
PHYSICAL REVIEW B VOLUME 11, NUMBER 11 1 JUNE 1g75

Critical dynamics of ferromagnets in 6-e dimensions: General discussion and detailed
calculation

Shang-keng Ma*
Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, Sari Diego, La Jolla, California

92037

Gene F. Mazenko~~

W. W. Hansen Laboratories of Physics, Stanford University, Stanford, California 94304
(Received 6 January 1975)

We report in detail a study of the critical dynamics of a model ferromagnet in 6—& dimensions both

above and below T„ for small E. The precession of spins in the local magnetic field plays a major
role in the dynamics. Its effect can be ignored at 6 or more dimensions, as many authors have

previously observed. At a dimension slightly less than 6, the effect is nontrivial but tractable by

perturbation theory. We carry out a renormalization-group analysis and determine the dynamic exponent

z = 4 —e/2 = 1 + d/2, accurate to O(e). We also solve the equation of motion to obtain the spin

response function. The frequency and damping of spin waves below T, are determined. Forms of
equations of motion and the extent of universality in critical dynamics are discussed.

I. INTRODUCTION

The dynamics of an isotropic ferromagnet is
characterized by the precession of spins in the
local magnetic field and by the conservation of
total spin as a result of invariance of interactions
under rotation. The role of these characteristics
in the dynamics near the critical temperature
T, is of considerable theoretical interest. Im-
portant advances in understanding this problem
have been made using dynamic scaling and various
other ideas and techniques. ' ' Among many re-
sults, several authors found that for a dimension
d &6, the dynamics are fairly easily understood,
but for d &6, the dynamics are more complicated
and the application of dynamic scaling is less
straightforward. '

In this paper, we study in detail the dynamics
using a renorma1ization-group (HNG) approach
for d =6 —e with positive and small e. The main
results of this study have been reported in a letter. '
The approach here is parallel to a number of re-
cent applications of BNG to critical dynamics. "

The model which we use here is defined as fol-
lows. We describe the spin configuration by a
three-component vector field

S(x, t) =L "P S,(&) e

characteristic length of critical phenomena. Thus
S(x, t) is the iocal spin density with variations of
wave vectors larger than A excluded. The dynam-
ics is based on the equ".tion of motion

BS—= XS XH —FV'2H+ (&t
(1.2)

(1.4)d'x[(VS) r2,+S'+-,'u(S')'j,
where r, =a(T —T,) and a and u are positive con-
stants. In terms of Fourier components, (1.2)
has the form

9@k ~ g
~ 9+' ~I"'

——A. J- Sk, k X — —I"4 +
~Sk~ ~S k

(1.5)
where

where H(x, f) is the local magnetic field; X, 1 are
constants; and &(x, t) is a random noise simulating
the effect of thermal agitation on the spins. The
local field H is the sum of the external field h

plus the field generated by the spins themselves.
We assume the latter is given by the derivative of
F[S], the free energy at the fixed spin configura-
tion S, and we assume a Ginzburg-Landau form
for F[Sj:

H(x, t) =h —&E/&5(x, t),

where S»(t) are the Fourier components of the
spin density, I is the volume of the system, and
A is a cutoff wave number. We choose A ' to be
much larger than the microscopic length (lattice
spacing) but still much shorter than the correla-
tion length $ of spin fluctuations, which is the

d"xS h-

g +1
=(r, +k') S» —h»gS 0 k k
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Finally, we assume the noise P is Gaussian with
the property

(&~(t) &8, (t')) =2 Ik'& 8&, , &(I —f'), (l.7)

n, P= 1, 2, 3. This completes the definition of the
model.

The term with the cross product in (1.2) or (1.5)
gives rise to the precession of spins. Note that

S&&H =S &&(V'S+h),

since the rest of &EjSS is proportional to S and
we can use the fact that S x/=0. The SxH term
is closely related to the usual interaction term
in the Heisenberg-model equation of motion. The
conservation of total spin in this model is evident
since as k-0 and h-O, (1.5) vanishes. If X=0,
the model reduces to the time-dependent Ginzburg-
Landau model studied in Ref. 5.

This model is clearly a semimacroscopic (since
A ' is much greater than the microscopic lengths)
phenomenological model. Ideally, we want it to
produce the same critical dynamics as the micro-
scopic Schrodinger equation and quantum statis-
tical mechanics of electrons in the ferromagnet.
In practice, it is a difficult task to derive semi-
macroscopic models from microscopic theories.
There is a substantial literature devoted to this
task. In Sec. II, we discuss some general criteria
and motivations in the choice of semimacroscopic
models. The model defined above is the simplest
one taking into account the spin precession and
conservation, and satisfying various general prop-
erties.

Based on the above model, we have carried out
a RNG analysis, and determined the fixed points
and associated exponents to O(e). We have also
calculated, in the same spirit as the static e ex-
pansion of Wilson' and Brezin, Wallace, and Wil-
son, ' the response function above and below T,.
For completeness, relevant elementary aspects of
the renormalization group will be included along
with some calculational details. The outline is as
follows.

In Sec. II we give a formal discussion of ques-
tions involved in setting up semimacroscopic equa-
tions of motion. The connections among dissipa-
tion, fluctuations, streaming velocities and prob-
ability distributions will be studied. In Sec. III
we set up the perturbation expansion scheme for
solving the equation of motion in powers of A.. A

graphic representation and rules of calculation
are introduced. Power counting arguments show
that for «6 the perturbation expansion is diver-
gent. at T,. In Sec. IV we review general ideas
of RNG, associated fixed points and exponents,
consequences, and the dynamic scaling hypothesis.
Then we work the RNG out in detail and determine

the fixed points and exponents to O(e). The main
results are that there are two fixed points, one
trivial but unstable with dynamic exponent z =4
and crossover exponent y = &e, the other nontrivial
and stable with z =4 —&c. In Sec. V we calculate
the spin response function to O(e) for T ~ T,. An

appropriate value of A is chosen to remove con-
fusing logarithms in the calculation. The scaling
function is determined. In Sec. VI we calculate
the transverse and longitudinal response functions
for T& T,. The propagation speed and damping
of spin waves below T, are examined. Results
are consistent with the prediction of RNG argu-
ments. In Sec. VII we discuss the apparent viola-
tion of the usual form of dynamic scaling below T,.
The effect of the mode coupling terms on the var-
ious damping coefficients is discussed. Finally,
we make a few comments about dynamic universal-
ity and microscopic calculations.

II. MODEL EQUATIONS

A. Motivation

Recently, there has been considerable interest
in the study of model equations of motion near the
critical point. "' Here we want to discuss some
of the general background for these semiphenom-
enological equations.

Dynamic critical phenomena are characterized
by the slow variation in time of the order param-
eter and the conserved variables in the system.
Thus, we are interested in finding the equations
of motion of these variables, which we call g;.
Those variables which are fast varying are ex-
pected to be irrelevant except for their combined
effect on the slowly varying variables ((;. We need
to eliminate the fast variables from the micro-
scopic equations of motion to obtain new equations
of motion for P; only.

The situation here is similar to that in static
critical phenomena. " In the static case we do not
evaluate the trace over the microscopic canonical
distribution directly. Instead we evaluate the par-
tition function in two steps. We fir st integrate
out the short wavelength degrees of freedom. This
involves solving a "local" problem, and results in
an effective free energy or Hamiltonian for long
wavelength degrees of freedom. It is only at this
stage, after the short-wavelength degrees of free-
dom have been eliminated, that RNG techniques
are useful. "'"

In the dynamical case the problem of the fast
variables falls into the same category as the short-
wavelength phenomena. The solution of a local
dynamical problem allows one to lump the infor-
mation from these local processes into a set of
simple parameters that are important for long
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wavelengths.
We shall not discuss the problem of eliminating

fast variables, but only examine various phenom-
enological equations of motion for the slow vari-
ables g; and criteria for their validity.

B. Van Hove's conventional theory

Van Hove's theory" is the dynamic generaliza-
tion of the static mean field or Landau theory. "
One assumes P;(t) satisfies a simple Langevin
equation"

= —I.; x; 'g;(t) + c;(t), (2.1)

where the L& are the Onsager or transport coef-
ficients, x; is the static susceptibility for (((;, and

g;(t) is a Gaussian-distributed noise term satisfy-
ing

In the limit q - 0 and for small but nonzero
T —T„hydrodynamic arguments" show that the
characteristic frequency should be proportional
to g',

(d(q)lim, = —ZFy ',
e-o

(2.8)

where p is just the static susceptibility p, at p =0,
and I is defined as the transport coefficient. In
the conventional theory (2.1)-(2.6), I' is simply I'.
In other words, the transport coefficient is not
affected by the long-wavelength fluctuations and is
effectively a constant. Experimentally,
X~

f
7 —T, f

"((-')~i', with y=-,', (=-,'. The form
(2. I) is consistent with (2.8) only if

F~ ~2 -z+g /v (2.9)

which gives

(2.2) r~ fr-r, f

' (2.10)

If g( is conserved, then I.; will be proportional
to the wave number squared in the Fourier trans-
form representation.

We can easily calculate the dynamic structure
factor from our simple Langevin equation to find

C;((&u) = dt e' '(lt, P;(t))

=2L(&(([(d'+(L; x, ')'] (2.3)

c(q, &) =2rq'/j~'+(rq'x, ')'] (2.4)

The mean-field-theory result for p, is the Orn-
stein-Zernike form

x, =(q'+5 ') ', (2.5)

where ( is the cor~ »~'on length. The width of
C(q, e) as a function of &u is given by the charac-
teristic frequency

~(q) = rq'x, ' = rq'[I + (q() '] . (2.6)

As T- T„q-0 the width becomes very small.
This is the effect of critical slowing down. This
characteristic frequency agrees in form with pre-
dictions of dynamical scaling as proposed by Hal-
perin and Hohenberg, '

~(q) = q*f(q5), (2 'I)

where z is the dynamical critical index. Accord-
ing to (2.6) we find z =4. Unfortunate1y, the ex-
perimental results do not agree with this "con-
ventional" result. It is found, from neutron scat-
tering, " that z= &.

In a ferromagnet we choose the Fourier compon-
ents S, of the spin configuration as the set of slow
variables g;. Noting that the total spin is con-
served, L, =q'F, we obtain the conventional result

for the observed values of y, v, and z. Thus, F
diverges as T- T,. The divergence of transport
coefficients at critical points of other systems have
also been observed. For example, the thermal
conductivity for fluids diverges at T, and this can
be measured precisely using light scattering. "

It is clear that the conventional model character-
ized by a linear equation of motion is not suf-
ficient to describe these new and interesting phys-
ical effects. The difficulty is that the physical
transport coefficient cannot be simply represented
by a constant as T- T,. There are physical pro-
cesses occurring on the scale of large wavelengths
that contribute to F and therefore the simple hydro-
dynamical picture, which assumes that all con-
tributions to F come from very short wavelengths,
must break down.

'P (t) ~ '+[(tl,= —I.(
( )

+g;(t), (2.11)

where I" is the Landau-Ginzburg free-energy func-
tional. Once we include nonlinear couplings, L„.
can no longer be interpreted as the measured
Onsager coefficient. It must instead be thought of
as a "bare" or local approximation for the Onsager
coefficient determined by very-short-range inter-
actions. The model given by (2.11) is called the
time-dependent Ginzburg-Landau (TDGL) model

C. Nonlinear models

We must generalize our Langevin equation to
include nonlinear couplings between the spins.
This will necessitate the inclusion of two new types
of terms in our equation of motion.

(i) We must include the effect of nonlinear cou-
plings in the statics. We can accomplish this by
writing the equation of motion
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and was recently analyzed in detail by Halperin,
Hohenberg, and Ma. ' For systems like planar
ferromagnets, where the spin is not conserved
and L is a constant, this model shows interesting
qualitative deviations from the conventional theory.
For systems with a consex ved order parameter,
homever, there is no change in z.

(ii) The equation of motion (2.11) is still not
general enough. We should also include the "mode
coupling" terms discussed by Kawasaki"" and
others. ' These terms have been shown to lead
to various transport anomalies near the critical
point. Such terms have in general the forxn of a
streaming velocity V;[Pj in the space of g:

«[81=» Q(»«Q;, i«i —Q»[Pl »«). (2»&)
J

F-F'=F —Ph (t)g (2.15)

We see then that our equation of motion takes the
final form

We expect that (i) and (ii) are appropriate near
the critical point and for small frequencies and
wave numbers. It may be necessary in some
eases to treat the P dependence of L. The renor™
malization group should be some help in sorting
out the role of these nem terms. " We suspect
that approximation (iii) would be the most difficult
to lmpx'ove upon.

We will be interested in calculating in the pres-
ence of an external field. We can introduce a field
h;(t) into our model by making the replacement

This form folloms directly from the work of Mori
and collaborators. " The quantity A. is a constant
Rnd Q;& =- Q&, Rre variables constructed from
Poisson brackets or commutaiors of P; and depend
on the particular system of interest. Clearly,

sP (f) V[~(f)] ~ »[4(f)]
Bt ' ' 8$;(t)

+ Q o';, [g(t)]h, (t) + &;(t),

where

(2.16)

(V;e )=0. (2.13) (2.17)

This is the statement that the probability current
vector (probability density e ) x(streaming vel-
ocity V;) in the g space is divergence free. Since
a divergence free current does not change the
probability density, we conclude that V& mill not
change the probability density e . Thus the static
properties, such as the static susceptibilities,
which are determined by e, will not depend on A, .

Including V;, (2.12) becomes

sP (t) V [~(t)] ~ sF [0(~)j
~ (t)

~4;(~)
(2.14)

If we choose F to be quadratic in the P's then
this equation reduces to that studied by Kawasaki'
and others. " The quadratic assumption for E is
compatible only with Gaussian or mean-field
statics. We shall take F to be of the Ginzburg-
Landau form to ensure correct static properties.

Equation (2.14) can be derived from the micro-
scopic equations of motion using the projection
operator technique of Zmanzig. " A particularly
simple discussion is given by Mori and Fujisaka. '
There are three primary approximations used in

deriving these model equations:
(i) Memory effects are neglected in I„. This

means assuming that the processes that contribute
to L; take place on a very-short-time scale. (ii)
The functional dependence of L; on P has been ne-
glected. (iii) The noise g is assumed to be Gaus-
sian. This approximation neglects the various
correlations between the fast variables.

D. Isotropic ft.rromagnets

It is relatively simple to find the correspondence
between the model developed above and a particular
physical system. We must choose the variables
of interest g;, we must specify Q;&, we must
specify which variables are conserved (where I;
will then be proportional to the mave number
squared) and we must designate the order param-
eter and thus the effective free energy E.

For an isotropie fexromagnet me study the spin
density 8,. This system is unusual in that the
order parameter is conserved, and it will be this
property and the precession of spins described by
a special form of V; that will lead to the special
nature of six dimensions in this problem. In prin-
ciple, we should also include the energy density
in our set of variables since it is a conserved
variable. However, Kawasaki" has pointed out
that the energy density decays on a, time scale
much shorter than that for the spin. We treat only
the spin density here.

The Poisson bx'Rekets SRtlsf led by oux' spin vRl l-
ables follow from the standard spin commutation
relations giving

{2.18)

We then find using (2.12) that the streaming vel-
ocity can be mx'ltten
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If we define the generalized Fokker-Planck oper-
ator"

(2.19) (2.25)

It is easy to see that this V satisfies the diver-
gence condition (2.13). Since the spin is conserved
we write I., = j.g', where I" is the "bare" Onsager
coefficient. Finally, we use the standard Ginz-
burg-Landau form for F given by (1.4).

the probability distribution will satisfy the equa-
tion of motion

—„&g,(t)& =D,&g,(t)&

E. General properties of the model

We now investigate some of the simple properties
satisfied by a theory generated by the equation of
motion (2.16).

We now show that (2.16) generates the same
static correlation functions as given by the static
distribution function e . Consider the quantity

o, , [rp) h, (t ) & g~(t )& . (2.26)
Bgs

D ~& gq( t )) = 0 .

We easily see that one solution is given by"

(2.27)

In the case where k =0, then &g~(t)& is time inde-
pendent, and we must investigate the solution of

g (t) =II5( y - 0 (t)) =- 6( y - 4(t)) , (2.20) ( g (t)) e &(2'l = Iir (2.28)

If we calculate the average of g ~(t) then we have
all of the static correlation functions, since

&(t';(t) p&(t) ~ ~ ~ (t))(t)&

('p rp; y, (p&,g(t )&, (2.21)

where d(p =g~d(p, , and &g~(t)& is therefore the
distribution function associated with the variables

We can write down the equation of motion sat-
isfied by g~(t) if we use the chain-rule for dif-

ferentiationn

which follows from direct substitution and use of
the divergence condition for V. If (2.28) is the
only solution, then we can conclude that all static
properties generated by the equations of motion
(2.16) are given by the distribution function (2.28).
We shall not consider the possibility of more than
one solution.

It is useful to consider our equation for &g~(t)&
for finite h. If we define

G „(t—t') = e(t —t') e'w" ' ' 6(q —V'), (2 28)

then we can write the retarded solution for (g~(t))
as

sg,(t) ~ sg,(t) sy, (t)
Bt ~ By, BI; &g,(t)& = w, + dt d(p Gww(t- t)

~ gv;, . (w]h, 2;(())

(2.22)

(2.30)

If we keep only first order terms in h, we obtain

If we take the average of (2.22) we see that we
have to evaluate (g~(t) g;(t)&. We can evaluate
quantities like this if we note the identity

5)p;(t) 0, t' & t
5r„,(t') -', 6;q, t'= t . (2.23)

This result is discussed in Appendix A. It depends .

on the fact that the field )t) at some time t cannot
depend on the value of the noise as some later time
t' Using (2.23.) and the Gaussian nature of the
noise [see Eq. (A5)], we can show

&g~(t)& = w~+ dt d G(pqq(t —t)

xg(, (yah, . (() W„- O(h*) .
B

(2(O)=Q fd(o;,. (( t)h, (t)+o(h'), (222)—

(2.31)

By multiplying by y; and integrating we obtain the
linear response of y; to h, , which we write

&~;(t)g,(t)&=-1-;, &g,(t)& .
B

(2.24) and defines the linear-response function
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G;&(t —t ') = d p dy y;G~~(t —t ')

X — g~. y (2.33)

(g, , (o)g, (t)) = e'~'(g, ,g, )

= e &'I5(y- y') W~] .

In particular, we have

(2.42)

We can rewrite our expression for G in a more
convenient form if we note

(g& g;(t))= dhoti y; e & y&W~=—C;, (t), t ~ 0.
(2.43)

&;]W~ = Wq V)+L~
a BF

(2.34)

The correlation function can be computed without
further discussion of the noise term. If we com-
pute the time derivative we find

so —C;,. (t) = dye; e~~'D~y, . W~ (2.44)

G;~(t —t ') = — dy dip y;G~~(t —t')D~ qr, W—;.
(2.35)

for t &0. Since we can show perturbatively that

C;, (t)=C;,. (.-t), we have

or, using (2.29), 8—C;, (t ) = -G. ;,(t)+G;)(- t) . (2.45)

sg, (t) =D„g~(t) +R ~(t), (2.37)

where we define

&,(t) = -g K;(t) 8- g, (t) —g L;, , g, (t)
i

(2.38)

This leads to the formal solution for g„(t),

g„(ii=e ~'g', (Oi+ fdrp f diG;, [i —nR-, (ii.
0

(2.39)

If we take the average of (2.39) withg~ (t =0) we

have

G;, (t —t') = —e(t —t') dy y~e 9'~' ' 'D~yJW~.

(2.36)

()ne of the nice properties of the response function
is that it is normalized to a constant, independent
of the nonlinear terms, at equal times. G;, (0')
= L; 5;,, which follows from (2.34) and the diver-
gence condition on V;.

We now return to the equation for g ~(t) for the

case h=0. We can rewrite (2.22) in the form"

After Fourier transformation and noting that
ReG(sp) is even, while ImG(&o) is odd under

co —&, we immediately find"

C;, (v) = (2 j&u) imG;&(v), (2.46)

which is a fluctuation-dissipation theorem for our
model. Since it is more convenient to develop per-
turbation theory for the response function G than
for C we will calculate G and use this theorem to
determine the correlation function. This theorem
also allows us to calculate the static susceptibility
as the (d =0 value of the response function.

Finally, we note that there are two apparently
different but equivalent methods for developing
perturbation theory in our model. We can use the
formal expression given by (2.36) and D =D, +Dr,
where D0y,. = —L,. y, , and we can iterate the re-
sponse function in powers of the nonlinear cou-
plings in D, . This type of approach has been de-
veloped by Kawasaki" and has the advantage that
the noise term has been eliminated from the prob-
lem. Alternatively, we can iterate the equations
of motion (2.16), in an expansion in the nonlinear
couplings, and average over the noise term by
term. We prefer this second method because it
is easier to implement the RNG as we will dis-
cuss in Sec. IV.

(g~(0)g, i, (t)) =(g~, (0) e ~'g~(0))

(g, ,(0)R,(t)) = o

for t&0, we have therefore

(2.41)

+ dy dtGy-, t-t gy OB-„ t . 2.40
0

It is easy to show using the results of Appendix A,
that

III. PERTURBATION THEORY

A. Iteration scheme

In this section, we discuss the solution of the
equations of motion (1.5) by expansion in powers
of A. and u. The discussion is a generalization of
that given in Ref. 5. It is self-contained and there
is some overlap of the material here and that in

Ref. 5.
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The linear-response function will be the quantity
of interest. It is defined by (2.32) and in the case
of a spin density takes the form

(S"(x, t)) = 'x'dt 'G„,(x -x', t —t ')k'(x', t '),

(3.1)

where k is an infinitesimal field and o(, P are
spin indices. Let S«(~) be Fourier components of
8(x, t),

in the same direction as h, and G~&=G5~&. For
7& T„ there is a finite magnetization M which
reduces the isotropy to cylindrical symmetry
around M. We then need to distinguish between
G(( and G for the response to h )( M and h xM,
respectively. For the moment, we shall restrict
our discussion to T& T, . The generalization to
T& T, will be included in Sec. VI.

When A. and u are set to zero, the equations of
motion (1.5) reduce to

S(e, r)=I "r*Q f I S,(w)e"'' '"'
k

(3.2)
—i a&S «((d) = —I k' [(k'+r, ) 8 «'(&o) —h«(v)]+ &«(v) .

and similarly for k«((si). Then (3.1) is equivalent
to

The solution is

8«((d} =G,(k, &o)[ g«((d)/rk'+ h«((d}], (3.6)

(S«((u)) =G„s(k, (d)k«s(&u),

with

(3.3) where

G, (k, ~) =- (~, +k'- t ~/rk')-'

G„s(k, (o)= tdri& ie(dt i~« «G- (3.4)

For T& T„ the system is isotropic and (8 ) points

is simply the response function for A, = u = 0.
For nonzero u and A, , we write the equations of

motion (1.5) as

H, (w)=S,'(w)+S, (S, w)( I. 'P S. ..(w —w')
k'

&[-k"8, (ar')+ h«e((s)')] uL-
kr k"

ee (S,.(re') S,„(re")]S... , (re —re' —w"!) .

We shall use the symbol «. for «/r. To find
G(k, (I)), we iterate (3.8) to obtain S«((s)) as a power
series in A. and u„keeping h to first order. The
result is a sum of products of 8"s and Go's. Then
we take the average. Note that the Fourier trans-
form of (1.7) gives

& g"„((d) ('„(~')&=2rk'5„, 5 „,2)i5(&+ &') . (3.9)

It follows from (3.6), (3.'7), and (3.9) that, for
h=o,

(SP((o)S«'8((u')) = 2w5((o+ (d') 5 ««5„i) 2 ImG, (k, (o)/(d

= 2ss5((I) + (Ii') 5 ««I 5„()Co(ke (I)) .

(3.10}

Since g is a Gaussian noise, S must also be a
Gaussian noise in view of (3.6}. Consequently,
the average of a product of S"s is the product of
pairwise averages, each of which has the form of
(3.10). After we obtain (S«((s))) to first order in h,

we divide it by h«(&u) and thus obtain G(k, (I)) as a
series in powers of A. and u.

8. Graph representation

The terms in the series can be represented by
graphs, as illustrated below. Let us set u=O for
simplicity of illustration. The A term of (3.8} can
be represented by a thin line, representing Qo,
which then branches out into two thick lines, re-
presenting the two 8's, or one S and one h, which
is represented by a dot [see Fig. 1(a)]. To O(A),
the S's can be approximated by S"s. By (3.6), 8'
has two terms, one ends in g and the other ends in
h. A thin line ending with a dot means Cob. The
other term in (3.6) is denoted by a line ending with-
out decoration. Figure 1(b) shows the terms to O(A. ).
To O(Xs), the O(I(.) terms in the thick lines in Fig. 1(a)
must be included. The graphs are shown in Fig.
l(c}. It is easy to see that further iterations sim-
ply generate tree graphs like Fig. 1(d). Note that



5

(c)

FIG. 1. (a) Graph representation of the ~ terms in the
equation of motion (3.8}. (b) 0 (~) terms of S to first
order in k. (c) OP~) terms. (d) Some OP4), OP5) terms.

the arrows point along the direction of iteration.
Note also that we only keep one power of k. Thus,
there is just one dot either at an end point, or
joining two lines.

The end points (without dot, and not the begin-
ning point) are joined in pairs in all possible ways
to represent the averaging of the product of S"s.
Each pair is drawn as a circle joining two ends,
thus giving a circled line (see Fig. 2). The con-
struction of graphs for (S„(~)) is thus complete.
Let us sum up with the following rules for O(&")

terms.
(a) Draw a tree graph with n vertices and one

dot either at all end or joining two 11Iles. Each
vertex has one arrow pointing in and two pointing
out.

(b) Join all end points in pairs to form circled
lines. Label each line with a spin index, a wave
vector, and a frequency. The wave vectors and

frequencies must follow conservation laws at each
vertex, i.e., the incoming one must equal the sum
of the outgoing two. Note that there is in general
more than one way to join the end point. Each way

gives a term separately. All must be accounted
for.

(c) Write a factor G, (p, «} for each line, or a
factor C,(p, «) for a circled bne. The values of

P, z are given for each line by the labels. Write
i«, 8&(p" -p"')/p' (X=-X/I') for each vertex, o.

andP being, respectively, the component label
and the wavevector for the incoming line, and

P, P', y, P" are those for the outgoing lines. Write

h, (e}for a dot at an end, or A«„8&k~(a&) for a dot
not at an end.

(d) Integrate over all wave vectors and frequenc-

FIG. 2. (a) Average of the first term, and (b) that of
the second term of Fig. l(d).

ies which are not fixed by the conservation laws
mentioned in (b). A factor (2w)

" ' goes with each
w3ve-vector-frequency integral. Sum over un-
fixed component labels.

These form a complete set of rules for con-
structing graphs and writing down their contri-
butions to (S~(&o)). Figure 3 shows the graphs of
O(a') as an illustration. For simphcity, take
h, (&u) to point in the one direction. Then Py must
be either 23 or 32. Following the above rules, we

have, for Fig. 3(a),

x d'qdv[q' —(q+k)'jG, (q+k, v+u))

& C,(q, v)(, (k~ —q') G,(k, (u) h q((u) .
( q+k'

(3.11)

The factor 2 in front comes from the fact that

Py =23 and 32 contribute equally. The contribution
of Fig. 3(b) is

G,h, =2G, (k, &u) —, (2v) ' ' d'qdv[q' —(q+u)']

&«,(q+ 0, ~+(o) C,(q, v) i.h„((u) . (3.12)

C. Power counting

%hat we are interested in is the behavior for
small k and ~. To get some idea of how the graphs
behave in general in the limit k, co 0, we count
the powers of wave vectors and frequencies.

We note from the structure of G,(k, &u) that every
power of (d goes with -4 powers of k'. If the per-
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turbation series converges, then we expect this
correspondence to hold in G(k, (u) also. Another
way of saying the same thing is that the character-
istic frequency exponent z is

k, l k, lk+q, P

(0)

FIG. 3. OP2) terms of (S~).

k+q, P hk

(b)

3x2=d-6. (3.14)

Thus, for d &6, higher-order terms will be more
divergent in the 0, (d- 0 limit, and the perturbation
series cannot converge. For d &6, there is no
such problem and z = 4 should therefore hold.
With the a,id of the renormalization group ideas,
perturbation series can still be useful for d &6
but for very small values of 6 —d.

IV. RENORMALIZATION GROUP (RNG)

A. General ideas

The equations of motion (1.4), (1.5) are spec-
ified by a, set of parameters

tt =(X, r„u, h), X=X/I' (4.1)

and al, l physical quantities calculated using these
equations of motion are functions of this set of
parameters. Note that we need not include 1" in

p. because, by choosing appropriate unit of time,
F can be made equal to any positive value.

If the equations of motion have more terms than
those of (1.5), then there must be additional pa-
rameters to specify these extra terms, and we
need to extend the definition of p. to include more
entries for the additional parameters. As we men-
tioned in Sec. II, some of these terms come from
the generalization I"- I [S,]. Mori, Fujisaka, and
Bhigematsu" have discussed the parameterization
needed in the equation of motion in this case. In
general, higher powers of S, will appear in the
equation of motion and there will be a more-
complicated wave-number dependence.

On the other hand if the series diverges for
k', (d - 0, no such conclusion can be drawn.

In any given graph, each G,(q, v) gives -2 powers
of q, each C,(q, v) gives -2 powers of q and -1
power of v. Each integral (one for each closed
loop) gives d powers of q and 1 power of v. Hut

the number of closed loops is the same as the
number of circled lines, i.e., C, 's, because ea,ch
circled line came from joining two ends of a tree
thereby forming a loop. Thus the powers of v

from integrations exactly cancel that from Co's.
%e can forget about powers of v.

The X vertices give no net power of wave vectors.
Whenever two more vertices [i.e. , O(X') more]
are added to a graph, the number of lines in-
creases by 3 and the number of loops increases by
j.. This means that the increase in powers of q is

The BNG is a continuous set of transformations
(tt„; 1-b&~). Given p, , 8, transforms it to
p,

' = &&p, via the follow ing steps.
(a) Eliminate the variables S, with A/b &q &A

from the equations of motion. This means solving
the equations of motion for S„substituting the
solution in the remaining equations of motion and
than averaging over f,.

(b) Replace the remaining S~(t), b &A/b, by
b' " 'S»(tb ') in the remaining equations of mo-
tion. Also replace L by bL'. The new equations
of motion are then written in the old form with
modified parameters, which are identified as
entries in p,

' =A&p, . The volume of the system de-
scribed by the new equations of motion is
L"= (L/b} . (The constants q and z will be chosen
later. )

Steps (a) and (b) define R, . They are direct gen-
eralizations of those used in static problems.
The step (b) changes the unit of length by a factor
of b, the unit of S„by 6' "~' and the unit of time by
b". It can be viewed as a scale transformation.
Step (a), which eliminates S„A/b &q & A, is a
coarse graining procedure. It lowers the wave-
vector cutoff and thus downgrades the spatial reso-
lution. Details concerning these S, are lost.

Step (b) is very easy to carry out but step (a) is
more involved. Furthermore, after performing
(a), the new equations of motion will in general
have additional terms than those of (1.5). This
means that more entries are needed in p, as was
mentioned earlier. At present our mathematical
capability is inadequate in carrying out (a} except
when all entries of p, are very small so that per-
turbation methods can be applied. Consequently,
as will be seen, application of the RNQ to our
equations of motion become accessible to simple
calculation only when d is close to 6.

As far as those variables which are not elimi-
nated in step (a) are concerned, the transformation
A~ is simply a change of name of the variables and
no physical content of the equations of motion is
altered. Since S,(t) is replaced by b' " 'S»(tb ')
we must have, for example,

(S(t)) =(& (tb ')& b' "" (4 2)

where the subscript p, denotes that the quantity
is calculated with the set of parameters p. , and
g' denotes that it is calculated with the trans-

formed parameters. Under A&, h is transformed



neglecting (5p, )' and higher orders. We shall find
that (4.8) is

Equation (4.3) is strictly correct when k is static
and contains no Fourier component with k &A/b
(See Sec. IIID, Ref. 12, for example. ) As we shall
see, (4.3) is consistent with our approximations
for slowly varying h as well as for static h. Com-
bining (4.2}, (4.3) and the definition of the response
function G 8(k, (0), (3.3), we have where, for the trivial fixed point; p. ~ =0,

(4.9a}

(4.9b)

(4.9c)

G 8(k, &u, p) =O' "G„s(bk, b' e, R,p) . (4 4) (4.10)

0

a=4,
@=0.

(4.6a)

(4.6b)

(4.6c)

There are two nontrivial fixed points given by

(4.7a)

(4.7b)

This is all the RNG can tell us about the response
function. Note that RNG is a set of transforma-
tions on p, . It does not solve the model nor does
it calculate any physical quantity such as G. It is
like the rotation group in atomic physics. It
helps but does not provide many details.

The application of the RNG to critical dynamics
is along the same line as to statics. It is via the
hypothesis that, for 7 near T„ the set of param-
eters p, (T) describing the physical system is very
near a special set of values called a fixed point
p, *, and that B,g(T,)- p, * for large b, provided
that A ' is sufficiently large compared to atomic
distances. The fixed point p, * is invariant under
A~,

(4.5)

The constants q and z are adjusted so that (4.5) has
a solution, i.e., one cannot find a fixed point unless
g and ~ take certain values.

We shall find three fixed points consistent with
the assumption that all entries of p, are small.
There is a trivial fixed point with all entries equal
to zero

and for either of the nontrivial fixed points (4.7},

The exponents v and y are
1v= 2q g=-/+6

~

(4.11)

(4.12)

and A is a constant, for the trivial and nontrivial
fixed points. If we are to approach a fixed point
we must set r0+uA=A =0 since they would other-
wise grow for large b. The variable u however is
"irrelevant" and will diminish as b increases
since y &0. For the trivial fixed point, 6A, will
grow with b because x&0. For this reason, the
trivial fixed point is called "unstable. " For the
nontrivial fixed point, &~ diminishes with increas-
ing b and hence the term "stable. " Associated with
the instability of the trivial fixed point, there is a
"crossover" exponent y defined by

(4.13)

According to the hypothesis given above, the
critical point is characterized by A~II, (T,)- g*,
i.e., B~bp(T,)-0 for , large b. Since 1/v&0, f,(T,)
r, (T,) + u(T—,)A must vanish. Since parameters

in the equations of motion are smooth functions of
we have

(4.14)

for very small T - T, . Of course, the critical
point is defined with A, = 0. Write

(4.15)

Then, setting b =$ in (4.4), we have

12=4 zc q (4.7c)

(4.7d)

G g(k, (o, p. (T))

where e =6 —d and (4.7) is valid only for small ~

to O(e). The two signs in (4.7a) give the right-
handed and left-handed precessions, respectively.

If p, is very close to a fixed point p, *, we can
llnearlze the equation p =Ryp, . Write ~ p. = p —p. +

Then the linear operator 8, takes
6p, to 5p, ',

(4.8)

where +=sgn(T —T,). For ~T-T,~-O, $-~.
Since &=-e (stable fixed point), the third argument
on the right-hand side becomes simply A.* for
sufficiently large t', i.e., $"B ~

~
T T, ~

'"5X
becomes negligible. The characteristic frequency
v(q) defined as the pole of G on the &u plane, must
be a function of k$, ug', (*5K+A* times $ '. With
z = 1+ 2d and for sufficiently small

~
T —T, ~

we
can neglect $"6X and u$' on the right-hand side of
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(4.16}, and the characteristic frequency must be
of the form

~(q) = & 'f~(q&) . (4.17)

The form (4.17) is of course the statement of dy-
namic scaling. The neglected variables 6A. and u

are "irrelevant variables. " However, it might
turn out that an irrelevant variable may not be
neglected, and (4.17) fails as we shall see, for
example, in the case of transverse spin-wave
frequency below &„where u does not disappear
for (T -T.I-0.

Clearly, the statement lim, „R,p, (T,) - ij.* is
not possible for the unstable fixed point p. *=0
unless X=6K. =0. In that case, a similar conclu-
sion like (4.17) with s =4 follows from (4.16).
If ~ is not zero but extremely small, then

( T T, (
-'~ (4.18)

is small for not too small T —T, and taking $"5X
=0 does not make a big error. However, as

~
T —T, ~

is decreased, ('&X grows as (4.18) indi-
cates and eventually becomes important for suf-
ficiently small

~
T —T, ~

. The crossover exponent
qr = ~e [given by (4.13)] tells us how the effect of
5& increases as

~
T —T, ~

decreases.

B. Calculation to O(e)

Assuming that all entries of p, =(A, xo, u, h) are
small, we now consider the detailed calculations
of R,p, . Arguments of Sec. III pointed out that the
smallness assumption would lead to useful infor-
mation only for d= 6 —e with e small. Here we
shall determine the fixed points and related prop-
erties to O(e). Complications of higher orders will
be discussed qualitatively.

Initially, we demonstrate the method for the
case u =h =0 and show how I' is changed under
step (a) of A, . We divide the wave vectors into
two sets, (q$ and (kj, with

contribution from the bubble in the third term as
k'AI'(k, ur)/I'. So we can write Fig. 4(c) as

S~(&u) = Go(k, &u) g ~(v)/I"k'

G,(k, ~)k'[A r(k, &u)/I' ]S,(&u)

+ the term proportional to two S„'s .

1
i(u-+k (4I' +AF(k, (u)}

(4.21}

which gives the change in I' to order X' as A.I'(0, 0).
It is also easy to see that the effect of the ~I'
terms on the third term in Fig. 4(c) is to simply
replace I'- I"+4I". Another way of looking at this
result is as follows. Multiply both sides of (4.20)
by k'1"G, '(k, &u) =-i++ I'k' and move I'k'S, (e) on
the left to the right, we then get

-i(uS, ((o) = g~((o) —k'[I'+ d, I'(k, (o) ]S,((u) + ~ ~

(4.21'}

This is of course just the Fourier transform of an
equation of motion of the form (1.5) with I'+bI'

(4.20)

Thus, ignoring the third term in (4.20) for the
moment,

AI'k u
5,((u) = GP(k, (o)+k' ' I'k' g~((u)

A/b&q &A, k &A/b. (4.19)

Equations (3.8) are then divided into two sets of
coupled equations, one for S, and one for S,. If
we label the lines representing S, by a line with a
slash and S„without a slash, we obtain Fig. 4(a)
representing these two sets of equations. We then
solve the equations for S, to obtain S, to O(X') as
shown in Fig. 4(b). Next we insert this solution
into the equations for S„average over S„and
then obtain 5» as given by Fig. 4(c). The first
two terms in Fig. 4(c) are just those which we
would obtain by ignoring the S,'s all together. The
fourth term can be ignored for small wave num-
bers which cannot add up to a wavenumber larger
than A/b. It will turn out that we can write the

+;= ~ +

(b)

(c)
FIG. 4. (a) Simultaneous equations for S~ and S& ~ The

lines with a slash represent S~ 's or response functions
in the shell A/b &q & A. (b) 0(&) terms for S, . (c) OP. )
terms for S~.
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replacing I" [ignoring (k, v) dependence of 41"].
Note that BF'/&S»=k'S, since we set r, =u =k =0.

In carrying out the analysis in more generality
we shall solve the equation of motion (1.5) for S,
to O(A'), substitute into the equation for S„and
average over g, ." The results in terms of graphs
are shown in Fig. 5. The three graphs in Fig. 5(a)
are proportional to S„, & S, and hence give a
correction i)kX to A.. The three in (b) have the form

S~+, xh„and hence give AA also. For consistency,
the results of hA. from (a) and (b) must agree.
Figure 5(c) is proportional to 5„and hence makes
a, correction to 1. Figure 5(d) is proportional to

h~ and must make the same correction to I". Let
us look at the details.

It is sufficient to consider the spin component 1,
frequency component v of S„; 2, v'+ e of S~,„;
and 3, (2)' of 8» as labeled in Fig. 5(a). Following
the rules of Sec. 111, Fig. 5(a) gives

6A [(k +k ')' - k "j= A V(2)[)

x d"Zd~ a+& '-&' a+a+C

(4.22)

where A, 8, C are the contributions from the
three graphs in Fig. 5(a), respectively,

A = (k+q) '[(k+k')'-(k'-q)'] (q-k') '(k" -q')
x G,(k +q, (d+ v)G, (q-k', v —(2)')C,(q, v),

(4.23 a,)

a =(q+k) '[(k+k')' —(k-'-q)']q-'[(q-k')' —k "J

x G,(-q, —v)G, (q+k, v+(u)C, (q —k', v —(u'),

(4.23b)

C =q '[(q —k')' -k "](q-k') '[(q+k)' —(k+0')']

xG,(-q, —v)G, (k'-q, (d' —v)C, (q+k, v+(u).

(4.23c}

In view of (4.22) and (4.23), it is clear that AX will

depend on k', v', and k, e. We can expand AA. in

powers of these variables. The transformed equa-
tions of motion thus contain extra terms of higher
space and time derivatives in addition to the origi-
nal form S&&V'S. As we mentioned before, this
means that more parameters (and hence more
entries in p, ) are needed to specify these extra
terms. We shall see later that these extra terms
will not affect the results of interest to O(e).

The frequency integral over v in (4.22) is ele-
mentary. The result is that

(4.24)

as far as the constant term is concerned.
Similarly, the graphs in Fig. 5(b) can be calcu-

(a)

Sh'

k, l

2S k+h'

h» h'

id) W

FIG. 5. (a) and (b): O(&3) terms in 6& [see (4.20)].
(c) and (d): O(A, 2) terms in ~.

lated. We find hA =0, consistent with (4.24).
Figure 5(c) gives

~r = -k-'2V(2m) '-' d'q dv[q' —(q+k)'j

x G,(q+k, v+ ~)C,(q, v)(q+k) '(k' -q')

=2-'2'(2 ) 'fd »[» -(»'+2)''1*» '(»+2)-*

x[(q+k)'+q' i&a]- . (4.25)

= A. '(192w') ' —= V(192)[') ' lnb .
A/b

(4.26)

Figure 5(d) gives a term proportional to k'I h „S„
with a coefficient

k-k-'(2. ) fqqq. [q -(q.k)

x G (q+k, vq-(k))C (q, v)(q+k)

=k- 2'(2») 'fq'»[»' —(q+k)'1*» *(»+k) '

x[(q+k)'+q' —i(d] ', (4.27)

which is identical to (4.25). This means a. correc-

In view of (4.25}, EI' depends on (2) a.nd k. Thus
the modified G, gets extra co and A dependence
which means higher derivatives in the transformed
equations of motion requiring more parameters.
Again we shall argue that these complications will
not affect our results to O(e). Setting k and (d to
zero in (4.25), we obtain, for setting d=6 in the

integral,

—)(.'(27[)- It d q



tion to 1 as implied by (4.25) and no correction to
h. To sum up, step (a) of A~ gives no effect on A,

but modifies I to

I, =- I' + 61' = I"[1+V(192m') ' lnb] . {4.28)

(fI) yEL/ 4/2
et'

Now we apply step (b) of R„ i.e. , replacing S,(t )
by O' ""S»(tb ') and I. and bL', in the equation
of motion. %e obtain the transformed equations of
motion

—,'e = X*'(192m')-', (4.35)

since 5' '"=5'"= 1+ (&e) inb. We then get two non-
trivial fixed points as summarized by (4.V).

%e now examine the case row0, u40. %e must
then analyze the full equations given by (1.5) and
(1.6). We shall go through the steps (a) and (b) of
A, keeping 5A. = ~ —~*, r, and u to the first order,
i.e. , we shall determine R, , the linearized 8,.

For the trivial fixed point, the answer is easily
found. The only contribution of step (a) is the
modification of r, from averaging a pair of 8, 's
in the u term as shown in Fig. 6. %e have

+ b* 'I",p'(-P'S~+ h~), (4.29)

(4.30)

The wave vectors P, P', P+P' are now ranging
from 0 to A. The transformed parameters A.

' and
h' are given by

gb& —1 —vl i2-d/2

hp —Ape, b

(4.3 la)

(4.3 lb)

The educated reader would see that the sign in
front of 7) in (4.31b) is not consistent with that
given by the analysis in statics, which gives

hp = hpgq
b' (4.32)

x*=u*= h~= 00 ~ (4.33)

Now we collect the transformation formulas for X

and I' from (4.31) and (4.29), (4.28):

The reason is that a nonzero q is necessary for a
fixed point with a nonzero uS' term. Here u* =0
and we can remove this inconsistency by setting
@=0.

%e have thus completed R,p, for the case u=x,
=0. Since we did not get a O'8, term [Fig. 5(c) is
proportional to O'8, ] nor a O'S„.S~-S,. term, r,
and u were not generated. to the order calculated.
Thus, zero is the suitable fixed point value for ~,
and u. Together with (4.32), we have

x' = xb'~',

hp
——hp b,

t'0 = t 0
-u'A,

f 0
= f ob' =—(ro+uA)b',

u' =ub

(4.3 Va)

(4.3 Vb)

(4.3 Vc)

(4.3Vd)

(4.3 Ve)

The first two equations follow from (4.31) with
z =4, @=0.

Now we work out R~ for p. near the non-trivial
fixed point keeping u and x, to first order. Con-
sider step (a.).

First we look at Fig. 5(c), which produced a
term —AI'O'S„when we calculated with x, = u = 0.
[See (4.25) and (4.26).] If we include a nonzero r,
in the calculation of Fig. 5(c), we get simply

—~I"(r, +0')O'S, . (4.38)

Thus Fig. 5(c) still can be interpreted as affecting
a correction to I".

Figure V(a) gives some corrections to Fig. 5(c)
to first order in u. They are obtained by insert-
ing Fig. 6, i.e. , -Lr, of (4.36), into Fig. 5(c).
Since

(4.36)

where A rs a constant. The rest of A, xs ]ust step
(b), which gives

X'=Xb' ' "i' (4.34a)

I"=I', O' '=I"b' '[I+V(192m') 'lnb]. (4.34b)

From these formulas, we obtain the formula for
R' = ~'/I"

these three graphs of Fig. V(a) simply give

2' = Ab' "[1—V(192w') 'lnb] . {4.34c)

To obtain X+, we simply set A. = A, = A.+ fn (4.34c).
There is a trivial solution A.*=0. In this ease z
must be 4 to keep I"=I' in (4.34b). There are two
nontrivial solutions given by U

FIG. 6. O(u) contribution
to y'0.
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(b)
Xg fu

FIG. 9. O(u~) contribution to &'.

(c)

FIG. 7. O(u& ) contribution to the transformation of
~01 ~ In (b) and (c), circles on some of the lines are un-
derstood.

(-hr, ) [Fig. 4(c)]
0

(4.40)

i.e. , adding Dr, to r, in (4.38). The contribution
of Fig. 7(b) and 7(c) vanish. Thus step (a) of R,
simply changes r, to r, +nr, as expected. Step (b)
is easy. One thus obtains again (4.37c) and (4.37d)
for the transformation of x, under A,.

To obtain u', we collect modifications to the
equation of motion which are proportional to 0'
times three powers of S. The graphs are given
in Fig. 8. These in Fig. 8(a.) are just those in Fig.
7(a) with uS' replacing n.r, . They thus should be
interpreted like (4.40), a correction of I' which
multiplies the u term in the equation of motion,
not a correction of N. The rest of the graphs in

Fig. 8 va, nish. Thus step (a) of R, does not change
u. Step (b) again is trivial. We obtain u with the
same formula as (4.37e).

Finally, we come to the transformation of A.

taking nonzero r, and u into account to first order.
When xo is included in the calculation of AA, given
earlier, one still gets AA. =O. The O(u) terms are
shown in Fig. 9. They all vanish. Thus the trans-
formation formula (4.34) is not perturbed. We ob-
tain the linearized equation of (4.34c) as

C. Higher-order terms

So far we have worked out R~ only to O(e). When
higher orders are included, many complications
arise. The transformation of A. and F will have
more terms, like those in Fig. 10(a), for example.
The simple form of our equations of motion will no
longer be sufficient. For example, Fig. 10(b)
shows that a term proportional to 4 powers of
spin variables in the equation of motion will be
generated by R~. Figure 10(c) shows that one has
to introduce more complicated coupling between
the noise and the spin. The transformed noise
would not be purely Gaussian, but has nontrivial
higher moments. All these complications are not
unexpected. The step (a) of R„ i.e. , the elimina-
tion of S, with A/b & q &A, summarizes all effects
of the eliminated variables on the remaining ones.
Since the former have complicated behaviors,
their effect on the latter should not be very simple.

We shall not attempt to explore the higher-order
calculations here but only to show evidence that
higher orders can be consistently ignored as far

(b)

5A. '=b '5X

around the nontrivial fixed point with A.*
= (e/S6v')'"

(4.41)

(c)

s s

(a) (b)

FIG. 8. O(N. ~2) contribution to u'.

FIG. 10. (a) O(~4) contribution to ~' and I", respective-
ly. {b) New term generated by R, proportional to four
powers of spin. (c) These two graphs are joints of three
and four ends of lines, respectively. They are possible
parts of more complicated graphs. They can be regarded
as the average of three and four powers of noise, re-
spectively.
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as the O(e) results already calculated above are
concerned. That is, if there are other terms in
the equation of motion, we want to make sure that
they will not alter our results to O(e), assuming
that these other terms are of higher order in e
than A. = O(e. "'). The consistency of this assump-
tion is not obvious because we did have to calcu-
late X' to O(A.') = O(e'") in order to obtain I* and
exponents to O(e"') and O(e), respectively.

The simplest term that can ruin this consistency
is a term proportional to four powers of spin with
a coupling constant X, of O(e'"). Figure 11(a) rep-
resents such a term. Under B„aterm shown in
Fig. 11(b) is a contribution to A.

' of O(e'"}, the
same order as O(A'). To save our results obtained
earlier, we then have to assume that A., is of higher
order than O(e'"). The assumption that X, =O(e'")
turns out to be consistent. Figure 10(b) shows
that X,' generated by X is of O(XS}=O(e'"), not
O(e'"). Similar arguments apply to more compli-
cated terms. Thus, as far as the determination of
X* and exponents to O(e) is concerned, there is no
inconsistency. These arguments are parallel to
those used in showing the static calculation to
O(4-d) (see Refs. 11 and 12).

X*+) '5A, = X*+(I—e ln)}(5R}+O(e'). (5.1)

Thus, instead of getting $
' which goes to zero

as $-~, one sees ln( which gets mixed up with
other logarithms of interest. To remove such

V. CALCULATION OF THE RESPONSE FUNCTION

BY PERTURBATION THEORY, T ~~T,
A. Discussion

Understanding of the RNG can only tell us the
transformation property (4.16) of the response
function G, but not its explicit form. To obtain
more information, we shall calculate G as an ex-
pansion in powers of A.. Assuming A = O(e'"), we
shall calculate to O(e) for T~ T,. The case T& T,
will be considered in Sec. VI.

If one blindly carries out perturbation theory to
second order in X one obtains a number of loga-
rithmic terms. We note from our renormalization
group analysis of the response function that among
these logarithms will be terms contributing to
[see (4.16)],

confusing ln( terms we simply set 6A. =O, i.e. ,
X = X* in performing the perturbation expansion to
O(e). This choice of A is in the same spirit as
Wilson's choice of u, in computing static exponents
by perturbation theory. '

B. Second-order self-energy

For T~ T„ the system is isotropic apart from
the small effect of the external field h. The re-
sponse function, defined by (3.4), is thus propor-
tional to 6 8,

G g-—Gdog .
Let the self-energy Z(k, &u) be defined by

G '(k, (u) = G, '(k, (u) —Z (k, &u) .

(5.2)

(5.3)

The O(lw. ') terms for G(k, ~) are given by Fig. 3.
We can identify the self-energy as

Z =+ G, '(G, + G,), (5.4)

where G, and G„ are given by (3.11) and (3.12}.
After performing the v integral and making some

simple rearrangements, we find

Z(k, &u) = —(i(v/I'k')Q(k, (u),

where

(5.5)

d q [(k-q)'-q ] x(q)X(k-q)
(2 ) D(k ~)

(5 6)

D(k, q, ~) = i~lF+q'X -'(q)+(q k}'X '(q k}-, -
(5.7)

C. Dispersion relation to order X2 for T) T,

We will be primarily interested in the poles of
the response function which gives the dispersion
relation for the collective modes in the system.
We therefore look for solutions of G '(k, v) =0.
Solutions occur for small k and cu at the character-
istic frequency &u(k) which we can expand in a
power series in k and ~. We find to lowest order
in k and u that

and y
' is given by (2.5) (r, = $ '). We note that

the inverse response function can then be written

G '(k, (u) = )t '(k) —(i(u/I'k') [1 —Q(k, (u)], (5.8)

preserving the identity G '(k, 0) =)t '(k) to the
order calculated.

&u(k) = —iI'k'(k'+ $ ') [1+Q(k, 0)] . (5.9)

(a} (b)

FIG. 11. (a) Term proportional to four powers of spin
in the equation of motion. (b) R, wi11 generate this con-
tribution to ~' from (a). Q(k, 0}=Q(0,0)+Q(k, 0) -Q(0, 0). (5.10}

A detailed analysis of Q(k, 0} requires one to ex-
tract the explicit dependence on the cutoff A. This
can be accomplished by writing
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We easily find

Q(O, O) = —,
'

~ in(a~), (5.11)

eb. (x) = lim [Q (k, 0) —Q(0, 0)],
we find, for example,

(5.12)

where we have used (4.7a) for A.*. The quantity
Q(k, 0) —Q(0, 0) is finite as A —~ and depends only
on the variable x-=A). If we define

f(x) in Fig. 13 for various values of e. The quali-
tative behavior of f(x) is in agreement with that
found by Hesibois and Piette. " We cannot, how-
ever, take the result for e =3 very seriously.
Clearly, the matching condition at x = 1 is re-
sponsible for the unphysical kink that appears near
x= 1 for f =3.

The physical Onsager coefficient can be obtained
from (5.15) and (5.17) using (2.6). We find

a(x) 13
lim
x p x' 128

and, for large x,

(5.13) r =r ~'&'/(I+. ~„) (5.18)

and we see the strong temperature dependence
discussed in Sec. II.

a(x) = ——,'inx+L +O(l/x), (5.14)

&u(k) = —ir'k' '"f(x), (5.15)

where 6„ is given numerically as 0.287. We eval-
uated L(x) numerically and plotted the results as a
function of x in Fig. 12. We then see that the
characteristic frequency has the form, to O(e),

VI. CALCULATION OF THE RESPONSE FUNCTIONS

BY PERTURBATION THEORY, T(T,

A. Equations of motion below T,

The major modification in the theory below T, is
that the z component of the spin has a finite aver-
age in zero external magnetic field

where I" is a renormalized "bare" Onsager coeffi-
cient

(Sg(x, f)) =M. (6.1)

I"=(1+@A )I'(1+-,' e ltd)

and we write
-2

f(x) = {8(1-x)x"'[1+ca(x)]1+eh„

(5.16)
It is useful therefore to define a new set of vari-
ables

(6.2)

and

+8(x —1)[1+~ e 1nx+ eb, (x)]].,

(5.17)

V. =(2) '"(~.~i~,),
h, =(2) '"(h, ~ik, ),
f, =(2) '"(g„+i&,).

(6.3)

(6.4)

(6.5)
where 8(x) is the unit step function. We have nor-
malized f(x) such that f(~) = 1. We must introduce
the step functions if we are to satisfy the asymp-
totic conditions f(~) =1, and f(x)ccx'" ' for x«1.
Note that f(x) is continuous at x= 1, but will have
discontinuous derivatives at x =1. We have plotted

Using (1.7) we see that these noise sources satisfy

&r..(k, ~)L (k', ~')) =(& (k, ~)&,(k', ~))
= 21k'5, „2m 5(v+ &u'),

(6.6a)

2.5

-4

2.0—

f(x)

l.5—

- IO-

2 3 4 5 6 7 8 9 10
X

I.O

I I I I I I I I I I I I I

0.5 I

I/x

3.0

I I I I I I I I I I I

I.5 2 2.5

FIG. 12. Function 104(x) defined by (5.12), (5.11),
and (5.7), where x=k$.

FIG. 13. Function f(x), defined by (5.17), plotted vs
1/x=1/0 $, for various values of ~ =6-d.
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{f,(k, (u)g, (k', (u')) = {g (k, (u)g (k', (u')) =0.

(6.6b)

If rve allow& the index e to take on the values + and
0(=z), then our equations of motion (1.2) can be
Written

+ dr'dx" 8'g~x;x'x" qex', g q x'", t + g 8 y~@, g pg

B, y B, y
(6 7)

(p =p +p p +p

)t, '(x- x') = r,'5(x- x') —V'5(x- x'),

x. "(&)= &.'+&',

y, '(x-x'}= —V'5(x-x'), g, ((q) =q',
r'=t' +3uM

&, sy(x;xx') =5s,5q, jaiA[5(x-X)V'

(6.8)

(6.9)

(6.10)

x 5(x-x'}—5(x- X')V'5(x-X)]

+ 21'uM V'5(x- x')5(x-x)), (6.12)

W, ey(x;xx') = —,'(iA)(5s 5~ „—5((,5r )

&&[5(x-X)V'5(x- x')

—5(x-x')V'5(x-x)]

+21'uMV 5(x-x')5(x-X)5&, 5&

+ 61'uM58, 5&,V'5(x-x')5(x-x),

(6.13)

K» t(r
——+iA(5s»5~ 0

—5s Oi5y»),

Ko er =+iA(5s 5y+ —58 +i5y }.
(6.14)

(6.15}

(6.16}

which is valid for the determination of M to low'est
order in u. We expect, how'ever, from the work
of Brdzin, Wallace, andWilson, ' that the inverse
transverse susceptibility rvill vanish for q -0 to
all order s ln Q.

If we ignore the nonlinear terms in (6.7) we ob-
tain, after Fourier transformation, the zeroth-
order response functions

Go (k, (u) = (I'k' + in.XM )

&[ —i((u —n3&k')+I'k'Xa'(k)] '
(

(6.17)

We note that the result for the transverse sus-
ceptibility, (6.10), follows from the use of the re-
lation

C..(k, ~) = 2I k'&( ~'+[I.k'X. '( k)]'t,

C.,(k, (u) = C (k, (d) = C, ,(k, (u) =0,
(6.18b)

(6.18c)

21 0
((u —A.Mk')'+ (I k')' '

Our model leads, in the absence of nonlinear cou-
plings, to spin w'aves w'ith frequency MAP' in the
transverse response and correlation functions for
T& T,. These spin waves are damped by a I"k'
term. The longitudinal correlation function looks
very much like the correlation function for T & T,.
The only change is to replace )((k)- y,(k). How-
ever there is a nonlinear coupling between the
transverse and longitudinal modes which mill lead
to modification of the longitudinal spectrum.

Starting with the equation of motion (6.7) we can
set up our perturbation calculation just as for
T& T, except that ere must treat the K and 8'ver-
tices defined by (6.12)-(6.15) and keep track of
the n indices on the response and correlation func™
tions. We assume that A and u are small but
uM'=const. Thus, M-u '" and w'e must keep
more terms than for T& T,. Note that uM'cf- T, —T.

B. Longitudinal self-energy

As in the case for T& T, me can define the self-
energies Z~ as

G (k, (u) =G'(k, (u)+G'(k, (u)Z (k, (u)G (k, (u).

(6.19)

Keeping all terms in the expansion of G~ to order
(A.', u, (uM)') we obtain graphs like Figs. 3 and 6
except there are indices associated with each line
and the vertices are given by (6.12)-(6.15). The
longitudinal self-energy is given by

and the correlation functions

( (I((~(k, (d)+8(k, (d )}= 2 P5(('d+ (d )5»» ~ C((((((k, (d),

(6.18a)



E,(h, ~) = f &, f 2
[4(3aM)*D,(kX-a')c,'(I -q, w —~'[G',(q., ~')D, (k)(.-k'[

+4D,(k)I(k, q)C', (k -q, cu —cu')f'(q, cu')D (q)I(q, k)+4D, (k)I"(k, q)C', (k -q, cu —cu')

x C', (q, cu')D, (q)f*(q, k) + 2D,(k)f (k, q)C; (k -q, cu —cu')G'(q, cu')D (q)(- i~)(f'.) '(k, cu)

+2D,(k)&*(k,q)C'»(k -q, cu —cu')G'(q, cu')D. (q)(i~)(60) '(k, cu)]+Zs, o (6.20)

I(k, q) =-,'(iA.)[q' —(k -q)']-ccMI'k',

D (A) ={I"k'+in[AM) ', (6.22)

Zs, .= -s 2, 6[3xo(q)+2x. (q)] (6.23)

is the contribution from a Hartree term similar to Fig. 6. We note that f(k, q) is just the Fourier trans-
form of —,'8'„, [see (6.12)]. After doing the frequency integrals, which are simple contour integrals, we
obtain, after replacing q-A -q in the third and fifth terms in (6.20), and noting

f(k, q) =1'(k, k -q), (6.24)

d'q 4(3uM)'){,(k -q)iI'q' 1 d'q 2if(k, q)
(27[) Di(cu, k, q) I'k (2s)6 Dr(cu, k, q)

~ [q, (k -q)2f(q, k)+ X,(q)2f+(k -q, k)+ }C,(k -q)(- iX)(G;) '(k, cu)+ }C,(q)(iA)(G;)-'(k; Cu)j+Z„„

D~{cu,k, q) = cu+ i[I'~(k -q)+I"~(q)],

D,(cu, k, q)=cu -XM[q'-(k -q)']+i[1,(q)+I', (k -q)],
I', (q) = I'X. '(q)q',
I",(q) = I"x, '(q) q'.

(6.27)

(6.28)

If we concentrate on the term in square brackets in (6.25) we find after considerable manipulation that

X, (k -q}21(q,k}+q,(q)2f*(k -q, k)+[X,{k -q) -q, (q)j[-i (G',) '(k, ~)]

= —(Acu/I'k')[g, (k -q) l{t)]q—icuN2Mg—,(k -q)}C,(q)+2iuM}C, (k q)}t,(q)Dr{-cu, k, q).
Using this result it is easy to see that the self-energy can be m'ritten in the form

Z, (k, cu) = Zo(k, 0) —cuZ, ~(k, cu),

where

(&0) f,",'..[(&,~~=)'x.(s[x.(& -s)+(2~~['x.(q)x. (& -&)[+&..

(6.30)

(6.31)

d'q 1 d'q fiA[q'-(k -q)'j-2uMI"k'] 'g, (q)g.,(k -q)
(I k')'D, (~,k, q)

%'e can then write the inverse response function

.G, '(k„cu)=(icu/I"A')+X, '(k)-Z, (k, 0)+cuZ, (k, cu)

= —(icu/1"k')[1+iI'k Zo ~(k, cu)]+Xo'(k),
X.-'(k) = X.-'(k) —Z.(k, 0)

is the static susceptibility to 0( ' IMu).

(6.34)



CRITICAL DYNAMICS OF FERROMAGNETS IN 6 —E. . .

C. Dispersion relation for the longitudinal mode

Since we must consistently drop terms of order
(uM)'-u compared to 1, we should replace }7,'
with X,

' and ignore the 2uMI'k' terms in Z,
We then have the dispersion relation

posite limit of large n, MA*fixed and k-0, we
find

and

v, (k) = —iI"k'(k'+ 2( ')[1+ Q, (k)] (6.35)
1=n 'i' 1+AX*'+0 ~2/3 (6.41)

~ = ~*M/k'

and to lowest order in u

n = i.*/(k[)'(ug-')'i2 .

In the limit n- 0 we have T- T, and we find

(u, (k, n =0) = —iI"'k4 'I'

(6.38)

(6.39)

(6.40)

in agreement with (5.15) as T- T, . In the op-

[q' -(k —q)'] 'X. (q)X, (k-q)
k' ~ (2z)' q'+ (k —q)4+iZM[q' —(q —k)'] '

(6.36)

We can analyze Q, (k) in much the same manner
used in evaluating Q(k) for T ) T, . We find then
that we can write

(u, (k) = —iI"k~ ' '(1+ 2x ')fi(n), (6.37)

where I"' is the same as for T) T, [see (5.16) and
x= k$]. The parameter o is defined by

(6.42)

Consequently, in the hydrodynamical limit, k- 0,
the transport coefficient giving the damping of the
longitudinal mode becomes infinite. Just as I'
developed an anomalous temperature dependence
for T& T, , the longitudinal damping develops an
anomalous wave number dependence for small
wave numbers

I (k) =I '(MX "k) ' '(I+AX.* ) (6.43)

D. Self-energy for the transverse mode

The contributions to the transverse response
function to O(u, uM, X') are similar to those in the
longitudinal case except for the n indices. The
corresponding self-energy is given by

where A is a constant. This leads to a character-
istic frequency for large a, "

&u (k) = —iI"'k4 'I6(I + 2x 2)(M&+)

x [1+AX*'+O(n-»')]

d'q '" d(u'
g, (k ~)=, [4D, (k)I(k, q)C', (k —q, &u —&u')G, (q, &u')D, (q)I(q, k)

+ 4D, (k)I* (k, q)C,'(k —q, ~ —~')G'„(q, +')D, (q)I*(q, k) + 2D, (k)I(k, q)C', (k —q, ~ —&u')

x G', (q, v')D, ( )q(iX)(G~+) '(k, e)+ 2D+(k)I*(k, q)C', (k —q, u& —&o')G~+(q, u&')D, (q)(-iX)(G+) '(k, +)]

where

+ k'I"D, (k)Z„~

2, .[X.(q)+ 3X.(q)],
d q

(6.44)

(6.45)

I(k, q) is given by (6.21) while the D's are given by (6.22). After performing the frequency integrals and
using (6.24), we obtain

Z, (k, &u) =2D,(k)i, ,
'

(2yo(k —q) I*(q, k) + 2}t (q)I*(k —q, q)2' Dr (di k~ q

+ [}(,(q) —}i,(k —q)] (-iX)(G', ) '(k, (u)j+ k'I'D, (k)Z„, ,

where

D' (cg, k, q) = v —M A q~ + i[I' (q) + I' (k —q)],
I'r and Fi are given by (6.28) and (6.29),

I;(q) = I'X. '(q)q', I ,(q)= I'X, '(q)q' .

After considerable rearrangement we can rewrite (6.46) in the form

Z+ (k, &u) = Z+ (k, 0) —i u Q+ (k, &cr )/(I'k' + i XM),

(6.46)

(6.47)

(6.48)

(6.49)
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where

I'k' 0 I k'Z)', ()t, 0)= (2aM)'(w()) —w(0)+, .
M

+I'k2+iA. M I'k'+ iA. M '

zz(k) = 2„, y.,(k —q)X, (q),

(6.50)

(6.51)

and

i d'q g, (q)g, (k —q)(i "[(k—q)' —q'] —2zzMrk'j'
rkz+ z~M (2)z)' D', (~, k, q)

(6.52)

The inverse response function is given by

G, '(k, (())=, . [-z(d + k'(z XM+ k') + l k'(r, + uM')] —Z, (k, (d) =—,, [1—Q+(k, &u)]l k'+ AM rk'+ in'

+ k' 1—,[)z(k) —)z(0)] +, . [r, + zzM' —(2zzM)')z(0) —Z„,] .(2uM)' I k'
(6.53)

The quantity multiplying I'k'(r k'+ iA.M) ' in the
last term is simply the equation determining M
in terms of r, and u evaluated to order u and
therefore vanishes to this order. Therefore, we
have the result that

(' (k 0)=)(+ (k)=k () g
[ll(ill tr(0)))

(6.54)

and the transverse susceptibility does go as k '
to O(zz) as speculated above. We have then

Q,'(0) = ~z 7i.
' lnA'/MX (6.62)

Then Q+'(k) —Q+ (0) is finite in the limit A- ~,
and depends only on the parameter n defined by
(6.38),

&, (c.) = Ql(k) —Ql(0) . (6.63)

Thus we set b = 1, replace )(+'(k) with k' and drop
the 2uMrk' terms in Q, . We can evaluate Q+(k)
in much the same manner as Q(k) in Sec. IV. We

can extract the wave-number cutoff dependence of

Q,' by calculating

z(()[1 —Q+(k, (d)]
rk +z~~ (6.55)

Putting this together we can write the character-
istic frequency

(u, (k) =XMk' —zr'k' ' 'f~(c. ), (6.64)
E. Dispersion relation for the transverse mode

The dispersion relation for the transverse mode
can be written

(()+(k) = —i (I'k'+ i% M))(+ '(k)[1+ Q„(k, 0)] . (6.56)

We can rewrite this as

&(), (k) = XM )t, '(k) —zrk'g, '(k)[1 + Q,'(k)], (6.57)

where I" is given by (5.16),

f~(o.') = (1+ eA„) '(8(1 —().)[1——,
' e inc. + A, (n)]

+ 8(n —1)zz '~'[1+ b., (a)]]. (6.65)

and we have normalized such that

(6.66)

where

Q,'(k) = [(rk'+ z~M)/rk'] Q„(k, 0) .

The spin-wave frequency can now be written

(u, (k) =XMk'f)(k),

(6.58)

(6,59)

This is just the limit T- T„and we find agree-
ment for &u(k) at T, independent of whether we

approach T, from above or below. In the "hydro-
dynamical" limit M fixed, k-0 we have for large

where

b(k) = I -[(2uM)'/k'] [)z(k) —)z(0)] .

We can easily show that

(6.60)
so

A, (u) =0[(1/n) inn],

(u, (k) =AMk' —irlk'(XM) ' '

(6.67)

b(0) = 1+ ~+, zz$
' ln(A $) . (6.61) x (1+ e&„) [1+O[(1/n) inn]] . (6.68)

Clearly, the correction of O(u) is irrelevant near
the critical point. For consistency we must set
u =0 in the scaling region while keeping M finite.

The spin-wave damping coefficient is given in this
case by
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plI; = (ZM)-'/4
+ 1+ e4„

and diverges as (r, ) j T —T, [-0.

F. Scaling behavior

(6.69)

n = -fr'(k()'-"(u] "')'"(~*)"
x (I+Ax*')[1+2(kg) '],

while from (6.68) we find, for the transverse
mode,

II, =i.*(k$)'(ug '") '/'

—ii"(kg)'i. *'(Ij '")'/'

(7 2)

(7.3)

We note here that these characteristic frequen-
cies scale in agreement with the predictions of
the renormalization group. If we note, under the

RNG,

m-M' = b'-'~'m
7

(6.70)

then

o. =MA, */k'- o. '=k '/'n, (6.71)

so n'=n to zeroth order in e. It is then easy to
see that the characteristic frequencies u&, (k) and

v~(k) both transform as

(d = 5 (d

to first order in e.

VII. DISCUSSION

To sum up, we have studied the transformation
properties of the equation of motion (1.5) under
the RNG and then we have solved the equation for
a special value of the coupling constant ~. Since
the statics are trivial for d&4, all we have illus-
trated is the role of the A. S&H term, which de-
scribes the precession of spins. The conclusion
is that this term plays a, decisive role. Quali-
tatively, its effect is very strong. As d increases
its effect diminishes. For d approaching 6 it be-
comes sufficiently weak to be treated by pertur-
bation theory.

Although the calculation we went through is very
complicated, the main qualitative results are sim-
ple. We have shown that the characteristic fre-
quencies of long-wavelength modes as

~
T —T, ~-0

have form

~(k) =g 'II(k(, u& '"),
z =4 ——,~ =1+-,d,

1 1
(7.1)

wher«" I
I' —7;I ', ~=z. The details of the

functions 0 differ for the different types of modes.
For example, for T &T„Q has been computed in
Sec. V [see (5.15) and Fig. 13J. In that case we
could safely set the second argument u$ '" equal
to zero. Below T, we have for the longitudinal
mode O(e) comparing (6.42) and (7.1) for small
k and to O(e),

We see that the second argument u$ '" of 0 can-
not be set to zero in these cases.

The result z =1+ &d has been obtained before by
many authors via different arguments. The
simplest argument seems to be the following.
From hydrodynamics we know that the long-wave-
length spin waves must have a frequency propor-
tional to Mk'. But statics tell us that M~ (
and P/v= —,'(d —2+@). Thus, we have

~(k) ~ ( (& 2+7l)/2k2 ~ (-(1+d/2+7'/2)(tk)2 (7.4)

There are, therefore, substantial qualitative
changes in the damping coefficients due to mode-
coupling effects. Of some interest is that f'p de-

i.e., z = 1+ad+ 2q. Whenever q = 0 or is sufficient-
ly small, we get z =1+2d. This derivation act-
ually applies only to d&4 because, for d&4,
P/v=1, leading to z =3 instead. We see that the
powers of uE,

'" in (7.2) are just what is needed
to keep the result z =1+&d intact, and at the same
time maintaining p/v=1. Reca.ll that our deri-
vation of z is very different. The value 1+&d

followed from the fact that step (a) of the BNG
(i.e., the elimination of S„A/b&/I&A) does not
affect ~.

Note that the statement of the dynamic scaling
hypothesis is that characteristic frequencies have
the form e(k) = g 'x(function of k$ alone). The
appearance of u( '" for T& T, then violates this
hypothesis. Such a violation is entirely within
the framework of the BNG approach and is not
difficult to understand.

We have also obtained several. interesting re-
sults for the damping coefficients for the various
modes. In our zeroth-order models I' Fp I'„
the damping for T&T„and of the longitudinal. and
transverse modes, respectively, were constants
as T- T, , k-0. They were all. equal to j.". The
effect of the mode coupling on these terms is to
give,

f' = I" '
$

'/ /(1 + eA „),
I", (k) = I"(I+A~~')(M~+k)-'/'

r, (k) = [I"/(I+ A„)eJ(A. *M) '/

where

I"= (I+ eA )I'(1+—'e lnA).
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velops an intrinsic wave-number dependence for
small wave numbers. Thus the longitudinal
damping wil. l. have a power dependence less than
the hydrodynamical prediction of O'. In the case
of the spin-wave damping we find that the hydro-
dynamical form -k' persists in the presence of
~, but the coefficient develops a strong temper-
ature dependence -(T —T, )

' ' as T- T, .
Extrapolation of our results here to d =3 by

setting & =3 is not warranted. This is not only
because O(e) results are unlikely to make sense
for & =3, but also because the role of the uS4
term in E for d&4 is not well understood in this
model. However, we can make some reasonable
guesses for & not small. .

(i) We expect that the stable fixed point found
above will remain when E is not small and ~ will
be given by 1+2d+~q. (ii) Equation (7.1) remains
for «2. The detailed form of the function 0 may
vary as e increases. (iii) When e reaches 2 (i.e. ,
d reaches 4), u$ '", the second argument of Q,
becomes a constant. As & increases further the
fixed point value for u will no longer be zero. We
therefore expect that the second argument of 0
will remain a constant independent of ( for
&&2, i.e. , for d&4. There will then be no viola-
tion of dynamic scaling.

A basic question is to what extent critical be-
haviors are universal. In the language of the

BNG, critical behaviors are given by properties
of fixed points. If two different systems are at
their critical. points and they are, respectively,
described by the two sets of parameters p. , and

p. „and if A, drives both p. , and p, to the same
fixed point for b —~, then the two systems share
the same critical behaviors. Therefore fixed
points must be classified. For the static RNG
fixed points are classified by symmetries, num-
ber of components of the order parameters and
spatial dimensionality. (We wiil not worry about
long-range forces here. ) These are not enough to
classify fixed points for the dynamic RNG. The
analysis in Bef. 5 showed that under the same
static classification, different conservation laws
can lead to different fixed points. The results of
Bef. 6 and the present work show that different
forms of the equations of motion can lead to dif-
ferent fixed points under the same conservation
law. In view of the discussion in Sec. II, we are
tempted to say that the only relevant feature, be-
sides conservation laws and static properties,
of the equations of motion is the form of the
"streaming velocity" V& [see (2.12) and (2.14)],
which is in turn specified by Q,', , obtained via
the Poisson brackets of slow variables. That is,
systems with the same kind of statics, conser-
vation laws and Q,.; mill share the same dynamic

critical. behavior. "
The equations of motion in Sec. II are not de-

rived rigorously from microscopic theories, but
are semiheuristic. The ideas used are quite
general since they rely on our intuitive notions
about symmetry, conservation laws and irrever-
sibility. Thus while the above statement on the
classification of dynamic critical behavior is not
on a rigorous foundation, it does seem to be
strongly supported by our understanding of gen-
eralized hydrodynamics and mode-coupling theory.
The alternative to these model calculations is an
analysis starting from the microscopic equations
of motion. There have been a number of such
calculations recently. These calculations are
usually carried out for the case of helium where
the generalization of the static I andau-Ginzburg
theory to dynamics is straightforward. There
have been a number of direct calculations in this
model where the four-point interaction u has been
assumed to be of order 4 —d, d=4,"or 1/N, "
where N is the number of components of the order
parameter. These calculations give explicit ex-
pressions for the index ~. However, as Halperin"
has pointed out, the difficulty with these micro-
scopic calculations is that they do not treat the
conservation laws properly. In order to include
the transport processes that dominate at long
wavelengths, one must eventually discuss a
transport equation. Diagrammatically, this usual-
ly involves a discussion of the poles of the Bethe-
Salpeter equation. " In the case of the 1/N ex-
pansions one is led, to order zero in 1/N, to
such a transport equation. " Thus, in the micro-
scopic theory one has to carry out a very non-
trivial analysis to make contact with the relevant
physics.

A second difficulty with the microscopic ap-
proach is the lack of BNQ methods available to
investigate the existence of new fixed points or
the existence of slow transients which contamin-
ate the perturbation theory expansion. As we
have seen here and in Refs. 5 and 6, dynamics
introduce fixed points other than the static fixed
point near d =4. We have also seen that for the
isotropic ferromagnet there is a fixed point form
of our equation of motion correct to order &. It
is the existence of this fixed point form for the
equation of motion that gives the most support to
the validity of our model.

In conclusion, we remark that there are still.
model equations which can be studied by a per-
turbation expansion like the work here and in
Refs. 5 and 6. We could also calculate to higher
orders in e or 1/N. While this new work may be
interesting in certain cases, it seems more ur-
gent now to develop nonperturbative methods to
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study the dynamic HNG. It is hoped this will lead
to a better understanding of the dynamic HNG and

the associated fixed point equations of motion. "
compute directly, using the chain rule for differ-
entiation
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APPENDIX A

Starting from the equation of motion for P, (t),
we can perform a partial integration to obtain

A ~ '~ Z f « '
~Is ( & - &

' )II , 'n i (&
' )

~ g I rn G;,. it —
& ')a, i& I'

where Ã& contains all of the nonlinear terms in the
equation of motion, and

Q. (f t ) —e(t f )e i i fi, g., (A2)

is the zeroth-order response function. We can

i&) = f qde px(
—f atg '"'*'

)a

J dqexp( —J' ru P"'
)

It then follows that

(A4)

(A5)

&&i(t )&4~(t )
&y, (f )«, (t ')

(A3)

All g's that appear in ~Ii(f ) will occur at a time
less than or equal to t, so we always end up with
a factor e(l —f )e(t t ') i—n the second term, and it
vanishes for t» f'. Equation (A3) then reduces to
(2.23) is we note that G„(t= t') = , l, l„.—

Next we observe since the noise ls Qausslanly
distributed, that
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