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Dynamics of cross relaxation in nuclear magnetic double resonances
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A theory, based on the formalism of memory functions, is developed to describe the rate of thermal

mixing T,s between two spin species, one abundant and one dilute, in double-resonance experiments on

solids. Cross-polarization spectra (dependence of T,s' on departure of rf field strength from conditions

for resonant mutual spin flip) are computed for Cap, in two experimental limits: one where the
abundant species is spin locked and the other where it is demagnetized in the rotating frame. Results

for the latter case are successfully compared with experimental data of McArthur et al. Modifications

expected from introduction of a third (abundant) species are discussed. An alternative theory, based on
information theory, is also presented.

I. INTRODUCTION

The term "spin dynamics" refers to the process-
es by which a system of spins, subject to some in-
ternal interactions but isolated from other degrees
of freedom (the "lattice" ), proceeds from an exper-
imentally realizable but otherwise arbitrary initial
state toward a final state of (presumed) thermody-
namic equilibrium. This progress is imagined to
be monitored by means of measurable macroscopic
quantities such as magnetizations or energies. Be-
cause the time dependence f(f) of any such quantity
can always be formally represented through a Fou-
rier transform as a generalized spectral response
function f (co), discussions of these phenomena can
be cast in the language either of relaxation or of
line shapes. The richness of phenomena which can
be exposed in magnetic xesonance experiments has
led to an enormous theoretical literature on spin
dynamics since the early phenomenological descrip-
tion of Bloch' and the moment expansions from first
principles of Van Vleck.

The present paper is concerned with a particular
situation of current experimental interest, one in
which two different species of nuclear spins, one
(I) abundant and the other (8) dilute, come to mutual
equilibrium through a process of cross relaxation
in a time denoted by TIS. Our direct motivation is
connected with a desire to understand and design
optimal experi. mental procedures which exploit this
cross relaxation to enha. nce the sensitivity with
which the NMR spectrum of the rare spins can be
detected. Such detection can be made indirectly
by observing the loss of I-spin order when the S-
spin resonance is excited, or directlys'9 by observ-
ing S-spin magnetization transmitted from the I
spins. While an understanding of the cross-relaxa-
tion process is indispensable to both, we sbaQ em-
phasize the point of view appropriate to the latter.
In a typical experiment, the I spine, having first
been brought to their equilibrium Curie magnetiza-
tion Mal by exposure to a strong field Ho in the labo-

ratory, are brought to a spin-locked condition '

in a resonant rf field II», where they are charac-
terized by a low Zeeman spin temperatux'e in the
rotating frame. By applying a second rotating field
of strength H, q at (or near) the S-spin Larmor fre-
quency, a thermal contact is established, ' and a
common spin temperature is reached with time con-
stant Tlz. This time depends in particular on the
values of H, I and 8», and is shortest when the
Hartmann-Hahn condition ylII il = ysII» is satisfied.
When II» is made larger than this condition speci-
fies, the equilibrium is slowed down, but at the
same time the value of the S-spin magnetization is
enhanced, since it depends on rf field and spin tem-
perature 8 through Curie's law, Mz =CzH, z/e. Thus
optimal design of an experiment may require depar-
ture from tbe Hartmann-Hahn condition, and re-
quires a knowledge of the dependence of TI& on

H». %e shall refer to the variation of Tl"z with
o) is -(o jr =ygII, g -yIII„as a noss-polanzatson
SP8Ct~tPl,

Experimental and theoretical knowledge of such
spectra is in a fragmentary state: Lang and Mor-
an" have made some measurements, but in a sys-
tem where the presence of a third (abundant) spin
species complicates the situation (see below). Mc-
Artbur, Habn, and Walstedt have made precise and
detailed measurements in CaF~ crystals (I= ' F,
8= Ca) in a slightly different regime: the I spine,
before thermal contact, are adiabatically demag-
netized in the rotating frame so that they are or-
dered only with respect to their local fields H~I.
TIs 1s then shortest when ylHL, r =ys&is McArthur
ef; a/. have called the dependence of Tl& on Q) is a
"dipolar Quctuation spectrum. " Experimentally
they observed that over a very wide range this
spectrum is exponentza/, i.e. , is associated with
an apparently Iorentsiae time correlation function.
81mllal behav101 has been obsex'ved 1n some ox'gan-
1c sobds ' ' '

This remarkable result, quite apart from its
significance for experimental design, calls for the-



oretical understanding. No theory has up to this
point existed which attempts to predict the function-
Rl form of cross-polRX'1zRt1on spectx'R, Hartmann
and Hahn accounted fox' the general magnitudes of
TI& by a perturbation-theory approach, invoking the
spin-temperature hypothesis fully, and assuming
ad hoc a Gaussian form for the correlation function
of the fluctuating perturbation. I uric and Slichter
adopted a somewhat similar approach, assuming a
Gaussian I-spin "line shape»» and a 5-function shape
for the S-spin. MeArthur et al. ,s analyzing their xe-
sults for the case of adiabatic demagnetization in the

rotating frame mentioned above, simply yarame-
trized the experimentally observed exponential fox'm

of the cross-yolarization spectrum by means of a
moment analysis.

It is worth pointing out that cross-polarization
spectra in double resonance experiments are of
general theoretical interest because of the richness
of different experimental regimes which ean be
realized, some of which are of greater theoretical
tractability than erose-relaxation problems con-
s1dered 1n the past. ' The r1chness der1ves from
the fact that properties, (e.g. heat capacities) of
the two spin systems, regarded as thermodynamic
entities, ean be manipulated independently by appli-
cation of rf magnetic fields, eontinuousor pulsed, at
or near their respective Larmor frequencies. Sim-
ilarly, the nature and strength of the effective cou-
pling mechanism, as well as the initial states of I
and 8 systems, can also be varied by the experi-
menter.

EZRct cRlculRtlon of the required correlation
functions of dynamical variables is in general not
possible for strongly coupled many-body systems;
such cRlculat1on 1R1ses conceptuRl Rnd mathemati-
caldifficulties typicalof a certain class of many-

body problems in which the "self-energy" effects
due to the interaction are large compared to the
"unperturbed single-particle energies. " To over-
come this difficulty two Inain appxoaehes have been
elaborated. One involves an attack on the micro-
scopic problem from first principles, making ap-
propriate mathematical approximations. A Dum-

ber of calculations of this type, applicable to spin
systems, have been attempted. '~ In particular»
the theories of Resibois and DeLeener' ' and re-
cently Reiter, Rmongothersbased on Rn infinite-
order yex'turbation expansion with selective resum-
mation, have met with some success, Also, fox

the problem of the usual NMR absorption line shape,
a theory based on a Dyson expansion has been suc-
cessfully employed to calculate the short-time be-
havior of the free induction decay. ~6 29 The cox're-
lati. on functions appropriate to the cross-po1ariza, -.

tion "line shape" are different, and, as we shall
see, this procedure is no longer applicable.

The other: procedure is to adopt what amounts to

a "fitting scheme»» ~ in which one postulates a
certain plausible Rnd perhaps defensible shape
(e. g. , Gaussian) for some suitable function (e.g. ,
a spin correlation function, a memory function,
etc. ) and adjusts parameters to fit certain rigor-
ously calculable quantities such as moments. This
procedure is esthetically less pleasing from a fun-
damental point of view, but. may be very useful if it
succeeds where other methods fail in predicting ex-
perimental results. We adopt this approach in the
present work, within the framework of a memory-
function formalism. We show that exact knowledge
of a few moments, together vrith R Gaussian memory
function, reproduces a wide variety of heretofore
unexplained experimental results with great accura-
cy. An alternative calculation based on information
theory, " is also presented.

II. BASIC THEORY

A. Halniltonian and frame of reference

In this section we recall some details related to
the double-resonance Hamiltonians and representa-
t1ve quantum-mechanical 1nteract1on representa-
tions for later reference. Special attention will be
given to the relative magnitudes of different terms
in the total Hamiltonian.

The most common spin system encountered in the
double-resonance experiments ' contains two spin
species I and S with different magnetogyric ratios
'Q and /8 The SRIQple» wh1ch contR1DS Ng Rnd Ng

spins (Nz»N~), is placed in a large static mag-
netic field Ho. The field Ho is supposed to be along

the Z axis. %8 discuss only the situations in which

we may neglect the relative motions of the spine,
and all the spin-lattice relaxation times of both

spin species are taken to be infinitely long. '

The high- field double- resonance" Hamiltonian
in the laboratory reference frame is-

X=Xq+Xz+Ãqs+X, & (f)

The HamiltonianÃ1 is defined as

Kg —Xgl +X@I+XII »

whex'8 Xgl = - (goIIg» (g)(g =pgHo 1'epresents the Eee-
man Hamiltonian» $Cl is the chemical-shift Hamil-

tonian, and 3CII describes the magnetic interactions
between I sp1ns. In accordance w1th many exyer1-
mental S1tuRt1ons» especlRlly for pl'otoQs» the$0

chemical-shift contribution to the total Hamiltonian

of the abundant I spin is very small and can be dis-
regRl ded

The Hamlltonlan BC' which chR1 Rctex'izes the di-
lute spin system is

+8 +28++c8+ Css

whex'e the terms have the same significance as in

Eq. (2.2). Because we are interested in the be-
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i st =[5C,p(t)] . (2. 5)

A solution of Eq. (2. 5) can be obtained if we de-
scribe the statistical ensemble in a new quantum-
mechanical representation defined by the canonical
transformation

p»(t) = (TR)p(t)(TR)',
where

(2 6)

R=R~Rs R~= e "&z R =e s z (2. 'I)
Sy

T=TrTs Ts=e ~ Ts=&" s y (2. 6)

The canonical transformation defined by Eq. (2. 8)
tilts the Z axes through the angles 8z = tan '[~ U/

(&@os —&oi)] and 8s= tan [&o|s/(&sos (ds)], In the
tilted rotating frames defined by Eqs. (2. 6)-(2. 6)
the Hamiltonian of the I-S spin system obtained
from Eq. (2. 5) is

3Crs = (TR)|C(TR) +i (TR)(TR) (2. 9)

havior of spin systems on a, time scale small com-
pared with the spin-spin relaxation time of the S
spine, we can neglect the term Kss in Eq. (2. 3).
This is also equivalent to considering the amplitude
of the effective field applied to the dilute spin sys-
tem to be much greater than the local field pro-
duced at one particular S spin by the other S spins.
If high-resolution spectra of rare spins are used
for investigation of the double-resonance spin dy-
namics the chemical-shift (or Knight-shift) contri-
bution to the Hamiltonian 3C~ has to be taken into
account. In this case the S-spin system consists
of a quasi-independent subsystems, where e repre-
sents the number of resolved lines in the high-reso-
lution spectrum. For each S-spin subsystem, with-
out loss of generality, we can include the contri-
bution of the chemical-shift Hamiltonian in the Zee-
man termi Xzs = —&uosSz (+os =ysHo)

The Hamiltonian Kz& describes the interactions
between I and S spin systems. If we consider the
magnetogyric ratios yz and y~ to be different, the
last term of Eq. (2. 1), which describes the inter-
action of the spin system with radio-frequency mag-
netic fields of amplitudes H~ arid H, ~ and frequen-
cies ~z and ~~, respectively, has the form

Z„(t)= —2'» cos&ust —2~isS» cos&st i (2 4)

where ~~=y~H~ and v» =y&H,&, The total spin
operators are f=/~I, and 8=/„8„. For convenience
we have used in Eqs. (2, 1)-(2.4) units in which
5= 1.

The time evolution of the statistical ensemble
having an explicitly time-dependent Hamiltonian

X can be described by a density operator p(t) which

satisfies the Liouville-von Neumann equation

A concrete expression for X~„can be obtained from
Eqs. (2. 9) and (2. 1)-(2.4) in which we consider on-
ly pure dipolar couplings between the spins:

/Crt ~sff, IIz ~etf SS z+Ps(cos I@II+3CEI +Kg, i

(2. 10)

where the effective frequencies are &o,2, z = [&o u
+&&s] and &~f s= Ebs+~&s] ~ with +ooi =&ar

s a d h~ s = Os — s The o f resonance param-
eters can also include the chemical-shift effect.
In Eq. (2. 10) the zero superscript indicates a trun-
cation or perp-order average4' of the dipolar Ham-

iltonian

3Cgg = ~ b;y(I( ~ I~ —3I;2I)2)
j&j

with the interaction factor

b, ) =y~ior, q 'P2(cos8gq)

(2. 11)

The Hamiltonian 3C~ originates from I-S spin in-
teraction and has the general form

3Co cos8I cos8s Z b' ilzS z+ sln8j sln8s +bi I «S~
&,m

™m
f~m

—sin8z cos8s g b,„I,«S~z

with

—cos8z sin8sgbs I,zS„x
fs tel

(2. 12)

XIl 2sin 8z ~br&(IL»I&z+ I&zI&x)
(ns) 3 ~ 3

—2»n'8s +biz(I*»igx -I;rior) (2. 13)

can be discarded in Eq. (2. 10) by truncation. 4' This
term is responsible for coupling between Zeeman
and secular-dipolar I-spin reservoirs and establish-
ment of a common spin temperature. ' "6' 3 It is

b~ = —2yryshr, „'P2(cos8, )

In the above expressions the indices (i,j) and m re-
fer to the I and S spins, respectively. r;& is the
distance between i and j spins. 8&& is the angle be-
tween the vector r&& connecting i and j spins and the
applied magnetic field H&g.

The spin dynamics in a double-resonance experi-
ment can be, in general, analyzed in two extreme
conditions. The first corresponds to high effective
fields and is realized by transferring Zeeman order
of I spins from laboratory to rotating reference
frame using spin locking (hereafter referred to as
8L) procedures. " The second case corresponds to
a low-effective-field condition for I-spins and is
achieved by adiabatic demagnetization in the rotating
frame 2 (hereafter referred to as ADRF).

In the SI. case the nonsecular part of the dipolar
Hamiltonian
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now possible to separate the spin systems involved
in a double-resonance experiment into two subsys-
tems characterized by the Hamiltonians X, and K3
defined by

Kg — (Dggf $Iz + Iz(c os ey)Kyy
(2. 14)

p ef f s SSZ

coupled by a Hamiltonian K& given in Eq. (2. 12).
The general form of K makes it possible to discuss
ADRF as a limiting case of the SL procedure for I-
spin preparation. If H» is changed adiabatically

l
from the value H»»H» to the value H»«H»,
where H» is the local field at the site of I spins in
their rotating frame, the tilt angle e~ can be con-
sidered as approaching the value zero. Thus the
Hamiltonians of interest in the ADRF case become
from Eqs. (2. 12)-(2. 14)

0
1 /I& +3 jeff sSs y (2. 15)

K& ——cosezgb&gqzS z — is&ngzb& I&zS z
imam $sm

Because Nz»Nz and/or yz»yz, the terms which
are included in the $C& Hamiltonians are smaller
than either 3C, and 3C2 and can be considered as per-
turbations. This imposes a further restriction to
the amplitude of the effective magnetic fields ap-
plied to the S spins in the sense that H,«& has to
be large compared with the local field at the site
of dilute spins determined by I-S interaction in the

rotating frame. For such a small coupling between
the subsystems the secular cross-coupling dipolar
term/;, „5;„I;zSz can be arbitrarily associated
with the Hamiltonians X&. These Hamiltonians,
Eqs. (2. 12)-(2.15), are very general in the sense
that they contain terms which induce multiple quan-
tum transitions' ' in the low and high orders of

perturbation.
We remark that the forms of the above Hamilto-

nians, Eqs. (2. 12), (2. 14), and (2. 15), will be dif-
ferent in the intermediate effective field condition,
H«&™H&»or if the abundant spin system is sub-
jected to a periodic external perturbation in the
form of intense radio-frequency pulses. In the last
case the I-spin system ean be properly described
by a time-independent average Hamiltonian4~ and a
spin temperature in a frame of reference defined

by the external perturbation.
The presence of quadrupolar interactions for I

and/or S spins in the Hamiltonian of Eq. (2. 1) will

introduce new features of double-resonance dynam-

ics, especially in low-field conditions or where
nearly degenerate transitions exist for other rea-
sons. A detailed analysis of this case will be re-
ported elsewhere.

B. Spin dynamics

The spin systems which participate in a double-

resonance experiment can be described by their
thermodynamic coordinates which are represented
by the quantum-mechanical average of the observ-
able operators. The time evolution of the thermo-
dynamic coordinates as a function of the conditions
of experimental preparation and the physical char-
acteristics of the subsystems can be obtained from
the Liouville-von Neumann equation, Eqs. (2. 5)
and (2.6), for the density operator of the whole
system. This can be done by using very general
quantum- mechanical theories formulated in the
following manner: (a) Both subsystems described
by quantum-mechanical operators are treated in a
symmetrical way. (b) No statistical assumption is
made about the subsystems in interaction. In par-
ticular, the relative "size" of the spin systems can
be arbitrary and their states can deviate arbitrarily
from thermodynamic equilibrium. Also the as-
sumption of an instantaneous canonical distribution
description for the subsystems is not involved. (c)
The coupling between the subsystems is not neces-
sarily a smaQ perturbation.

In a double-resonance experiment the subsystems
are represented by I- and S-spin systems. The
thermodynamic coordinates ' are defined by the
quantum-mechanical averages of the operators,

1)t ~+ipT& (tk~ (KR)t Tr (KR pTB (f )I 0 (2 16)

where K, and K, are given by Eqs. (2. 14) or (2. 15).
From the definition of the thermodynamic coordi-
nates, Eq. (2. 16), it follows that the short- and

long-time-scale behavior of the system are to be
described in the tilted-rotating-frames interaction
representation. To observe the macroscopic vari-
ables it is necessary to switch from tilted rotating
frames to the observation reference frames which

are represented by conventional rotating frames.
In the indirect' ' procedure of double resonance the

signal detected in the rotating reference frame of
the abundant I-spin system is proportional to the
Zeeman' or dipolar energy described by the (K,)~
coordinate. The time evolution of Zeeman coor-
dinate (Kz)~ can be observed using the direct-de-
tection version of double resonance in the rotating
reference frame of the dilute spins. All these ex-
pla, in requirement (a) of the theory.

The I-spin subsystem is generally represented
by an abundant spin system with strong internal
interactions. The large heat capa, city of the I-spin
system compared with the S-spin subsystem, fast
correlation, and fast-spin diffusion approximations
will make the abundant spin system behave as a
thermal bath, characterized by a spin tempera-
ture. The presence of molecular motion" ~~ or the

reduction of I-I spin interaction by coherent radio-
frequency perturbation will radically change the
statistical properties of the I-spin system by re-
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ducing its heat capacity and increasing the corre-
lation time which characterizes its dissipative be-
havior. Condition (b) is also related to the fact that
for the dilute spin system during the irreversible
exchange of energy with the I-spin system an in-
stantaneous canonical distribution and an instanta-
neous spin temperature cannotbe defined. Because
the coupling between S spin is very small compared
with I-S cross coupling, the time evolution of the
off-diagonal elements of the reduced density matrix
operator of the dilute spins will decay on a time
scale comparable with diagonal elements. This
fact prevents us from treating the dynamics of spin
systems by using a thermodynamic model based on
the spin- temperature formalism.

The last condition (c) would permit the analysis
of spin dynamics in the cases of moderately dilute
spins, relative strong coupling, low-effective-
fields, or multiple-spin transitions.

An exact kinetic equation for the thermodynamic
coordinates defined by Eq. (2. 16) has been derived
in an elegant manner using orthogonal operator ex-
pansions and projection-operator technique ' by
Shimizu. A natural choice of the orthogonal op-
erators is in our case X, and Ka defined by Eqs.
(2. 14) and (2. 15). The orthogonality of the opera-
tors is defined in the following sense:

S«) = S 0(t}SP(t),

where

So(t) = exp[- i(K, +K2)t]

(2. 22)

(2. 28)

t
S t ttT)exP(-t dt )ttett ) —(Ptt „)tt )]), (2. td)

0

operators rather than states of a system, i.e. ,
Op(t) =[0, p(t)] and e ' 'p(t) =e ' 'p(t) e' '.

If we suppose that [K„Ka]= 0, the first inhomo-
geneous term in the right-hand side of Eq. (2, 20)
vanishes. The second inhomogeneous term of the
integro-differential equation (2, 20) is connected
with the initial conditions and is, in general, dif-
ferent from zero. In the study of double-resonance
spin dynamics the systems can be prepared initially
in different conditions. For this reason an analy-
sis of the inhomogeneous term behavior as a func-
tion of statistical properties of the subsystems and
initial conditions has to be done We suppose first
that an arbitrary coupling between spin subsystems
exists. In this case the second inhomogeneous term
is different from zero for the functional form of
experimental interest for pTR(0). To analyze the
nonpathological case of small coupling it is more
convenient to rewrite the propagator S (t), Eq.
(2. 21), in the following form:

Tr/KPC, ]=0 . (2. 1V}
with

The density operator in the tilted rotating refer-
ence frame, Eq. (2. 6), can be expanded using the
projection operator technique:

pTR(t) PPTR(t) + (1 -P)pTR(t) (2. 18)

The projection operator P (PR =P) on the subspaces
defined by the Hamiltonian operators K, and X2 is

St (K,), = -iTr (K;KTRPPTR(t}] —iTr(K,KTRS(t)

x (1 —P) p TR (0)j — dt Tr IK,KTRS(t —t )

x (1 PJCTRPpTR(t )]'-
where the propagator S(t) is

S«) e l(l P)ZTRl

(2. 20)

(2.21)

and we shall denote a Liouville operator corre-
dee

sponding to an operator 0 by O. The operator
(1 —P) KTR in (2.21) is a Liouville operator, al-
though not written as such for typographical rea-
sons. These operators operate in the space of

From Eqs. (2. 5), (2. 6), (2. 9), (2. 16), and (2. 18),
with a minimum amount of operator algebra, an ex-
act kinetic equation for (K,), (i = 1, 2) which satis-
fies conditions (a}-(c)can be obtained:

K,«) - (PK,R)(t) =S,'«)(K, -PKTR) . (2. aS)

pTR(0) = (1 —P lK t} Ka)~»-(1] (2. 27)

where P, and P~ are inverse spin temperatures, it
is easy to prove that I2(t) = 0. This is, in general,
the case in double-resonance experiments in which
a saturating radio-frequency irradiation is used ' ~

to prepare the dilute spins before they are put in
contact with the I-spin system. If the high-temper-
ature approximation is not valid for the canonical
form of pTR(0), the Ia(t) term is still zero. In the
case in which the S-spin system is not initially de-
scribed by a canonical distribution, but such a de-
scription is valid for the I-spin system, again I2(t)
term is zero if [K„Ka]=0and Tr(K„Kl)=0. From
Eqs. (2. 12), (2. 14), and (2. 15) we can see that is
indeed the case. Thus, as we will see, a simple

The Dyson time-ordering operator T orders op-
erators of greater time arguments to the left-hand
side. In the lowest Born approximation for the
coupling Hamiltonian K~ we can consider that S(t)
=So(t), and the second inhomogeneous term of Eq.
(2. 20) becomes

Ip(t) =i Tr((KpC;)So(t)(1-P) pTR(0)j . (2. 26)

Assuming now that the spin systems are prepared
so that the initial density operator has a high-tem-
perature canonical form



transport equation describes the long-time behavior
of coupled spin systems which is not affected by the
initial state of S-spins in the limit of weak coupling.
Qf course, a particular preparation wouM be help-
ful in the cross-relaxation-time measurements.

In the second-order approximation of the pertur-
bation Hamiltonian, from Eqs. (2.20)-(2. 26) and
the above considerations, we have

and for which the following relation is valid:

dv' CQC3,',' v' +CQC3, Xg, v' =0 . g, 33

We can now define new thermodynamic coordinates
by

P,(t) =(K,),/Tr{Ks, ], P, (t) =(K,),/Tr{K',], (2. 34)
r 0—(K,), = —
)

dt'Tr{Kt3C,„So(t-t )
et

x (1 P)fC,—„Pp»(t ')) (2. 28)

which in the high- temperature approximation have
the dimensions of inverse temperature (k = 1). For
these formal inverse spin temperaturese' the fol-
lowing equation is valid:

gs

dt Tl' {KtKrttSp(t —t )(sc;&, =&so, ),-f sr'

x (1-P)3C „Pexp[-i(3C, +3C )t "]p „(0)].
(2.29)

It is important to remark that this equation shows
"memory" in the sense that the values of thermo-
dynamic coordinates (Kt)t at moment t depend on
all earlier values. Also, the initial conditions of
preparation are important and are involved through

&K;)s and p,„(0).
If the fast-correlation assumption is introduced,

or ~mes t ~~ Yc the llmlt ln the 1ntegral of Eq
(2. 28) can be replaced by infinity. Also, it is pos-
sible to replace p»(t ) by p»(t) in Eq. (2.28). Af-
ter the change of variable t —t - 7, Eq. (2. 28) be-
comes

8 ~es A—(K;),= —, dt' Tr (3C)KrsSt)(&).'o

x (1 P)KrsPprtt(t—))

Suppose now that we are interested in the cross-
polarization dynamics of dilute spins. From Eq.
(2. 80) the following equation can be written in this
case

—&Ks)t=, „ i'
,

dv Clg„K„v)

where the correlation functions are defined by

C(Ks; Ks; r) = Tr{(iCeKs)Ss(v')QCsKs)j

CQCs, 3Cl; v') = Tr{t3C),Ks)SS(v'}(Kt3Cl)]
(2. 32)

This general equation describes the short- and
long-time behavior of thermodynamic coordinates,
through the generalized collision operator which is
the kernel of the integral from the right-hand side
of Eq. (2.28). We suppose now that the generalized
collision operator can be characterized by the ex-
istence of a correlation time v, defined mathemati-
cally such that this operator goes to zero for t » v, .
Gn the short-time scale, for which I; & v'„ from Eq,
(2. 28), we have

SP s(t) P l(t) 13s—(t)
et TIg

(2. 35)

where the transport parameter 7."1~ which charac-
terizes the cross-relaxation process is

Tts —
t sl l, d'r Tr{(KsKs)exp[—$(K&+Ks)r]

x (3C,K,)) (2. 86)

The microscopic expressions for cross-relaxa-
tion times in SL and ADRF cases can now be easily
obtained from the general equation (2.36), valid for
v', «Tl~ and second order in the perturbation Ham-

iltonian. Using the particular forms of X„X„
and X& given in Sec. IIA we obtain for the SL case

Tjs = Sill eS Cos et MS Stcls((brett S)

+~ sin e~ sin eIM2 ~1

Tt S —Sill esMR stJZ()s)ett S) (2. 38)

where Ms st is the Van VleclP second moment of the
magnetic-resonance line determined by the cross-
collpllllg dtpolar llltel'ac'tlon. Tile spec'tl'al density
functions which describe the fluctuations in the
thermal bath represented by the abundant spin sys-
tem are given by

r)tc&f SrcosorCs)r),

&s(~) =
Jt dv cos&o1 Cs(v), (2. 89}

which are the real parts of the Fourier transforms
of the dipolar fluctuation autocorrelation functions,

Cs)r)=Tr((QS), s)sop[-r)r)cosSr)ror'rr]

x b]I]x Tr b)I)x (2.40

x[~x4ett, s & ettr) +~x(brett, s+|dett, t)]
(2. 8V)

and in a similar manner for the ADRF case
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e (e)= Tef L(( ),
)

exp(-ap, ( eeet)eeL le
t

x biIlz Tr b&Ilz ~ |,2 41

The cross-coupling interaction factors b~ which

appear as weight factors for individual spin opera-
tors in the macroscopic operators Z, btltx and

X;b;I,z are short-hand notations for b~. We as-
sume that the dilute spins are magnetically equiva-
lent and b~ is thus independent of m. The correla-
tion times v'„characteristic of these autocorrela-
tion functions, are determined by the I-I interac-
tions and are of the same order of magnitude as the
spin-spin relaxation time TzI.

The autocorrelation functions defined in Eqs.
(2. 40) and (2.41) decay monotonically with time,
which makes Jx(&d) approach zero for (dr, » 1. Be-
cause in the high-effective-field SL case & ff $,
&o„f I»&oII- 1/T2I, and te-TSI, Eq. (2. 37) can be
rewritten to a good approximation

Tis = 2sin 8I sin 8SM2, sl~x(tent)Ie«)e (2. 42)

where 4~,ff ff $ Q) ff I The above equation is
valid only for eI values different from 8
= cos '(1/)t 3) at which memory effects in the ther-
mal bath become important in the case of dipolar
interactions. We remark parenthetically that the
same result can be generated if we neglect in the
general perturbation Hamiltonian, Eq. (2. 12), the
terms which oscillate with (deff, I& jeff, $& and eff, I
+ Q) ff $ frequen cie s in the double rotating ref erenc e
frame.

The formalism developed in this section can also
be used for evaluation of the cross-relaxation time
in the intermediate field case, in which the abundant
spins are cooled by a partial adiabatic demagnetiza-
tion in the rotating frame. Now , f f I is of the same
order of magnitude as ~I,I, and a nonsecular con-
tribution to the dipolar interaction, Eq, (2. 13), has
to be taken into account in the Hamiltonians which
lead to the decay of autocorrelation functions.

An inspection of the formulas for cross-relaxa-
tion times shows that the experimental parameters
are involved through the effective frequencies
(d gf f $ and &co,« I and the angle between the average
directions of the spin quantization axes. In the SL
case the I and S rotating reference frames rotate
with relative angular frequencies (I —» ), which
have large values if ~I W~$. An automatic average
over the equatorial angles is performed in Eqs.
(2. 37) or (2, 42) through the truncation procedure,
leaving only the dependence on azimuthal angles.
The abundant spin system is ordered in the local
fields in the ADRF case. A supplemental average
over the local directions of the quantization axis is
also automatically included in Eq. (2. 15) and thus

[COS((deft S+(detfeI)t2

+ cos(())etf 2 (deffeI)t2]CX(t2)

If formally we make qf f I 0 and ~I - 0 in
(2. 43), the ADRF case is obtained:

Ms (r) T

= sin 8S (1+«st)MS, SI dtt dt2
$ sag 0 0

C (OQ)Sff eSte2) Z(t2)

(2. 44)

(2. 45)

In the above equations M$ ~ represents the equilib-
rium magnetization obtained in the cross-polariza-
tion process with I spins

Ms, m
——[1/(1+ '«sI)]CSH, ft s/TII, (2. 46)

where Cs = —,'ysh S(S+ 1)NS is the Curie constant and
«sr = CsH ff, s/CIHeff I is the heat capacity ratio of
S- and I-spin systems.

In this section the dynamics of the dilute spin
system in a double-resonance experiment was
mainly analyzed, but similar equations can be de-
rived for the thermodynamic coordinates of the I-
spin system. Our interest in the S-spin system is
motivated by the fact that, if high-resolution spec-
tral intensities of these spins are to be obtained

in the cross-relaxation time expression Eq. (2. 38).
The cross-coupling Van-Vleck second moment and

the dipolar fluctuation autocorrelation functions
make the cross-relaxation times dependent on
microscopic parameters of the sample. Also, the
high-resolution spectrum of cross relaxation
times ' is generated by the discrete (for a single
crystal) or continuous (for a powder) changes in the
tilted angle 8$, M~ », and spectral density func-
tions.

In order to analyze the short-time behavior of
spin-system thermodynamic coordinates, we con-
sider that before these systems are put in contact
they are in a thermodynamic quasiequilibrium state.
This can be done by applying a saturation pulse to
the S-spin system until the initial spin temperature
is T$, = ~ and the I spins are cooled to a spin. tem-
perature TI;. From Eqs. (2. 12), (2. 14), and
(2. 29), using the high-temperature approximation,
the normalized magnetization developed along
H f f $ a t a particular moment of time v is

Ms (7')
'T

(1+«SI)M2, SI dt2
l~M$ ~ ~0 0

&& [cos 8I sin28s cos((s,«st2) Cz(ts)

+ sin28I sin 82 cos((deft st2) cos(&oeff Its)

x C„(t,)], (2. 43)

where Ms(r) = Tr(ysttSzprs(r)j. Usually for the SL
case we have 8I = tt/2 and from Eq. (2. 43) we get

Ms (7')
= —,sin s (1+ «SI)M2 sI dt t(l dt2

$ ~ eg 0 Jo
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without dlstortlon, the d1rect detection method is
called for when it can be used.

Ili. EVALUATiON OF CROSS-POLARIZATION SPECTRA
AND TRANSIENT OSCILLATIONS

In the computation of cross-polarization dynamics
one of the central statistical assumptions used in
Sec. II was the fact that the abundant spin system
can be considered as a thermal bath. A direct re-
sult of this is that the evaluation of the cross-re-
laxation time and the short-time behavior which is
represented by transient oscillations in the rotating
frame' is tantamount to calculating dipolar fluctua-
tion autocorrelation functions Cx(v) and Cz(v), E[ls.
(2. 40) and (2.41), whose shapes depend on whether
the I spins are in SL or ADRF conditions.

The fact that the functional dependence of the
cross-relaxation rates on the effective frequencies
&,fz & or», ~~, which we will call in general a
cross-polarization spectrum, is different for high-
and low-effective-field double-1 esonance expel'1-
ments, can be seen for instance from EII. (2. 41).
If a rotation of spin operators is performed using
the unitary operator e~"~3~

&, we get

~i Iix Tr ~iIix

where Z, isl is given by EII. (2. 13) with Hi =II/2. We
can see now that the difference between functional
forms of Cx(7) and Cz(v) is, except for the time
scaling, determined by the nonsecular dipolar
Hamiltonian, which has the same order of magni-
tude as the secular part and provides a supple-
mental mechanism for dipolar fluctuation for the
I-spin system in the ADRF condition. Thexefore
the presence of exchange interactions will differen-
tially affect the shape of autocorrelation functions
only through the dipolar Hamiltonian.

It is difficult to make any a priori guess relative
to the functional shape of Cx(7) and Cz(r} before any
detailed theory for these correlation functions is
elaborated, Nevertheless, we can remark that if
formally we consider coefficients b~ to be constants
independent of I-spin coordinates the Cx(I') func-
tion, E[l. (2, 40), becomes the autocorrelation func-
tion for the free induction decay (FID) of I spins,
but it 18 scRled 111 tlllle by the Pg(cosHI) fRctol. Tile

Cz(r) function, EII. (2. 41), becomes independent
of fluctuation in the dipolar system. In conclusion,
at least for the ADRF case, the Cz(7') shape es-
sentially depends on the punctual character of I-8
coupling.

The time evaluation of the FID,

G(7)= Tr{fxexp[-igC„I,g+X )7]Ized/Trf[fx't,

is determined by Ising and exchange paxts of the
dipolar Hamiltonian, EII. (2. 11), for which

[+Ising~lx] ~ 0 Rnd ksxp fx] (3. 2)

&islng~Z&IIIx ~0 Rnd &sn~+&IIIX» ~ (3 3)

which makes a Dyson expansion less justifiable.
Nevertheless, using the limiting property of Cx(v')
when bi becomes a constant and for short time (v

«vc), we can write the approximation

c„"'[r)=TrI[I br,.
) exp[-c, [easer)nr, , ~[

x QiI, x Tr biIix

Of course this is a very rough approximation for
Cx(r) and will give an incorrect second moment.
Even so, a direct eva. luation of Cx' (v) for a CRFg
single crystal shows a shape close to a Gaussian.
As we shall see, for longer times, in spite of Eq.
(3.3), the functional forms of Cx (I ) and FID are
similar and consequently less dependent on the
punctual character of cross coupling.

A. Memory-function approach

Mori and more recently I.ado et a/. have
shown that an exact equation of motion for the time-
depelldeIlt col'1'61Rtloll fllllc tloI18 C (r) of R 8'tati 8'tlcR1

system can be derived on the assumption of small
displacements from equilibrium,

= ifI,C(~) — dt K(~ t)C(t), -dC(v )
0

where Q0 is the first moment of spectral density re-
lated to C(r) and K(t} is a memory function. In our
case the dipolar fluctuation autocorrelation func-
tions C„(v) (n =X,Z) are even functions of time and

E[l. (3.4) reduces to

dt K„(r—t )Cg (t)
~ 0

In the absence of calculations of the C, (v) from first
principles a quite successful approach in practice
is to assume a plausible shape (containing a number
of adjustable parameters) for the memory func-
tion. ""

On general grounds~~ it can be shown that the de-
cay time of the memory function is of the same or-
der of magnitude as or smaller than that of the cor-

Based on E[I. (3.2), if a Dyson expansiongg is used,
the zeroth-order approximation for FID is

G[g'(v) = Tr(fxexp(-izislng7)Ix)/Tr(Ixg],

which, mainly because of the form of $Cx,&,~, is
close to a Gaussian. In the case of the SI, auto-
correlation function we have
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relation function. Consequently, any short-time
approximation for K (f) will give a, better long-time
behavior for C, (r). Moreover, in tbe short tim-e

region the memory function appears to have a sim-
pler structure than the correlation function itself.
To analyze the range of validity of the above as-
sumption let us define an autocorrelation vector in
the same spirit as in the extended Mori theory for
dynamical variables62:

(2m&(&)

where C' «(r) is one of the autocorrelation func-
tions defined by Eqs. (2.40) and (2. 41), but for the
dynamical variables (d "/d3 ")[g;I);I&,(r)], with

o, =X, Z and C&"(r)=-C (r) Iti.s easy to prove that
the autocorrelation vector satisfies the equation

df K.(r-f)C. (f), (3. 7)d7 ej 0

where K, (t) is the memory-function vector associ-
ated with C„(r). From a knowledge of the analytical
properties of the vector C (~), it can be shown that
the memory-function vector is an even function of
time and has a finite initial value. Consequently,
from a moment expansion for C (r) and K, (t) with
Eq. (3.7) the following relations between the mo-
ments M2&2™and N~~~& of C'2"&(0) and E„'2"&(t), re-
spectively, are obtained:

K(2m) (0) M (2m)

N& m'=M' m [M 2m /(M n6) —1

N &2m& —(M &2m&)2pg &2m&/(M &2m&)3 2M &2m&/(M &2m &)2+ I]

obtained from Eqs. (3.8) and (3. 9) for Gaussian
and Lorentzian input functions. From Fig. 1 we
see that I&,' '(f) and Z„''& (f) are close to a Gaussian
funct). on, 1.e. ,

Km0&(f) =K„"&(0)e~' (3. 10)

where 5= (2)N2&0&. For the mth (m & 1) component of
the memory-function vector which automatical/y
incorporates M2(', », the Gaussian approximation
is no longer valid. Because the higher-order com-
ponents of K,' '(f) are related to the long-time be-
havior of C' (r), through the higher-order mo-
ments, we can see that the Gaussian approximation,
Eq. (3. 10), holds only for the short time -scale,
T&(2/N )

Generally the initial time derivatives of the time-
dependent autocorrelation functions, which are re-
lated to the moments of the corresponding spectral
density functions by the relation M,„=(- 1) d(0) n 2ff

x C,' '(r)/dr "[„0, can be calculated exactly since
they can be expressed as equilibrium average prop-
erties of the system of interest. However, the cal-
culation of these moments involves the evaluation
of the traces of the squares of some complicated
quantum-mechanical operators, and there is no

general systematic pattern for evaluating the dou-
ble sums involved in different types of particle-
interaction terms. This fact makes difficult the
calculation of the moments other than the second
and fourth. That is one of the main reasons why we
consider here the solution of Eq. (3.5) with a
Gaussian approximation for the memory-function,
Eq. (3. 10). Using Laplace transforms, i.e. ,

IOO

t ~ (2m ) 3~(2m)
(2m) (2m) 3 4 6
6 (M2 ) M (2m) &4 (M (2m))3

2 I 2

~ (2m) ~ (2m)
4+ 3 pg(2tn) 2 (~(2fft) 2 etc. (3.3)

E
~ bJ

E ~
Al

Also the moments of C&2"&(r) functions can be re-
lated to those of C' '(r) by

M&2m)/(M(2m))n M(0& (M(0))n-&/(M&0&2'

Let us consider now two normalized correlation
functions, a Gaussian, e ~, and a I.orentzian,~2/ T

(I+ r /r2) ' for which tbe moments up to any order
can be exactly computed. In order to test the
sensitivity of memory-function vector components
to the functional form of C', )(r) we have plotted,
in Fig. 1, N6&2"&/(N2&~&) arid N6~&/(N2& "&)3 versus I

I

0

FIG. 1 Ratios N2„ /(N2 )" for the moments of the
mth component of the memory-function vector vs m for
a Gaussian (open circles and open triangles correspond
to n= 2 and n= 3, respectively) and a Lorentzian (fuII
circles and full triangles correspond to n= 2 and n= 3,
respectively) autocorrelation function. For a Gaussian
memory-function vector, N4 '/(N& ) =3 (continuous
line) and N6 /(N2 ) =15 (dashed line).
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C (z)= f dte C (I)
0

(3. 11)

where ReC, (z) = J (&o), the formal solution of Eq.
(3. 5) is

TABLE II. Moments of the symmetric dipolar fluctua-
tion spectral density associated with the ADRF autocor-
relation function, Eq. (2.41), for a CaF2 crystal, calcu-
lated from Eqs. (3.15) and (3.16).

C (z) = 1/[z+K (z)]
Direction

of Hp M4 (10 -.-) M4/(M, )'

From Eqs. (2. 39) and (3. 12) a general expression
for spectral density functions can be derived

~ (~)=K (~)/([~ —K (~)]'+[K (~)]5, (3 13)

where K (&o) and K (&) are the real and imaginary
parts of the memory-function Fourier transform.
With the approximation, Eq. (3. 10), we have

tc to)=tt ta)J tt tcsostot
0

(3. 14)
K, (&o)=K (0) dte~' sinat

TABLE I. Definition of the lattice sums involved in
the calculation of the moments M2 and M4 associated with
dipolar fluctuation autocorrelation functions, Eqs. (2.40)
and (2.41), and their values evaluated by computer for
CaF2-type structures for different directions of Hp. The
units of 5& and b&& coefficients are, respectively, pip&h/a
and yla/g, where g is the shortest fluorine-fluorine dis-
tance in CaF2.

Lattice sums [1oo]
Direction of H0

[110]

where 6 depends on the autocorrelation type through
the corresponding moments. In this form, aknowl-
edge of the second and fourth moments leads di-
rectly from Eqs. (3. 14), (3. 13), (2. 38), (2. 42),
(2. 44), and (2. 45) to the microscopic expressions

[100]
[~10]
[111]

1.011
0.544
0.305

9.034
1.962
0.550

8. 8
6.6
5.9

2I(I+ 1) S~Sz —S4 (3. 15)

M4 = —(—' [16I (I+ 1) —7][SF3 —2Sb]
1

+ 3I(I+ 1)[13S7 16Sb + 3Sb 8S(b+ 16S(t 8S)z]}t

(3. 16)

and similarly for the SL case, from Eq. (2.40),

,2I(i+ 1) (5S,Sz+ 8S4)
2 cos I)

1

Ibi =P (cose, ) —(—'[101I(I+1)-P]S,S,
1

+ 5 [176I(I+ 1) —32]Sb+ ,'I(I+ 1)[7'7SV—

(3. 17)

for the cross-polarization spectra and transient os-
cillations.

To accomplish this program, for pure dipolar in-
teractions between equivalent I spins, the expres-
sions for the second and fourth moments of the
C (v) functions may be formulated in a compact way
in terms of the lattice sums S„defined in Table I.
For the ADRF autocorrelation function, Eq. (2. 41),
we get (hereafter we drop the superscript zero)

$ b2
1

2= E bu

'~=K bit

$4= Q b';;btb, .

i&j

St = Q b;tbtbt

Ztt= Z b tbttbtt

1.554

30.01

182.7

9.985

55.25

40.3-1

20. 33

ll. 36

14.16

22. 32

55.59

10.83

26.46

5. 137

1.190

0.311

0, 177

1.803

+ 88Sb + 2459 + 8S)b + 38S((+ 8S )z]}' (3. 18)

These general expressions for the first two mo-
ments of our dipolar fluctuation spectral densities
were evaluated for the case of the 'Ca-' F system
in the calcium fluoride crystal, using the values of
the lattice sums given in Table I. The results are
shown for ADRF and SL cases in Tables II and III.
From these values it is evident that especially for

Z b tbttb't
i&j&k

i&j&k

S8 = ~ bijb;kb jb
2 2

1116

488. 7

133.1

2322

395. 8

—44. 30

666. 8

2. 841

—11.40

TABLE III. Moments of the symmetric dipolar fluc-
tuation spectral density associated with the SL autocorre-
lation function, Eq. (2.40), for a CaF2 crystal. The
moments are computed from Eqs. (3.17) and (3.18) with

Zttt= Z b'tbttbttbt'.
i &j &k

Stt = E b;;btt, btttbtbt
i&j&k

S)2 = ~ bi jb ikb jkb jbk
2

125.3

79. 10

19.45

438. 1

93.26

15.81

14.27

0, 394

Direction
f Hp

[100]
[110]
[1l.1]

M2 (10~ sec"2)

l.501
0.487
0. 192

M4 (10 8 sec )

5.455
0. 649
0.113

M4/(M, )'

2.4
2. 7
3.1
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FIG. 4. Cross-polarization spectra under ADHF conditions for 43Ca-~9F in a CaF2 crystal for bvo different orienta-
tions: (a) Ho([ 1111); (b) Hpll tllo]. Circles are experimental points of McArthur et aE. (Ref. 5), and the dashed line is
their fit to an exponential spectrum. The solid line is calculated from the present theory.

no adjustable parameters of any kind, agree with
their measurements in every case within experi-
mental error. Similar agreement is also evident
from the off-resonance dependence of cross-relaxa-
tion spectra shown in Figs. 5(a) and 5(b).

From Figs. 4(a) and 4(b) it is seen that the data
points and our theoretical spectra do not form a
straight line but are slightly concave upwa, rd. This
curvature, which becomes more evident for the
[110]orientation, seems to be an intrinsic feature
of the spectrum and is not related to the spin-diffu-
sion effects or high-order processes. ' Our theory
is valid only for large values of effective field ap-
plied to the 8 spins compared with their local field,
and consequently the functional form of theoretical
cross-relaxation spectra must break down as
&«, z 0. At the same time, because autocorrela-
tion functions are well described by the memory-
function approach for short times, we expect a good
agreement with experimental data only in the high-
effective-frequency domains.

The cross-polarization spectra for the SL case
can be calculated by the same procedure used in
the ADRP case. The dependence of 1'1™~on the dif-
ference between the effective frequencies of 8 and
I spins in their tilted rotating frames is shown in
Fig, 6 for R CRP~ crystal. We note a completely
different behavior compared with the ADRF case,
with generRlly 1Rrger VRlues of TIS, As one goes

TABLE V. Values of Van-Vleck second moment of the
8 magnetic resonance line, M2 ~~, and local field of I-
spins in the rotating frame, H~I for the CaF2 crystal.

Direction of Ho

goo]
I:1101

[111j

M2 gr (10 sec )

0.21
2. 78
3.64

HI.I(62)

4.24
1.61
0.73

from Ho along [111]to [110]and [100], the cross-
relaxation spectrum becomes less and less nearly
exponential for the ADHF case and less and less
nearly Gaussian for the SI case.

The short-time behavior of coupled I- and 8-spin
systems in a, double-resonance experiment can be
analyzed from Eqs. (2.44) and (2.45), Table V,
and the Fourier transformation of Eq. (3. 13). A
comparison between the theoretical results and ex-
perimental data for transient oscillations in the ro-
tating frame for the Ca-' F system is presented
in Figs. 7(a) and V(b), From these figures it again
is seen that our dipolar fluctuation autocorrelation
function Cs(r) is very well approximated by a Lo-
rentzianonlyfor small values of time, and an im-
provement in its functional shape for long time is
needed in order to describe all the experimentally
observed oscillations. The slope of the dashed
line, which characterizes the beginning of the expo-
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F/G. 5. "High-resolution effect" on cross-polarization spectra for Ca- 9F in a CaF2 crystal measured by (a) indi-
rect pulsed double-resonance and (b) rotary saturation double resonance methods (Ref. 5). The sin 0~ dependence of
our theoretical cross-relaxation spectra (solid lines) well reproduces the experimental data.

nential cross-relaxation process, was found to be
very sensitive to the value of the autocorrelation
function. Also, it is clear from Fig. Vtb) that in
order to obtain a better agreement between the the-
oretical results and experimental data the theory
has to be extended to the low-effective-field condi-
tion for dilute spins. In this case the I-S coupling
cannot be considered any longer as a small pertur-
bation, and the general theory of Sec. II B should be
applied.

The enhanced transient oscillation effect which
appears as a function of the crystal orientation for
CaF2 was also calculated for the ABRF case and is
shown in Fig. 8. We see that for the [100] orienta-
tion the step-plus-oscillation form of transient be-
havior is reduced compa. red with the [111]orienta-
tion because of the smaller values of Van Vleck
cross- coupling second moment and autocorrelation
time Isee Table IV), which makes the dipolar fluc-
tuation autocorrelation function decay more rapid-
ly. This explains the experimental difficulty in
measurement of transient oscillations for orienta-
tions different from [111]. The enhanced transient
oscillation for [111]orientation is a result of a, re-
duced dipolar coupling between abundant spins which
makes the coherent exchange of energy between I-
and S-spin systems to be more like that for an I-S

-span pair. '

Similar computations can be performed for the

IO4

IO

lo
M

I

IO

I

0 2 4 6 8 IO I2 14

QVeff Of Veff $ (k HZ)

PIG. 6. Theoretical cross-polarization spectra for SL
and ADHF cases and for different orientations of the CaF2
crystal. The dashed curves are calculated using an in-
formation-theory approach from Eq. (3.19) and Table VI.
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FIG. V. Transient oscillations in the rotating frame for the 43Ca- 9F system in a CaF2 crystal for the ADRF condi-
tion. The function 6(v') is the fractional decrease in the I-spin signal after a mixing pulse and was calculated from the
theoretical results of Ref. 5 with our autocorrelation function and numerical values from Table V (solid curves). (a)
The experimental data points are from Ref. 5 with &,ff,8 =12.6 KHz. The dashed curve has been calculated using a Lo-
rentzian autocorrelation function with 7'~=VV @sec (Ref. 5). (b) Same as (a) except with v, f~,q =2.43 KHz and the correc-
tion due to the cross-relaxation process included (see Ref. 5). Also shown is the 6(v) function (dot-dashed line) calcu-
lated from our autocorrelation function without the exponential correction.

SL condition from Eq. (2. 44). Figure 9 shows
these results in the matched and mismatched Hart-
mann-Hahn conditions. We remark that, because
the amplitude of the dilute spin magnetization M ~(7 )
in the short-time domain is proportional to the in-
verse spin temperature of abundant spins, the sig-
nals which are measured in the ADRF case are big-
ger than those in the SL case.

The short-time behavior of two spin systems in
interaction for a many-body I system with strong
interactions between the components can be under-
stood as a limiting case of an I-S spin pair. In the
last case, for the matched Hartmann-Hahn SL con-
dition, a coherent exchange of energy between I
and S spins takes place with frequency —,'5, . ' As
additional I spins are brought into interaction with
the S spin the coherence is damped and a degenerate
transient oscillation like that plotted in Fig. 9 oc-
curs, When the Hartmann- Hahn condition is vio-
lated the oscillation frequency for a spin pair be-
comes (4~~«+-,'b2 )'I' and the step-plus-oscilla-
tion begins to be evident (see Fig. 9) in the many-
body limit. If ~,« I- 0, as in the ADRF condition,
and (o,~~, z is large compared with the width of the
low-resolution S-spin resonance line, the oscilla-
tion frequency depends only on &,«& as Figs. 7
and 8 prove.

B. Information-theory approach

The functional form of a spectral density function
can be efficiently approximated by using only its
moments in the framework of information theory v'

and error-bound methods. 6~6~ We shall deal here
only with the former approach in its nonclassical
version, but the error-bound method works equal-

0.02

Ca F&

ADRF

H ll[lOO]

0
0 Q. I 0.2

T (msec)

I

0.3 Q4

FIG. 8. Transient oscillations in the rotating frame
of normalized 8-spin magnetization calculated from Eq.
(2.45) and Table V for a CaF2 crystal. ADRF conditions
are assumed with pelf, g = 12.6 KHz as 3.n Flg. Vo

ly well.
In the high-effective-field condition, which cor-

responds to the SL case, the actual distribution of
frequencies for the spectral density function

&x(&&o,«) is to.a good approximation symmetric
around &~g,~, =0. The odd moments for this dis-
tribution of frequencies can be considered equal to
zero. The even moments are given in Table III for
a CaF3 crystal in a double-resonance experiment in
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The double-resonance experiments can also be
performed in situations in which a third abundant
spin species X is present, together with I- and S-
spin systems which are prepared and put in contact
by radio-frequency irradiations close to their Lar-
mor frequencies. Using the general theory devel-
oped in Sec. II, a quantitative study of the effects
of the third spin system on I-S spin dynamics is
possible. Here we limit ourselves to a qualitative
description in the high and low effective fields
which are cases of experimental interest. Gener-
ally the presence of the X-spin system has three
main effects: (a) The first is related to the change
in the heat capacity of the I-spin system through
changes in the local field. (b) The second effect of
the X spins is to open an additional cross-relaxa-
tion path via the S-X interaction. (c) The dipolar
fluctuations in the X-spin system will affect the
dipolar fluctuation spectrum of I spins through I-X
coupling.

To analyze the importance of these effects let us
consider first the SL case with high effective fields
compared with the width of the I- and S-spin reso-
nance lines. In this case the (a) and (b) effects are
reduced and the I-S dynamics are less affected by
the presence of the third spin system if we neglect
its coupling with the lattice. This can be seen, for
instance, by evaluating cross-polarization spectra
from Eq. (2. 36) in the hypothesis of a pure X-spin
Zeeman Hamiltonian and small I-S and X-S dipolar
interactions between the spins. The cross-polariza-
tion spectrum has the form

Is 2 stn s sin I Mz, sI~x( &~ II)

+»n 9SM2 sx~z4&4II s) (4 l)

where Mz SI and M2 sx are the VanVleck second
moments of the S magnetic-resonance line' deter-
mined by S-I and S-X dipolar interactions, respec-
tively The 8 (~. ) (II =X,Z) spectral density func-
tions are defined as in Eqs. (2. 39), (2. 40), and

perimental dipolar fluctuation spectra of MacArthur
et al, to an exponential form; any such simple be-
havior must be underlain by a single physical ex-
planation. Unfortunately, the approaches we have
taken (memory functions, information theory) nec-
essarily sacrifice "understanding" for tractability.
However, the results we obtain make it appear that
the exponential spectrum is only an approximate
accident characteristic of certain special cases
and not a general phenomenon understandable on the
basis of a simple picture. Therefore it is not pos-
sible to say, any more than in other aspects of
line-shape theory, what definitive property of the
spin system, governed by its lattice structure, is
manifested by the measured spectral character.

IV. THREE SPIN SPECIES

(2. 41), but with XII replaced by the Hamiltonian
$C»+3C&X+PC». The same Hamiltonian character-0 0 0

izes the spectral density function J z(&o), which has the
same functional form as Zz(~) but with the g;b~f4z
operator replaced with the corresponding operator
for the X-spin system. As in to the case of free-
induction decay in a system with different spin
species, ' we do not expect drastic changes in
functional form of cross-relaxation spectra com-
pared with the I-S case. In conclusion, only
the (c) effect is dominant compared with (a) and

(b) in the SL case. This effect will have a large
influence on the I-S spin dynamics, for instance,
in the case of an S-X spin pair. A direct evaluation
of short-time behavior using Eq. (2.29) also shows

a small X-spin effect mainly determined by its high

spin temperature compared with the I-spin- system
temperature.

Completely different I-S spin dynamics take place
in general for the ADRF case in which the presence
of X spins has a large effect. Now the cross-po-
larization spectrum has the following form:

~is sin sMz, sI~z(~ II,S)+sin esMz, sx~z(~aI, S)

(4. 2)

Similarly for transient oscillations in the rotation
frame, we obtain

Ms(r)/Ms, ~ = sin'es (l+ 4) dt, ' dt,
0 0

cos( 4tt, st)z[ MzsI Vs (t2)

+ M2, sx& z (tz)], (4. 3)

where & is the ratio of the S to I+X heat capacities.
In derivation of the above equations from the re-
sults of Sec. II it had been considered that the I-
and X-spin reservoirs are in thermodynamic equi-
librium before the contact with the dilute spin sys-
tem. The cross-polarization spectrum, Eq. (4. 2),
consists now of a weighted sum of two spectral
density functions. In the short-time domain the S-
spin magnetization oscillates with the frequency
QJ f f 8, but this transient behavior has a step value
and a damping dependent on both I and X dipolar
fluctuation autocorrelation functions.

In order to analyze how the functional form of
spectral density functions J~& and J& changes in the

presence of the third spin, we remark that the
second moments of these distributions are not af-
fected by the Xzx+3C&x and $Czx+Kz& Hamiltonians,
respectively. Because that is not true for the
fourth moment, we expect a change in the ratio
M4/(M2)' and so in the functional form of the spec-
tral density. lf yI»yx the shape of Zz(e) remains
close to an exponential, but Zz(up) will approach a
Lorentzian form. An opposite situation occurs when

y&«yx. This last case corresponds to the experi-
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ment of Lang and Moran" in LiF withI=~Li, 8= Li,
and X = ' F. From this qualitative discussion we
cannot confirm or deny the experimental Lorentzian
cross-relaxation spectrum obtained for LiF under
ADRF conditions. Only a concrete evaluation of
Eq. (4. 2) for this system will show if our theoreti-
cal cross-relaxation spectrum is a good approxima-
tion in this case. The second-order perturbation
theory which works very well for CaF, does not
seem to be any longer valid in the LiF case because
of the relatively large value of magnetogyric ratio
ps/&I for the Li-f Li spin system. Consequently,
a higher-order perturbation theory has to be applied
in order to describe the cross-polarization dy-
namics.

(Ms/Mjjs) ~= 2br/rs)& (5.2)

A situation of considerably more widespread prac-
tical interest than the Ca- "F case described above
is the one in which I= '8 and 8= "C at natural iso-
topic abundance in a typical organic solid, for
which & '-150. For this case the maximum trans-

V. EXPERIMENTAL CONSEQUENCES

One of our goals in this work was to understand
the factors which govern the sensitivity with which
the NMR spectra of rare spins, polarized by con-
tact with abundant spins, can be detected. From the
view point of signal-detection theory, this sensi-
tivity is governed by the magnetization Ms ac-
quired in a typical thermal contact and by the total
rate at which this acquisition can be repeated.
That is, one can define an experimental quality
factor Q =Mss/Ts, where TIj is the time between
thermal mixing (and measuring) events. In general
Ms and T„represent suitable averages over an
epoch which is capable of exact and periodic repe-
tition.

First consider the conditions placed on Ms by
thermodynamics for a single thermal contact, be-
fore which the I spins have their Curie magnetiza-
tion at the lattice temperature TL; Mjjf = CIH2/TL,
and the S spins are completely disordered. The I
spins are first supposed to be demagnetized isen-
tropically to a field Hr, which will be the effective
field [H»+ (Hjj —&DI/yI)']' in the case of strong spin
locking or the (truncated) local field HLI in the case
of ADRF. Thermal mixing then occurs with an ef-
fective field H,«s applied to the rare spins, the
total spin energy being conserved. At equilibrium
one easily finds

Ms/Mjjs = (rI/rs)jl/(I+ ~n'), (5. 1)

where c=NsS(S+1)/N I(I+1) and'0=vsH, ff ~
$/QJHI.

If one's goal is to maximize this quantity, without
regard for the time required to reach equilibrium
or other factors, one chooses q' '=(e) ', leading
to

and

Ms &r

Mos mRF &s 1+ ~~&
2

/ 1 (7 jdLI ) ln(jjM2, SI~ T jDI/2)

(
Ms y~

Mos sL rs 1+«a

(5. 3)

(5. 4)
12 1+2(j jd 11) [In(~f1™2sI j csTjpI/2))

For simplicity the spin-lattice relaxation has been
treated as though Mr were unaffected by it for a
time Trs and then disappeared altogether.

A direct comparison of the efficiencies of SL and
ADRF procedures requires a knowledge of the ap-
propriate correlation times and spin-lattice re-
laxation times. One knows that T»r & T»r, but
these times are often of the same order of magni-
tude. Then for the Ca- F system, for instance,
in the [111]orientation of the CaF2 crystal, from
Tables IV and V and for Hjr = 5 G with Tier T 1pr&

we get, from Eqs. (5.3) and (5.4), (Ms/Mjjs)juj»/
(Ms/Mjjs)s&-15. Even if TjDI is smaller than T»1
in practice the mismatch ADRF experiment is pre-
ferred because of the presence of only one rf field
in the probe. This fact, together with exponential
character of cross-polarization spectrum, leads in
general to a gain in sensitivity of the mismatch
ADRF experiment compared with the mismatch SL
case.

But is a single thermal mixing during the spin-
lattice lifetime of the I spins a tactically optimal
procedure? One could in principle compare this
procedure with one in which e thermal contacts are
made in the same total time, taking into account
the buildup of noise energy proportional to n in the

fer is for 11-12 and gives (Ms/Mjjs) ~-24.
It is the large value of g for which maximum Ms

is achieved that requires one to examine the role
of the time Trs characterizing the approach to
equilibrium. Figure 6 illustrates the strong de-
pendence of Trs on g and the fact that this depen-
dence is quite different under SL and ADRF condi-
tions. For sufficiently large values of p it would
appear in general that ADRF is to be preferred on
the basis of rate of equilibrium. However, such
rates may in either case become so slow in prac-
tice that limits are set by factors not yet consid-
ered, in particular spin-lattice relaxation of the I
spins which competes with the cross-polarization
process. Suppose we consider a single thermal
mixing, as above, but adjust q so that Trs =T,~r in
the ADRF case or Trs = T„r in the SL case. For
simplicity we represent the cross-polarization
spectra as exponential in the ADRF case and Gauss-
ian for the SL case, as described above. %ith a
little manipulation from Eqs. (2. 38) and (2.42), one
finds
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~befog e ~after (5. 5)

where we assume that ~before reflects I-spin order
only Rnd 8 ft hRS aEE order transferred to the 8
spins, Then we find

(Ms/~os)gg = b'g/Ys)&
' '

From Eqs. (5.2) and (5.6) wecan see that if only

thermodynamic considerations are involved the

isentropic transfer of order is better than optimum

thermal mixing by a factor of 2. We note that for

process of co-addition of n free-induction decays.
Such a comparison requires consideration of a num-
ber of sample-dependent parameters and is perhaps
unprofitable. Calculations based on the CaF3 situa-
tion support a slight advantage in multiple over
single contacts.

%6 can also compax'6 a process of isentropic
transfer of polarization from the abundant spins
px'epRx'6d ln Rn ADRF condition to the dilute splns
with the irreversible transfer performed in a mis-
match ADRF experiment in the same final effective
field. In the first case the order is, at the begin-
ning of the experiment, transferred from the Zee-
Inan reservior of I spins to the dipolar reservoir
represented by the total I and 8 dipolar Hamiltonian.
As I spins are demagnetized they become cold, but
the 8-spin system is still at a very high effective
spin temperature and at some value of IJz thermal
mixing must begin between I and 8 at different tem-
peratures. This cannot be isentropic. Of course,
the "irreversibility" is small because Cs«Cz. At
the end of this process the I and 8 spins are both
ordered in their local fields and this order can be
isentropically (and thus reversibly) transferred to
the Zeeman reservoir of the rare spins by increas-
ing the intensity of the 8 rf field, for instance,
from zero to a final value (0 gs/ps ln such a manner
that the local isentropic condition, d&o, s/dt « ~,s/
Tgs (6) ys)~ is satisfied.

I et us suppose that a comP/, ete transfer is indeed
possible. The conservation of entropy requires that

S«(I) to be neglected compared to S«„(S)it is
r ~u. red that C,a'„/T', »C, ffs/Ts, i, q»~-~Is.
For the "C-'H system in most organic compounds,
& =~, and consequently g» 12, which is a more
severe restriction than for optimum thermal mix-
ing,

If a partial isentropic transfer of order is per-
forIQed ln R fleM & ys = g(gz, zy floIQ the' consex'VRtlon
of the entropy principle we have

~s y»
~os &t Ys (1+~" )' (6 'I)
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