopic expressions

TABLE I. Definition of the lattice sums involved in
the calculation of the moments M, and M, associated with
dipolar fluctuation autocorrelation functions, Eqs. (2.40)
and (2.41), and their values evaluated by computer for
CaF,y-type structures for different directions of ﬁo. The
units of b; and b;; coefficients are, respectively, 'y{ysﬁ/as
and 'yih”/aé, where a is the shortest fluorine~fluorine dis-
tance in Ca¥F,.

Direction of 1710

Lattice sums [100] [110] [111]

S;=Y, bt 1.554 20,33 26.46
i

S,= 3 % 30.01 11.36 5.137
i

S3=73 bi; 182,17 14.16 1.190
i

Sy=3 blbb; 9.985 22,32 0.311
i<y

S5= 2 bi;bib, 55.25 55.59 0,177
i<i

Se= 3 b3;birbsn 40.31 10.83 1.803
i<

Sp= Y b kbl 1116 2322 666.8
i#tj#tR

Sg= 2. bibhbid; 488.7 | 395.8 2.841
itji#kr

Sy= 2o bY;bibibe 183.1 ~44.30 -11.40
iti#e ‘

S1o= 2 bEbabsubl 125.3 438.1 95.39
i#j#*k

Si= 2 bl bubibib; 79.10 93.26 14.27
i#j#e

Sip= 2o bYbsubssbsby 19.45 15.81 0.394

i#jitkr
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TABLE II. Moments of the symmetric dipolar fluctua-
tion spectral density associated with the ADRF autocor-
relation function, Eq. (2.41), for a CaF, crystal, calcu-
lated from Eqgs. (3.15) and (3.16).

Direcﬁion
of H, M, (10? sec™?) M, (10' sec™d) M,/ (M,)?
[100} 1.011 9.034 8.8
[110] 0.544 1.962 6.6
[111] 0.305 0.550 5.9

for the cross-polarization spectra and transient os-
cillations,

To accomplish this program, for pure dipolar in-
teractions between equivalent I spins, the expres-
sions for the second and fourth moments of the
C,(7) functions may be formulated in a compact way
in terms of the lattice sums S, defined in Table I.
For the ADRF autocorrelation function, Eq. (2. 41),
we get (hereafter we drop the superscript zero)

20U +1) §,S,-S,

My="0 5 (3. 15)
2I7+1) 1
- BEE S (o101 - 7] 5, - 28
+3I(I+ 1)[13S,; — 16S; + 35Sy — 85,9+ 165, - 85,1},
(3. 16)

and similarly for the SL case, from Eq. (2.40),

(I+1) (55,5,+8S,)
27 S, ’

JU+1) 1
243 S,

+3[176IU + 1) ~ 32]S; + 51U + 1)[77S;
+88S; + 2454+ 85+ 38S,,+ 85 ,]}

M, =Pz(cos9,)21 (3. 17)

M, =P,(cosb;)

(10117 + 1) -42]S,S,

3. 18)

These general expressions for the first two mo-
ments of our dipolar fluctuation spectral densities
were evaluated for the case of the **Ca-°F system
in the calcium fluoride crystal, using the values of
the lattice sums given in Table I, The results are
shown for ADRF and SL cases in Tables II and III.
From these values it is evident that especially for

TABLE IlI. Moments of the symmetric dipolar fluc-
tuation spectral density associated with the SL autocorre-
lation function, Eq. (2.40), for a CaF, crystal. The
moments are computed from Eqgs. (3.17) and (3.18) with
0y =1/2.

Direcﬁion
of Hy M, (10° sec’®) M, (10 sec™®) M,/ (My)?
[100] 1.501 5.455 2.4
[110] 0.487 0. 649 2.7
[111] 0.192 0.113 3.1
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0 0.l 0.2 0.3
T (msec)

FIG. 2. Autocorrelation functions of the ¥*Ca-F di-
polar coupling for CaF, with the BF spins in the ADRF
state (solid curves). The curves have been computed
from the dipolar fluctuation spectrum, Eq. (3.13), based
on a Gaussian memory function. For comparison Lo~
rentzians (1+7/7,)"! have been included (dashed curves)
with the theoretical correlation times from Table IV.

E, parallel to the [111] direction the dipolar fluctua-
tion spectral density function is close to exponential
[a pure exponential has M,/(M,)?=6] for the ADRF
case and to a Gaussian [a pure Gaussian has M,/
(M,)?= 3] for the SL case, in the short-time region.
From these values of moment ratio it also follows
that the shape of Jy (w) for orientation [100] is more
flat topped than a Gaussian. This flat-topped spec-
tral density corresponds by Fourier transformation
to an autocorrelation function which oscillates as

it decays to zero. Also the shape of J; (w) is
changed for this orientation, the spectral density

TABLE IV. Correlation times 7, for the dipolar fluc-
tuation autocorrelation functions (1 +7%/72-! and exp(— 7%
72) for a CaF, crystal. The correlation time is taken to
be T,=(2/My)-'/? with the M, values from Tables II and
III. The experimental values are taken from McArthur
et al. (Ref. 5).

7 (usec)
ADRF condition
Direction Present Experimental SL condition
of H, theory values (0;=7/2)
[100] 45 s 37
[110] 61 57+0.5 64
[111] 81 78+1; 80x1 102
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being narrowed in the low-frequency domain, as is
a Lorentzian curve,

Using computed Fourier transformations from
Egs. (3.14), (3.13), and (2.39), a numerical repre-
sentation for the dipolar fluctuation autocorrelation
function is obtained. The functions C,(r) and G (1)
are depicted in Figs. 2 and 3 together with pure
Lorentzian and Gaussian shape functions, respec-
tively. The parameters of the last curves are de-
termined from Table IV. We note the Lorentzian
and Gaussian characters of Cz(r) and Cy(r) func-
tions for small values of time. The SL dipolar
fluctuation autocorrelation function manifests beat
structure similar to FID, which is also plotted for
comparison, 3%

The knowledge of the dipolar fluctuation spectral
density functions from Eq. (3. 13) makes it trivial
to compute the cross-polarization spectra. Fig-
ures 4(a) and 4(b) show the cross-polarization spec-
tra, T7§ VS weer,s, evaluated from Eq. (2.39) and
Table V with 85=7/2. McArthur ef al.® have mea-
sured such spectra in the ADRF case for [111] and
[110] orientations, and these experimental data are
also plotted. Our theoretical spectra, which have

I | |
(0] 0.l 0.2 0.3
T (msec)

FIG. 3. Dipolar fluctuation autocorrelation functions
for CaF, with the abundant spin system in the SL condi-
tion (solid curves), derived from a Gaussian memory
function. The dashed curves are the Gaussians, exp(—T%/
72) with 7, from Table IV. Also included in this figure
are the experimental *F-free-induction decays (Ref. 63)
(dot-dashed lines), twice extended in time for the same
orientations of the crystal.
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104 -
E o (b)

CaF,
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FIG. 4. Cross-polarization spectra under ADRF conditions for *Ca-!°F in a CaF, crystal for two different orienta-

tions: (a) Hyll [111]; (b) Hyll[110].

Circles are experimental points of McArthur et al.

(Ref. 5), and the dashed line is

their fit to an exponential spectrum. The solid line is calculated from the present theory.

no adjustable pavameters of any kind, agree with
their measurements in every case within experi-
mental error., Similar agreement is also evident
from the off-resonance dependence of cross-relaxa-
tion spectra shown in Figs, 5(a) and 5(b).

From Figs. 4(a) and 4(p) it is seen that the data
points and our theoretical spectra do not form a
straight line but are slightly concave upward. This
curvature, which becomes more evident for the
[110] orientation, seems to be an intrinsic feature
of the spectrum and is not related to the spin-diffu-
sion effects or high-order processes.’ Our theory
is valid only for large values of effective field ap-
plied to the S spins compared with their local field,
and consequently the functional form of theoretical
cross-relaxation spectra must break down as
were, s~ 0. At the same time, because autocorrela-
tion functions are well described by the memory-
function approach for short times, we expect a good
agreement with experimental data only in the high-
effective-frequency domains.

The cross-polarization spectra for the SL case
can be calculated by the same procedure used in
the ADRF case. The dependence of T7} on the dif-
ference between the effective frequencies of S and
I spins in their tilted rotating frames is shown in
Fig. 6 for a CaF, crystal. We note a completely
different behavior compared with the ADRF case,
with generally larger values of T;s. As one goes

from H, along [111] to [110] and [100], the cross-
relaxation spectrum becomes less and less nearly
exponential for the ADRF case and less and less
nearly Gaussian for the SL case,

The short-time behavior of coupled I- and S-spin
systems in a double-resonance experiment can be
analyzed from Eqs. (2.44) and (2.45), Table V,
and the Fourier transformation of Eq. (3.13). A
comparison between the theoretical results and ex-
perimental data® for transient oscillations in the ro-
tating frame for the **Ca-'°F system is presented
in Figs. 7(a) and 7(b). From these figures it again
is seen that our dipolar fluctuation autocorrelation
function C,(7) is very well approximated by a Lo-
rentzian only for small values of time, and an im-
provement in its functional shape for long time is
needed in order to describe all the experimentally
observed oscillations, The slope of the dashed
line, which characterizes the beginning of the expo-

TABLE V. Values of Van-Vleck second moment of the
S magnetic resonance line, M, g7, and local field of I-
spins in the rotating frame, Hf; for the CaF, crystal.

Direction of H, My, g1 (107 sec™?) Hy /(G
[100] 0.21 4.24
110} 2.78 1.61

3.64 0.73

[111]
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“High-resolution effect” on cross-polarization spectra for $ca-F in a CaF, crystal measured by (a) indi-

rect pulsed double~resonance and (b) rotary saturation double resonance methods (Ref. 5). The sinzﬂs dependence of
our theoretical cross-relaxation spectra (solid lines) well reproduces the experimental data.

nential cross-relaxation process, was found to be
very sensitive to the value of the autocorrelation
function, Also, it is clear from Fig. 7(b) that in
order to obtain a better agreement between the the-
oretical results and experimental data the theory
has to be extended to the low-effective-field condi-
tion for dilute spins. In this case the I-S coupling
cannot be considered any longer as a small pertur-
bation, and the general theory of Sec. II B should be
applied.

The enhanced transient oscillation effect which
appears as a function of the crystal orientation for
CaF, was also calculated for the ADRF case and is
shown in Fig. 8, We see that for the [100] orienta-
tion the step-plus-oscillation form of transient be-
havior is reduced compared with the [111] orienta-
tion because of the smaller values of Van Vleck
cross-coupling second moment and autocorrelation
time (see Table IV), which makes the dipolar fluc-
tuation autocorrelation function decay more rapid-
ly. This explains the experimental difficulty in
measurement of transient oscillations for orienta-
tions different from [111].° The enhanced transient
oscillation for [111] orientation is a result of a re-
duced dipolar coupling between abundant spins which
makes the coherent exchange of energy between I-
and S-spin systems to be more like that for an I-S

.spin pair, 3576
Similar computations can be performed for the

104
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FIG. 6. Theoretical cross=polarization spectra for SL
and ADRF cases and for different orientations of the CaF,
crystal. The dashed curves are calculated using an in-
formation~-theory approach from Eq. (3.19) and Table VI.
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FIG. 7. Transient oscillations in the rotating frame for the Boa-1F system in a CaF, crystal for the ADRF condi-

tion.

The function 6(7) is the fractional decrease in the I-spin signal after a mixing pulse and was calculated from the

theoretical results of Ref. 5 with our autocorrelation function and numerical values from Table V (solid curves). (a)
The experimental data points are from Ref. 5 with vee,5=12.6 KHz. The dashed curve has been calculated using a Lo-
rentzian autocorrelation function with 7,=77 usec (Ref. 5). (b) Same as (a) except with vesq,s=2.43 KHz and the correc-
tion due to the cross~relaxation process included (see Ref. 5). Also shown is the 6(7) function (dot-dashed line) calcu-
lated from our autocorrelation function without the ~xponential correction.

SL condition from Eq. (2.44). Figure 9 shows
these results in the matched and mismatched Hart-
mann-Hahn conditions.® We remark that, because
the amplitude of the dilute spin magnetization M¢(7)
in the short-time domain is proportional to the in-
verse spin temperature of abundant spins, the sig-
nals which are measured in the ADRF case are big-
ger than those in the SL case,

The short-time behavior of two spin systems in
interaction for a many-body I system with strong
interactions between the components can be under-
stood as a limiting case of an /-S spin pair. In the
last case, for the matched Hartmann-Hahn SL con-
dition, a coherent exchange of energy between I
and S spins takes place with frequency 1b,,.°"% As
additional I spins are brought into interaction with
the S spin the coherence is damped and a degenerate
transient oscillation like that plotted in Fig.9 oc-
curs, When the Hartmann-Hahn condition is vio-
lated the oscillation frequency for a spin pair be-
comes (Aw?y, +3b2,)" 2 and the step-plus-oscilla-
tion begins to be evident (see Fig, 9) in the many-
body limit. If wes;—~0, as in the ADRF condition,
and wey, s is large compared with the width of the
low-resolution S-spin resonance line, the oscilla-
tion frequency depends only on wg,, s as Figs. 7
and 8 prove,

B. Information-theory approach

The functional form of a spectral density function
can be efficiently approximated by using only its
moments in the framework of information theory
and error-bound methods, %7 We shall deal here
only with the former approach in its nonclassical
version, *® but the error-bound method works equal-

37, 38

ly well.

In the high-effective-field condition, which cor-
responds to the SL case, the actual distribution of
frequencies for the spectral density function
JIx(Awee) iS to a good approximation symmetric
around Aweey=0. The odd moments for this dis-
tribution of frequencies can be considered equal to
zero., The even moments are given in Table III for
a CaF, crystal in a double-resonance experiment in

0.02
Ca F2
ADRF
g Holl [111]
w
s
0.0~
r
12
s
—
Ho lI[100]
0 | | |
o} 0.1 0.2 0.3 0.4
7 (msec)

FIG. 8. Transient oscillations in the rotating frame
of normalized S-spin magnetization calculated from Eq.
(2.45) and Table V for a CaF, crystal. ADRF conditions
are assumed with Vess,s=12.6 KHz as in Fig. 7.
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FIG. 9. Short-time behavior of normalized S-spin
magnetization calculated from Eq. (2.44) and Table V
for a CaF, crystal, in matched (Avees=0) and mismatched
(AVesp=6. 3 KHz) Hartmann-Hahn SL condition. The
transient oscillations in the rotating frame for the ADRF
case with vese,5 =12.6 KHz is also represented (see Fig.
8) for comparison.

which I spins are irradiated exactly at resonance,
(6;=7/2). We remark here that apparently the ra-
tio My/(M,)? is from Eqgs. (3.17) and (3. 18) inde-
pendent of 6;, In reality, as 6, approaches the
magic value of 6, = cos”!(1/V3), the expression

(2. 40) for the dipolar fluctuation autocorrelation
function is no longer valid and so neither is the
definition of the moments. Comparing our values
of the moment ratios given in Table III with the cor-
responding values for CaF,, we see from the infor-
mation theory of Powles and Cazazza®**® that the
most probable spectral density shape which we ex-
pect is a Gaussian, as indeed was proved by direct
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computation in Sec. IITA,

In order to analyze how surprising the spectral
density exponential shape obtained experimentally®
is in the low-field case for the CaF, single crystal,
we use the nonclassical information theory® from
which the most probable cross-relaxation spectrum
is in our case given by

A
explag + o W+ 0w’ + axw’) = 1

75w)= , (3.19)

where A and a; (=1, 3) are related to the finite in-
formation available, the moments M, (n=0, 4) of
asymmetric spectral density function. Two diffi-
culties appear if a concrete evaluation of the most
probable T7i(w) spectrum is intended. The first
is related to the theoretical evaluation of odd mo-
ments, which canbe done only if the dipolar fluctua-
tion autocorrelation function C,(7), Eq. (2.41), is
known. Thus M, and M5 were estimated from ex-
perimental cross-relaxation spectra, Fig. 4(a),
and from our theoretical cross-relaxation spectra,
Fig. 6, for [111] and [100] orientations, respec-
tively. Also it is difficult to obtain analytical rela-
tions for A and «; in terms of M,. This problem
was circumvented by a computer searching pro-
cedure in which a unique set of A and o; parameters
were fitted to the moment value (see Table VI).
The plot of Eq. (3.19) with the parameters from
Table VI is given in Fig. 6. In spite of the approx-
imations made in the evaluation of cross-polariza-
tion spectra, [Eq. (3.19)], good agreement exists
with the Gaussian memory-function approach and
so with the experimental results.® Therefore, at
least for the calcium fluoride structure, the most
probable cross-polarization spectrum which we ex-
pect in ADRF double-resonance experiments is
close to an exponential. The functional form of this
spectrum seems to be insensitive to the sample
structure, as measurements of the cross-relaxation
spectra of *C nuclei in some organic solids
shows, 213

C. General remarks

We were originally stimulated to study this prob-
lem in part by the remarkable adherence of the ex-

TABLE VI. Parameters in the cross-polarization spectrum, T3(w)=A4[exp( 2 iaiw‘) —1F* (6=0,3). The ADRF case
is considered for a CaF, crystal. The moments M; and M; are estimated from the experimental data [Fig. 4 (b)] or the
theoretical spectrum (Fig. 6) for [111]and [100] orientations, respectively. M, and M, are from Table II. The numbers
in the brackets are the moment ratios obtained with A, a,, @, @,, and ag values from Eq. (3.19) in the computer

searching procedure.

Direction of H, A 108, @ (107" sec) @, (10712 sec®) @y (10-15 sec®)  My/(Mp? M,/ (M)} M/ (M)t
[Loo] 0.69 4 2.2 1.6 0.28 2,28 8.68 46,0
(2.28) (8.68) (46.0)
[111] 57 15 6.9 0.12 3.9 1.95 5.72 22.3
(1.95) (5.72) (22.1)
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perimental dipolar fluctuation spectra of MacArthur
et al. to an exponential form; any such simple be-
havior must be underlain by a single physical ex-
planation. Unfortunately, the approaches we have
taken (memory functions, information theory) nec-
essarily sacrifice “understanding” for tractability.
However, the results we obtain make it appear that
the exponential spectrum is only an approximate
accident characteristic of certain special cases

and not a general phenomenon understandable on the
basis of a simple picture, Therefore it is not pos-
sible to say, any more than in other aspects of
line-shape theory, what definitive property of the
spin system, governed by its lattice structure, is
manifested by the measured spectral character,

IV. THREE SPIN SPECIES

The double-resonance experiments can also be
performed in situations in which a third abundant
spin species X is present, together with /- and S-
spin systems which are prepared and put in contact
by radio-frequency irradiations close to their Lar-
mor frequencies, Using the general theory devel-
oped in Sec. II, a quantitative study of the effects
of the third spin system on I-S spin dynamics is
possible, Here we limit ourselves to a qualitative
description in the high and low effective fields
which are cases of experimental interest. Gener-
ally the presence of the X-spin system has three
main effects: (a) The first is related to the change
in the heat capacity of the I-spin system through
changes in the local field. (b) The second effect of
the X spins is to open an additional cross-relaxa-
tion path via the S-X interaction. (c) The dipolar
fluctuations in the X-spin system will affect the
dipolar fluctuation spectrum of I spins through I-X
coupling,

To analyze the importance of these effects let us
consider first the SL case with high effective fields
compared with the width of the I- and S-spin reso-
nance lines. In this case the (a) and (b) effects are
reduced and the I-S dynamics are less affected by
the presence of the third spin system if we neglect
its coupling with the lattice. This can be seen, for
instance, by evaluating cross-polarization spectra
from Eq. (2.36) in the hypothesis of a pure X -spin
Zeeman Hamiltonian and small I-S and X-S dipolar
interactions between the spins. The cross-polariza-
tion spectrum has the form

T7§ =3 5in®0 sin®6; M, 57 J% (Aw er¢)

+8in®0s M, sxIzWetr,s) 4.1)

where M, sr and M, sx are the VanVleckz second
moments of the S magnetic-resonance line deter-
mined by S-I and S-X dipolar interactions, respec-
tively. The J%4(w) (@=X,Z) spectral density func-
tions are defined as in Eqs. (2.39), (2.40), and
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(2. 41), but with 5¢}; replaced by the Hamiltonian

360 +3¢0y +3C%x. The same Hamiltonian character-
izes the spectral density functionJ% (w), whichhas the
same functional form as J% (w) but with the 3;5,1;,
operator replaced with the corresponding operator
for the X-spin system. As in to the case of free-
induction decay in a system with different spin
species, %3 we do not expect drastic changes in
functional form of cross-relaxation spectra com-
pared with the I-S case. In conclusion, only

the (c) effect is dominant compared with (a) and
(b) in the SL case. This effect will have a large
influence on the I-S spin dynamics, for instance,

in the case of an S-X spin pair. A direct evaluation
of short-time behavior using Eq. (2.29) also shows
a small X-spin effect mainly determined by its high
spin temperature compared with the I-spin-system
temperature.

Completely different I-S spin dynamics take place
in general for the ADRF case in which the presence
of X spins has a large effect. Now the cross-po-
larization spectrum has the following form:

T7§ = Sin®0s My, 51 J 7 (wete,s) + SIn*05 My sx J F(wete, s)-
4.2)

Similarly for transient oscillations in the rotation
frame, we obtain

T ¢
Mg(7)/Mg, e = sin®0s (1+ €)f dt 1/{ ldtz
0 0

X €oS(Were, stz)[Ma, s1C ()
+ My, sxCEt5)] (4.3)

where € is the ratio of the S to I +X heat capacities.,
In derivation of the above equations from the re-
sults of Sec. II it had been considered that the I-
and X-spin reservoirs are in thermodynamic equi-
librium before the contact with the dilute spin sys-
tem, The cross-polarization spectrum, Eq. (4.2),
consists now of a weighted sum of two spectral
density functions. In the short-time domain the S-
spin magnetization oscillates with the frequency
Wete,s, but this transient behavior has a step value
and a damping dependent on both I and X dipolar
fluctuation autocorrelation functions.

In order to analyze how the functional form of
spectral density functions J ? and J% changes. in the
presence of the third spin, we remark that the
second moments of these distributions are not af-
fected by the 30y +3C%x and 5Cfx +3C%; Hamiltonians,
respectively. Because that is not true for the
fourth moment, we expect a change in the ratio
M,/ (M,)? and so in the functional form of the spec-
tral density. Ify;> vy the shape of J5(w) remains
close to an exponential, butJ%(w) will approach a
Lorentzian form. An opposite situation occurs when
v <<vx. This last case corresponds to the experi-



11 DYNAMICS OF CROSS RELAXATION IN NUCLEAR MAGNETIC...

ment of Lang and Moran!! in LiF with 7="Li, S=°Li,
and X = ®F, From this qualitative discussion we
cannot confirm or deny the experimental Lorentzian
cross-relaxation spectrum obtained for LiF under
ADRF conditions. Only a concrete evaluation of
Eq. (4.2) for this system will show if our theoreti-
cal cross-relaxation spectrum is a good approxima-
tion in this case. The second-order perturbation
theory which works very well for CaF, does not
seem to be any longer valid in the LiF case because
of the relatively large value of magnetogyric ratio
vs/v; for the ®Li-"Li spin system. Consequently,

a higher-order perturbation theory has to be applied
in order to describe the cross-polarization dy-
namics,

V. EXPERIMENTAL CONSEQUENCES

One of our goals in this work was to understand
the factors which govern the sensitivity with which
the NMR spectra of rare spins, polarized by con-
tact with abundant spins, can be detected, From the
view point of signal-detection theory, this sensi-
tivity is governed by the magnetization Mg ac-
quired in a typical thermal contact and by the total
rate at which this acquisition can be repeated.

That is, one can define an experimental quality
factor Q =M2%/Tr, where Ty is the time between
thermal mixing (and measuring) events. In general
Mg and Ty, represent suitable averages over an
epoch which is capable of exact and periodic repe-
tition,

First consider the conditions placed on Mg by
thermodynamics for a single thermal contact, be-
fore which the I spins have their Curie magnetiza-
tion at the lattice temperature T,; My =GH,/T,,
and the S spins are completely disordered. The I
spins are first supposed to be demagnetized isen-
tropically to a field H;, which will be the effective
field [HY + Ho - wr/77)?]"? in the case of strong spin
locking or the (truncated) local field HL, in the case
of ADRF. Thermal mixing then occurs with an ef-
fective field H.y, s applied to the rare spins, the
total spin energy being conserved. At equilibrium
one easily finds

Mgs/Mgs=tyr/ysn/(1+€n?) (5.1)

where €=NsS(S+1)/NI(I+1) and n="ysH o, 5/v;H .

If one’s goal is to maximize this quantity, without
regard for the time required to reach equilibrium
or other factors, one chooses 7’ =(¢€)"V2, leading
to

(M s/Mos)mex =501 /ys)E V2 (5.2)

A situation of considerably more widespread prac-
tical interest than the **Ca-°F case described above
is the one in which I='H and S = *C at natural iso-
topic abundance in a typical organic solid, for
which €*!~ 150, For this case the maximum trans-
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fer is for n~ 12 and gives (Mg/Ms)max™ 24.

It is the large value of 7 for which maximum Mg
is achieved that requires one to examine the role
of the time T;g characterizing the approach to
equilibrium. Figure 6 illustrates the strong de-
pendence of T;s on 7 and the fact that this depen-
denceis quite different under SL and ADRF condi-
tions, For sufficiently large values of 7 it would
appear in general that ADRF is to be preferred on
the basis of rate of equilibrium. However, such
rates may in either case become so slow in prac-
tice that limits are set by factors not yet consid-
ered, in particular spin-lattice relaxation of the I
spins which competes with the cross-polarization
process. Suppose we consider a single thermal
mixing, as above, but adjust 1 so that T;g=Tp; in
the ADRF case or Tys="T,; in the SL case.® For
simplicity we represent the cross-polarization
spectra as exponential in the ADRF case and Gauss-
ian for the SL case, as described above, With a
little manipulation from Egs. (2.38) and (2.42), one
finds

(Mi) Y My

Mos) apr¥ ¥s 1+€n 5. 3)
M= (Tclw;,r)'lln(TTMz, s17e. T 101/2)

and
(),
Mys)sy vs 1+em (5. 4)

N2=1+2(T;,w u)-l[ln(‘/;Ma, SITczTIpI/Z)] ve

For simplicity the spin-lattice relaxation has been
treated as though M; were unaffected by it for a
time T} and then disappeared altogether.

A direct comparison of the efficiencies of SL and
ADRF procedures requires a knowledge of the ap-
propriate correlation times and spin-lattice re-
laxation times. One knows that T',p; < Ty,;, but
these times are often of the same order of magni-
tude. Then for the **Ca-'?F system, for instance,
in the [111] orientation of the CaF, crystal, from
Tables IV and V and for H,;=5 G with Typ;~ T,
we get, from Eqgs. (5.3) and (5.4), (Ms/Mys)apry/
Ms/Mys)s.~15. Even if Tjp; is smaller than Ty
in practice the mismatch ADRF experiment is pre-
ferred because of the presence of only one rf field
in the probe. This fact, together with exponential
character of cross-polarization spectrum, leads in
general to a gain in sensitivity of the mismatch
ADRF experiment compared with the mismatch SL
case,

But is a single thermal mixing during the spin-
lattice lifetime of the I spins a tactically optimal
procedure? One could in principle compare this
procedure with one in which » thermal contacts are
made in the same total time, taking into account
the buildup of noise energy proportional to % in the
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process of co-addition of #» free-induction decays.
Such a comparison requires consideration of a num-
ber of sample-dependent parameters and is perhaps
unprofitable, Calculations based on the CaF, situa-
tion support a slight advantage in multiple over
single contacts.

We can also compare a process of isentropic
transfer of polarization from the abundant spins
prepared in an ADRF condition to the dilute spins
with the irreversible transfer performed in a mis-
match ADRF experiment in the same final effective
field. In the first case the order is, at the begin-
ning of the experiment, transferred from the Zee-
man reservior of I spins to the dipolar reservoir
represented by the total I and S dipolar Hamiltonian,
As I spins are demagnetized they become cold, but
the S-spin system is still at a very high effective
spin temperature and at some value of H; thermal
mixing must begin between I and S at different tem-
peratures, This “cannot be isentropic. Of course,
the “irreversibility” is small because Cg<< C;, At
the end of this process the I and S spins are both
ordered in their local fields and this order can be
isentropically (and thus reversibly) transferred to
the Zeeman reservoir of the rare spins by increas-
ing the intensity of the S rf field, for instance,
from zero to a final value w,s/ys in such a manner
that the local isentropic condition, dw,s/dt < w5/
Trslwqs), is satisfied.

Let us suppose that a complete transfer is indeed
possible. The conservation of entropy requires that

Spetore =Satter » (5.5)

where we assume that Sy, reflects I-spin order
only, and S,4¢er has all order transferred to the S
spins. Then we find

(M s/Mog)y = vr/vs)e™ 2

From Eqgs. (5.2) and (5. 6) we can see that if only
thermodynamic considerations are involved the
isentropic transfer of order is better than optimum
thermal mixing by a factor of 2. We note that for

(5.6)
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Saster) to be neglected compared to Sgpie-(S) it is
required that CgH3/T% > C HE/TE, i.e., N> €12,
For the *C-'H system in most organic compounds,
€=~k and consequently 7> 12, which is a more
severe restriction than for optimum thermal mix-
ing.

If a partial isentropic transfer of order is per-
formed in a field w,s="Mw M 1, from the conservation
of the entropy principle we have

(.ot
Mos/ 1 vs (1+€m%)72

From Eq. (5.7) it follows that an isentropic trans-
fer of polarization is now better than an optimum
thermal mixing (79 =1/V€) by a factor V2, for the
same final value of the mismatch parameter 7.

But the interval of time in which these processes
take place has to be taken into account, Thermal
mixing requires a time T;s(n‘®w;;). To reach the
same value of effective field 7'Pw;, the isentropic
transfer of polarization requires a time Ty,

> T;s(M®w;,); so the gain of V2 is illusory. We
have to consider also the fact that the ratio T,/
T,pr, which has to be of the order of unity to make
the experiment feasible, is increasing approximate-
ly exponentially with the value of the effective mag-
netic field applied to S spins. Consequently, it fol-
lows that the quasi-isentropic transfer of polariza-
tion is in general less efficient than the mismatched
ADRF thermal mixing experiment, We note that it
is possible to increase the value of the mismatch
parameter and at the same time to reduce the rf
power dissipated in the probe by using an off-reso-
nance isentropic increase in the S effective-field.
This is not so effective in practice because of the
more rapid increase in the Ty./T p; parameter
compared with on-resonance conditions,

(5.7)
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