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Anisotropy of the penetration depth in superconducting tin*

P. C. L. Tai t M. R. BeasleyP and M. Tinkham
Physics Department and Division of Engineering and Applied Physics, Harvard University, Cambridge, Massachusetts 02138

(Received 19 June 1974)

The temperature dependence and anisotropy of the penetration depth X(T) in superconducting tin was
measured using a superconducting magnetometer. Single bulk crystals of tin were used as samples to
measure the anisotopy with respect to crystallographic orientations. Considerable anisotropy was found

A

with respect to ~, the shielding-current direction, and n, the direction of the normal to the sample
plane surfaces. These data are compared to a simple theory of nonlocal anisotropy. They are also fitted
to the BCS theory by varying parameters.

I. INTRODUCTION

Research on the magnetic field penetration into
superconductors and the associated penetration
depth X played an important role in the develop-
ment of our understanding of superconductivity.
However, despite its long history, the theory of
the phenomenon is not complete and the experi-
mental measurements are not definitive. This is
especially so with respect to the anisotropy of &,

where the complex anisotropies of the Fermi sur-
face and of the energy gap have to be considered.
The previous measurements of' ' X were deficient
in that: (i) ac measurements were made so that
corrections to zero frequency were sometimes
necessary; (ii) cylindrical samples were used.
The second deficiency is significant in measuring
the anisotropy in single crystals because nonlocal
anisotropy, which can arise even in cubic super-
conductors, is strongest when the superconductor
has a plane-surface boundary. The curved surface
of a cylindrical superconductor will partially aver-
age out the nonlocal anisotropic effect. The pres-
ent experiment avoids the above-mentioned draw-
backs. We used a dc SQUID (superconducting
quantum interference device) magnetometer to
measure the static penetration depth directly, and
we used disk-shaped single crystals of tin with
polished flat surfaces as samples. Anisotropy in
& is found with respect to j, the shielding-current
direction, and n, the normal to the flat sample
surfaces. As reported earlier by Tai, Beasley,
and Tinkham, the anisotropy with respect to n is
a demonstration of the nonlocal anisotropy due to
the nonlocal electrodynamic relation between j
and A in the superconductor.

II. THEORY

The static penetration depth is defined in the
semi-infinite plane geometry (the superconductor
occupying the half-space z ~ 0) as

] oo

dz B(z),

where B(z) is the magnetic-flux density penetrating
at 3 depth z below the plane surface. The external
field at z & 0 is B(0) and is parallel to the x-y plane.
The present experiment directly measures the
changes in the total penetrated flux with changing
temperature. The magnitude of this penetration
depth depends on the electromagnetic response of
the superconductor.

London assumed this response to be a local one:

j (r)= —(1/cA) A(r), (2)

where j is the shielding-current density induced
by the vector potential A, and A is a constant of the
superconductor. Combining this theory with the
two-fluid thermodynamic model of Gorter and Ca-
simir' gave a temperature dependence of X:

~(t) = (c'A/4~)'" (1 —t') '"= ~(0) I'(t), (3)

where t = T/T, , and I'(t) is defined to be (1 —t )
Pippard modified London's equation into a non-

local one:

where $0 is the coherence length for the pure metal
and 5,= r —r'. Here Pippard made the assumption
that j (r) is not uniquely determined by the vector
potential A(r) just at the point r, but is proportion-
al to an average of A in the neighborhood of r,
taken over a volume of characteristic size $0 as
specified by (4). This nonlocal modification is
supported by the microscopic theory of BCS, which
results in a similar nonlocal equation (in the clean
limit): -3,R[% X(r )]

4 c) vA( TO) R

The function Z(R, T) is not very temperature de-
pendent and describes the spatial range of the non-
locality. It is similar in form to the exponential
factor in Pippard's Eq. (4). The coherence length

$o is found to be he~/mh(0), where 6(0) is the su-

411



P. C. L. TAI, M. R. BHASLE Y, AND M. TINKHAM

perconducting energy gap at T = 0.
It should be noted that the above theories are

derived using isotropic models. In particular, the
»pp»d equation can be arrived at by analogy with

the Chambers relation for the anomalous skin ef-
fect in normal metals, which is valid only for a
metal with spherical Fermi surface. The anisot-
ropy in the electromagnetic response of the super-
conductor arises from the anisotropy of the Fermi
surface and that of the energy gap. It is diffi-
cult to take fully into account these complex anisot-
ropies. I.itovchenko considered the simplified13

problem of an isotropic energy gap but a Fermi
surface which is (i) ellipsoidal or (ii) cylindrical.
The penetration depth is found to be anisotropic.
Nam' used a Green's-function formulation to calcu-
late the electromagnetic response kernel. His
method is general and is applicable to strong cou-
pling and anisotropic superconductors. However,
the problem remains of applying the general re-
sults to calculate the complicated anisotropies.

In spite of these difficulties, the form of the
anisotropy of X for the plane-surface geometry
used in the present experiments can be deduced
from the following simple treatment. ' The
Chambers relation can be generalized to nonspheri-
cal Fermi surfaces by introducing an anisotropy
factor into the integral over H. ' We proceed to
make a similar generalization of the nonlocal equa-
tion (5) for the anisotropic superconductor. The
factors $0, A(T), and Z(R, T) are anisotropic quan-
tities. The coherence length $0= hvar/)). A(0) de-
pends on the anisotropy of the Fermi velocity and
of the energy gap. This means that the function
J(R, T) is also anisotropic since its spatial range
is $0. The London parameter A(0) is dependent on

the anisotropy of the Fermi surface; and A(T) is
dependent on the anisotropic energy gap A(T) in
addition. These anisotropies are with respect to 8,
the direction of the electron velocity, and thus to
the direction R in the integral in (5). Instead of
writing out in full the various anisotropies, we in-
clude all the anisotropic quantities in an anisotropy
factor E(R) so that we can rewrite (5) as:

j (r)=4 —
+ dR, J(R, T)E(R),

—3 - RIR 7(r')]
4')OX T

(6)

use of Pippard's "ineffectiveness" concept' to
visualize the situation. In this picture, only those
electrons moving almost parallel to the supercon-
ductor surface will be "effective" in shielding the
magnetic field. These effective electrons will oc-
cupy regions in the Fermi surface where 8 ( the
normal to the Fermi surface) will be almost par-
allel to the superconductor surface (to within an

angle = X/$0). If the superconductor boundary is a
plane with normal n, these effective regions will
be uniquely defined. If n is changed by changing
the orientation of the superconductor surface, dif-
ferent regions on the Fermi surface will become
"effective. " The anisotropy factor E(R) in (6) will
contribute differently to the integral for different
"effective'* regions. This argument also applies
to the energy-gap anisotropy with respect to v.
Thus, we shall expect the electrodynamic response
and hence & to be dependent on the direction n.
This dependence is in addition to the dependence on

A or j which appears explicitly in (6); we shall
refer to it as the nonlocal anisotropy. If the super-
conductor does not have a plane surface, then n is
not unique and the nonlocal anisotropy is averaged
over the set of n. In the case of cylindrical sam-
ples, 8 rotates around a circle, and the nonlocal
anisotropy is very much diminished. Since the
present experiment uses superconductors with plane
surfaces as samples, the nonlocal anisotropy is not
obscured. In addition, the planar sample also has
the advantage of approximating the semi-infinite
superconductor geometry that is used in many the-
ories; thus comparisons with theories are simpli-
fied.

We can proceed with the calculation of the pene-
tration depth in the nonlocal limit using (6) as fol-
lows. We set up our coordinate axes with z paral-
lel toB. For notational simplicity, the direction
of x is chosen to be along an axis of symmetry in
the plane of the superconductor surface. Then, the
component of j parallel to A is:

—3 —(R ~ A) A(z')—
j„(z)=4 —— d R 4 J'(R, T)E(R) .

In the above, j and A are functions of z alone, and
z' = z —R, . Using polar coordinates (R, 8, y) for
R, with z as the polar axis, this reduces to:

rA

where the upper bars indicate averages over A.
E(R) will be unity for isotropic superconductors.

In the local limit, where X»(p, the vector po-
tential A can be taken out of the integral and, after
some simplification,

j(r)= ——
(

—
$ drrR))r(Jr)) )r(r), (7)

j~(z)= ——— d RJ (R, T)
4mcgoA T

x d8 sin'8A(z —R cos8)
p

gr
x dycos (9) —y„)E(8, 9 ),

0

(6)

which is a tensorial local relation as expected.
In the nonlocal limit, where X«$p, we can make

where p~ is the angle between A and the x axis„
both of which are in the plane of the surface. In
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the nonlocal limit (X«$p) this integral can be
simplified by the use of the "ineffectiveness" con-
cept .Since J(R, T) limits the important range of
8 to R & E p and A is big only when R cos8 & X, the
integral will be dominated by the region cos8 & &/$p.
This, in the limit X «$p, restricts the significant
range of 8 to that bounded by ~2 + P&/$p, where P

If we assume that, in this small range of 8,
E(8, p) is approximately independent of 8, then the
kernel in (8) is proportional to a p„-dependent
multiplicatory factor:

2ff

d'P cos (p —pg) F(2 7T, p)

= ~ [(F(2v, p))+ (F(-,' p, y) cos2y) cos2y„]

= p t (F(R, y) )+ (E(n, p) cos2y) cos2y„],

where the angular brackets denote angular averages
over g. We have used the fact that x (where 0= 0)
is directed along one symmetry axis on the x-y
plane and thus (E(&m, y) sin2y)= 0. Also, we have
written (E) as a function of n to indicate that these
angular averages are n dependent.

This g„-dependent multiplic atory factor in the
kernel leads to a similar g„dependence in the
penetration depth. Using an argument similar to
Pippard's, we can see that the density of effective
electrons is now reduced and anisotropic; its p„
dependence is given by the factor above:

F(8, +)) (F(R
3px

pn

where n, is the density of superconducting electrons
defined in the London limit by XJ = mc /4m, e, and

gp(A) is the average value of the coherence length
in the plane perpendicular to n. Putting this effec-
tive density n,' into the formula X = mc /4', 'e, we
have:

&= l (2/2P) &i (p(ii) ]'" f&F (n, ~) ) (I+ &(n) cos2V»]) '",
(10)

where

&(n) = &F(» P) cos2%)/&F(n, P)) .
&(n) is a measure of the anisotropy of X with re-
spect to P„. In the limit of small anisotropy, p(n)
«1, the above simplifies to:

x [I+—,
'

5 (n) (1 —2 cos'p„) ] . (12).

The average value of & for a given n. is given by
the product of the first two factors, while the an-
isotropy with respect to p„ is given by the final
factor. For fixed 8, X depends on the direction A
through the factor 5(n) cos y„. This linear depen-
dence on cos p„reflects the behavior of a two-
dimensional tensorial relation, just as would be

found in the local limit. The results of Litovchen-
ko using an ellipsoidal Fermi surface agree with
this conclusion. While the variation with cos g„ is
a general property, the particular dependence on
microscopic parameters in (12) is, of course, spe-
cific to the nonlocal limit.

III. EXPERIMENTAL TECHNIQUE

The present experiment uses a dc SQUID magne-
tometer to measure the change in the magnetic flux
penetrating the superconductor in a uniform dc
magnetic field as its temperature is varied. The

temperature dependence of the static magnetic
field penetration depth is inferred. Since a dc
method is used, corrections for high-frequency
effects are not necessary. The samples used are
oriented single crystals of tin. They are disk
shaped with two flat surfaces so that the anisotropy,
in particular the nonlocal anisotropy, can be mea-
sured. With this method, only changes in the pene-
tration depth with temperature are measured; ab-
solute measurements are not possible. Using a
different dc method, however, Anderson and Gins-
berg have measured the absolute value of the
London penetration depth in thin polycrystalline
films.

The magnetometer design is similar to the one
used by Gollub et al. A schematic diagram of
the apparatus is shown in Fig. 1. The SQUID used
is a dc double-point-contact one, in which the con-
tacts were made by pressing together two 0. 001-
in. -thick niobium foils at two spots, enclosing an

open area measuring 2 mm && 2 mm. This sensing
area is magnetically coupled to the sample via a dc
superconducting flux transporter. This method
isolates the sample from the SQUID and insures
that the environment of the SQUID is unaffected by
the heating or the rotation of the sample. The
sensing coil L~ (transporter primary) is a six-turn
coil tightly glued onto a rectangular holder made
of red brass. The sample is placed in the trans-
porter primary with its midplane just above the
primary coil as indicated in the figure. By this
means the sample can be rotated about its axis
without disturbing the flux transporter while still
maintaining good coupling between the sample and

transporter primary. The transporter secondary
L, is placed in the sensing area of the SQUID. A

small feedback-coupling coil I., is inserted in the
transporter circuit so that an external feedback
current can be inductively coupled so as to null
the current J in the transporter. Thermal switches
are used to break the superconducting transporter
loop when the applied field is changed and to allow
trapped flux to escape.

The SQUID is dc current biased near its critical
current. A small 300-Hz modulating field is cou-
pled into the SQUID through the coupling coil L„
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FIG. 1. Schematic dia-
gram of the experimental
apparatus. Note that the
superconducting flux trans-
porter links the sample
with the SQUID.

thus producing a 300-Hz voltage signal across the
interferometer. This voltage signal hV is sensi-
tive to the magnetic flux transported into the
SQUID, and is detected by a lock-in amplifier
through a X100 transformer. The dc output of the
lock-in amplifier is fed back into the transporter
circuit through L, in a negative feedback manner
to keep the transporter current I nulled, as men-
tioned above. For high loop gain, this feedback
current AI& is proportional to the flux change in
the sample and is independent of the SQUID charac-
teristics.

The magnetometer is shielded against magnetic
noise and stray electrical pick up by the following
methods: (i) enclosing the whole experimental
apparatus inside an rf-shielded enclosure manu-
factured by the Ray Proof Corp. ; (ii) individually
enclosing the SQUID, the flux transporter, and the
sample chamber in superconducting lead shields;
(iii) using rf filters on feedback and SQUID current
leads; and (iv) reducing the ambient earth's mag-
netic field to less than 1 mQe by means of two con-
centric Moly- Permalloy shields manufactured by
Allegheny Ludlum Steel Corp. The magnetometer
was calibrated by externally applying a known rnag-
netic flux to the primary L~ by means of a long thin
solenoid placed in L~ and measuring the responding
AI&. The noise of the magnetometer is about 1. 5

&& 10 ' 6 cm with a bandwidth of 10 kHz, while the
dynamic range is 5x10 Gcm .

The disk-shaped sample (about I cm diameter
&&0. 5 mm thick) is thermally bonded to a 99. 999/o
pure copper sample holder which in turn is ther-

mally linked to a resistive heater and a Solitron
germanium thermometer. The thermal link also
acts as a mechanical link for rotating the sample
about its axis through a bevel-gear arrangement
(see Fig. I). With this arrangement, a tempera-
ture resolution of 0. 5 mK and a range of 1.8—4. 2

K is achieved. The thermometer was calibrated
versus helium vapor pressure. Using the bevel
gear, a rotation of about 200' about the axis of
the sample is possible without breaking the thermal
links.

A superconducting niobium split solenoid, oper-
ating in persistent-current mode, surrounds the
sample. It applies a magnetic field which can be
made parallel to the plane faces of the sample
disk by means of a control rod used to tip the mag-
net. A split solenoid is used to improve the spa-
tial homogeneity of the field produced and to fa-
cilitate mechanical linkage of the sample to the
rotating gears. The magnet was calibrated using
a thin rectangular tin plate of known dimensions
and measuring the total flux expelled at the transi-
tion temperature in a given applied field. To re-
duce extraneous magnetic signals, drifts, and
temperature-dependent magnetic effects, the parts
of the apparatus close to the transporter or the
magnet are constructed with 99. 999/o pure copper
or with lead-free "red brass. " Also, the ther-
mometer and the heater with their twisted leads
are placed outside the magnet, far away from the
transporter primary. The remaining background
(with zero applied field) temperature-dependent
signal is measured and subtracted from the experi-
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mental data before analysis. The sample tempera-
ture is swept up and down and only reversible data
are used.

The samples used are single crystals of tin with
known crystallographic orientations. They are
slices cut from cylindrical crystals of the appro-
priate orientations. These cylindrical crystals
are grown from 99. 9999% pure tin (from Cominco
American Inc. ) by slowly recrystallizing the
melted tin in contact with a seed crystal. Graphite
molds are used; and a sliding furnace provides
the thermal gradient and the means of "drawing"
the crystal from the seed. Sample slices are cut
from good sections of the crystalline cylinder using
a Servomet (model SMD) spark cutter manufactured
by the Metals Research Corp. After cutting, the
sample disk is electropolished by a perchloric
acid-acetic anhydride mixture to obtain flat polished
faces. The smoothness of the surfaces is con-
firmed by the fact that they look dark under an opti-
cal microscope, indicating the absence of scattered
light from any surface roughness. We do not ex-
pect tin to show the oxygen sensitivity and faceting
effects leading to erroneous values of X as dis-
cussed by Varmazis and Strongin ' in connection
with their work on Nb and Ta. Further confirma-
tion of surface quality is provided by the consistent
results found for & in a number of samples polished
in this way, while a larger value of X was found
for a sample intentionally measured without the
full polishing treatment. I.aue x-ray back-reflec-
tion pictures are taken off the surfaces to ascertain
the crystal perfection of the sample as well as its
orientation. Three orientations of crystals were
grown, those with the sample normal n = (001),
(100), and (110). The residual resistance ratio of
these crystals ranges from 2000 to 4000, implying
that the ratio of the mean free path to the coherence
length, I/&0, ranges from 100 to 200. In this pu-
rity range, the penetration depth is not significant-
ly dependent on l.

900—

0 PRESENT RESULT, POLYCRYSTAL

x WALDRAM, POLYCRYSTAL

SCHAWLOW 8 DEVLIN (Sn t21)

800—

Owing to the complicated geometry of the disk-
shaped sample and the rectangular sensing coil, it
is difficult to compute the magnetic coupling be-
tween the sensing coil and the sample with high
precision. We thus used the data obtained. by
Waldram on tin for the final calibration of our
magnetometer, after verifying that this calibration
was consistent with our own best independent de-
termination. Data from polycrystalline samples
are used in this comparison to eliminate effects
due to anisotropies. These data are plotted in
Fig. 2. The error bars shown on the'present data
include errors due to uncertainties in T, as well
as experimental errors. Waldram's data extend
only to Y= 2 due to difficulties with making zero-
frequency corrections. He also assumed that the
slope dX/dY would be constant at Y= 2. The pres-
ent result shows that dX/dY has not reached its
limiting value there. The data of Schawlow and

Devlin on a cylindrical single crystal are also
presented for comparison.

Our single-crystal data can be classified accord-
ing to the orientations of n and j . For our sam-
ples, n= (001), (100), or (110). For each 8, dif-
ferent directions of j perpendicular to n are used.
Since only dX/dY can be measured absolutely in
this experiment, the data will be presented in this
form. They appear in Figs. 3-5. Note the in-
crease of dX/dY near the zero-temperature limit
(I'= 1). This is a consequence of the presence of
the energy gap and was first observed by Schawlow
and Devlin. The experimental data for each (n, j )
are checked for reproducibility as follows:

IV. EXPERIMENTAL RESULTS

The experimental procedure consists of (i)
ing the sample to the desired orientation; (ii)
setting the magnetic field (about 1 Oe); (iii) chang-
ing the temperature of the sample while measuring
the flux change detected by the magnetometer. To
compare our results with previous work, it is con-
ventional to plot the data versus Y= (1 —t )

' . To
do this a value for T, has to be determined. Since
at temperatures close to T„we expect X to be
linearly dependent on Y, we choose the value of

T, to satisfy this criterion. In practice, with a
given estimate for T„ the X- Y curve is differen-
tiated numerically and its slope calculated. The
value of T, which produces a horizontal line in the
dX/dY plot at high F (Y &3) is chosen.

'~ 700-
b

b
600-&

x~

500 — "%x b

~ ~ f ~ ~ ~ ~ ~ f ~

400—

3
Y(t) =(I —t )»

FIG. 2. Present polycrystalline data scaled to match
Waldram's. Data of Schawlow and Devlin are also pre-
sented for comparison.
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FIG. 5. dX/dY of tin with 11 = (1.00). Two extreme
directions of j are plotted.

4
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FIG. 8. d1/dF of tin with n = (001). Five directions of

j are plotted. ropy is about 15%, significantly above estimated
errors. The results for the third crystal with n
= (100) are plotted in Fig. 5. Unfortunately, this
crystal has a broad superconducting transition,
making the data of dX/d Y near 7, unreliable. Thus
only results in the low Y region ( Y & 3, t & 0. 97)
are used. Only the extreme cases of j = (001)
and (100) are presented. Intermediate directions
of j have data lying between these curves. The
anisotropy is small.

The above results show directly the anisotropy
of X with respect to j for fixed n. To illustrate the
anisotropy with respect to R, we compare data tak-
en from crystals with different 8 but with j in the
same direction. These are presented in Figs.
6-8. The case for j = (110)with II = (001) and (110)
in Fig. 6 shows the largest anisotropy. The other
two cases shown in Figs. 7 and 8 show anisotropies
not much above estimated errors. However, in all
cases, the anisotropy is biggest at low temperatures
and gets smaller near T, . This anisotropy with
respect to n is the nonlocal anisotropy described
in Sec. II. Near T„where the local limit is ap-
proached [see Eq. (7) ], nonlocal anisotropy de-

(i) Rotating the sample so that j is directed
along a crystallographically equivalent orientation;
sometimes this means a rotation of 180';

(ii) Cutting another sample with the same n from
the same crystal cylinder, or a separately grown
crystal cylinder.

Figure 3 shows dX/dY for n= (001) for five dif-
ferent orientations of j. As seen in the figure any
anisotropy present is not above errors in the data.
This lack of anisotropy is reasonable because for
this orientation the sample surface lies in a plane
perpendicular to the tetragonal c axis and there-
fore has fourfold symmetry. The anisotropy due
to j for a fixed n is a two-dimensional tensorial
one and thus cannot exist in a plane with fourfold
symmetry. Correspondingly the factor 5(n) in Eq.
(11) is zero The re. sults for n = (110) are pre-
sented in Fig. 4 for five direction of j. The anisot-,
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21.f'
45
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500-

& =&oo~)400-
400-

I
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FIG 5 d1/dF of tin with j= (110) but with two diffe&
ent n's. Difference indicates nonlocal anisotropy.

FIG. 4. dA./dF of tin with g = (1.10). Five directions of
j are plotted.
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FIG. 7. dZ/dF of tin with j= (001) but with two differ-
ent n's. Difference indicates nonlocal anisotropy.

FIG. 0. dX/dF of tin with n = (11.0) plotted against
cos Q, where (t) is the angle between j and c.

creases. One way to see this is that as T- T„ the
ratio X/$0 is increased, and the angular width of
the "effective" regions in the "ineffectiveness" pic-
ture increases, reducing the significance of the
direction n.

V. COMPARISON WITH THEORIES

800

700-

Tl N

i =(ioo)

—600-

500—

400

1.0 1,5
I I

2.0 2.5

Y(t)=(1-t")
3.0

FIG. 8. dX/dF of tin with j= (100) but with two differ-
ent yg's. Difference indicates nonlocal anisotropy.

Of the experimental data, those for n = (110) have
the most anisotropy with respect to j. They are
thus chosen to be compared with the theory pre-
sented above. We plot dX/dF vs cos Q for various
temperatures in Fig. 9, where Q is the angle be-
tween j and c. Linear plots are obtained, within
experimental errors. This result follows from
Eq. (12), and it supports the conclusion drawn
there that for a fixed n, the anisotropy of & with
respect to j is a two-dimensional tensorial one.

The quantitative theory of the nonlocal anisotropy
of the penetration depth is a complicated one. As
mentioned above in Sec. II, it is very difficult to
incorporate the detailed anisotropies of the Fermi
surface and that of the energy gap to calculate

the penetration depth. We could find no anisotropic
theoretical calculation which could be used to make
a more quantitative comparison with our data. In
view of this difficulty, we attempt to fit our data
to the original BCS theory by parameter fitting.
Notwithstanding the limitations of such an approach,
we still hope that our effort will produce some in-
sight and incentive for further research.

The following fitting procedure was adopted.
First we calculate Xz (T) in the local limit by using
Muhlschlegel's table. To do this, we must as-
sume values for X~(0) and ri= 26(0)/kT, . X~(0) will
be one parameter we vary to fit the data. For q,
we use one value for each direction n. This re-
duced gap parameter p has been measured by ex-
periments on acoustic attenuation and electron
tunneling, among others. The measurements of
Morse et al. determined the average energy gap
for electrons with velocities nearly perpendicular
to the direction of the sound propagation. Their
results of q are thus applicable to the present anal-
ysis in the nonlocal limit, where the "effective"
electrons move nearly perpendicular to n. They
found the values of q averaged over electron ve-
locities perpendicular to n to be g= 3. 1+0.1, 3. 5
+0. 1, and 8. 8+0. 1, for n= (001), (100), and (110),
respectively. These values for g will be used here
to compare with our data of the corresponding n.
The comparison will be limited to the low-tempera-
ture (F & 2. 5) region, where the nonlocal limit
holds quite well. Using a value for q, the tempera-
ture dependence of the reduced London penetration
depth &r(T)/X~(0) is obtained by interpolating
Miihlschlegel's table assuming the BCS form for
h(T)/6(0). Then X~(T) is calculated by scaling
with Xz (0).

A value for the coherence length )n(n) is assumed
for each direction n. With this (0, we compute
the penetration depth X by using the graphs of X/Xz
versus $o/Xz plotted by Bardeen et al. (Fig. 7 in
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FIG. 11. Fit of the BCS theory with data for n = (100).

Ref. 7). The graphs corresponding to the diffuse
scattering limit are used since this limit seems
to be a more realistic assumption experimentally.
The original BCS plot has separate curves for the
T = 0 and the T = T, limits. We use a curve which
interpolates between these two curves in a way
suitable for tin. [It should be noted that this
theoretical plot is based on asymptotic approxima-
tions of the kernel K(q, 7) in the limits of small
and large q. More general approaches by Nam'

and Halbritter ' are free of this limitation, but
they are more difficult to apply. ] Using this in-
terpolated curve of X/)i~ vs $e/X~, we calculate
X(T) from the values of the parameters $o and

X,(T).
The slope dX/dF is then calculated by numerical

differentiation. The results are fitted to the ex-
perimental data by varying the parameters )o and

Xz (0). The slope dX/dF is used for fitting because
it is more sensitive than X( F) to changes in pa-
rameters and was measured absolutely in this ex-
periment. The results of such fitting on the sin-
gle crystal data can be seen in Figs. 10-12. The
data for n = (110) have significant anisotropy among

rh

the directions of j and these are thus presented
separately in Fig. 12. The error bars refer to
the errors in the theoretical calculation. The
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FIG. 12. Fit of the BCS theory with data for n = (110)
and three directions of j. The plots have been shifted
vertically for clarity. As in Fig. 9, (I) is the angle be-
tween j and c.

scatter in the experimental data points indicates
the errors in the data. Both these errors are ac-
centuated by the process of numerical differentia-
tion. It should be emphasized that the reduced
energy gaps zi= 2b(0)/k T, are obtained from ultra-
sonic attenuation data and are not adjusted to fit
the data. The shape of dX/dF is quite sensitive to
changes in g. Thus an uncertainty in the value of
q would have a significant effect on the data fitting.

The directions n = (100) and (110) require $0

~2300 A, which is an accepted value. ' The values for
Xz (0) are close to the often quoted value of Xz, (0)
= 350 A. The data for fi= (001) has a very sharp
rise in dX/dF at low F and this is why a low value
for ge (= 1200 A) has to be used to fit the data. Its
low value for zl(= 3. 1) leads to a rapid increase in

Xz(T)/Xz (0) with temperature and thus a smaller
Xz (0) is needed to compensate this effect. That
n= (001) is the tetragonal axis may be the cause of
some of this unique behavior.

Finally, we should keep in mind again the pos-
sible danger of fitting anisotropic data to an iso-
tropic theory by simply varying parameters, as
well as the inadequacies of the simple BCS theory.
However, the results obtained above are not un-

reasonable. It is hoped that this effort will stimu-
late interest and provide guidance to further re-
search on the effects of crystalline anisotropies
on the basic properties of superconductors.
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