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The cell-cluster method is applied to the calculation of the thermodynamic properties of an
anharmonic crystal, in the classical limit. The partition function is expressed as a series of
multidimensional integrals in real space, the first two of which are evaluated numerically to high
accuracy. The method is applied to a model of xenon including Mie-Lennard-Jones interactions between
nearest-neighbor atoms, giving results in good agreement with experiment. The application of the
method to a harmonic crystal, and the relationship with anharmonic perturbation theory, -are also
discussed.

i. INTRODUCTION

The conventional approach to the calculation of
the thermodynamic properties of an anharmonic
crystal is through Born's theory of lattice dynam-
ics. In recent years developments embodying a
self-consistent procedure' ' have greatly extended
the range of application of the theory. There is
evidence, however, that even the most sophisti-
cated version of the theory so far used in actual
numerical work, the improved self-consistent
theory, is inadequate at temperatures close to
the melting point. ' A feature of the self-consis-
tent theories is that each elaboration greatly in-
creases the computational requirements. This is
inevitable in view of the complexity of the initial
basis functions of the harmonic theory.

We consider here an alternative theory which
has as its starting point a cell model, or anhar-
monic Einstein model. In this we picture each
atom as moving in its signer-Seitz cell experi-
encing the potential due to all the other atoms
fixed at their equilibrium positions. The parti-
tion function then factorises into a product of
identical functions for all the atoms, each in-
volving an integral of a Boltzmann factor over the
Wigner-Seitz cell. This theory has been applied
to various types of solid. ' ' We shal1. discuss
later its validity for the different applications.
The strength of the cell model lies in the fact
that the numerical integration over the cell treats
the anharmonic potential exactly, rather than
through a perturbation expansion of dubious con-
vergence. The disadvantage is that correlations
between the motions of the various atoms are com-
pletely ignored. We expect that at high tempera-
tures the former may outweigh the latter.

An obvious step is to treat the correlations as a
perturbation of some sort and there have been
several attempts to do this. ' " We use here a
cluster expansion of the Ursell-Mayer-type well

known in the theory of imperfect gases. The two
principal difficulties in the earlier work concern
the treatment of high-order clusters in order to
obtain the correct N dependence, and the numeri-
cal evaluation of the multidimensional integrals
which arise. The procedures described in this
paper provide a satisfactory solution to both prob-
lems. Earlier calculations" "also considered
the range of temperatures and volumes corre-
sponding to the liquid state, whereas the model is
undoubtedly more appropriate for the solid.

The formal cell-cluster expansion is developed
in Sec. II, In Sec. III the results for a harmonic
crystal are given, and a comparison with an-
harmonic perturbation theory is made. A nu-

merical calculation for a model of an inert-gas
crystal is described in Sec. IV, and the results
are discussed in Sec. V.

We consider here a straightforward application
to a lattice structure of a cluster expansion of the
type well known in the theory of imperfect gases.
The lowest-order form of this theory has been
developed previously by Taylor" and Barker. "'"

The classical partition function for the system
of N atoms, each of mass m, takes the form

where 4 is the potential energy; Q, the configura-
tion integral, is an integral of all 3N position co-
ordinates u over the entire volume of the crystal.
This volume can be divided into N identical
Wigner-Seitz cells (for simplicity we consider
only a monatomic crystal) and the configuration
integral split into a contribution corresponding to
each cell being singly occupied, plus a contribu-
tion corresponding to some cells being multiply
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occupied while other cells are empty. We expect
the probability of multiple occupancy to be small
in the region of temperatures and volumes cor-
responding to the solid and therefore make the
approximation

-ee d3W„
WS

where the integration over the coordinates of
each atom is restricted to one particular Wigner-
Seitz cell, and the I/N! has been cancelled by an
Nl describing the number of ways of allocating
the atoms to the N cells.

For simplicity we assume that the potential con-
sists of a sum of two-body terms. This is not an
essential restriction. The total potential is di-
vided into a static term, a sum of one-particle
terms and a sum of two-particle terms:

I

4 = —g $(IR, +u; —R; -u; I)

I

=NQ, +gP, (u;)+ —g P, (u;, u, ),

I,=-QA(IR, -R~I),

G= exp -P, u; d'u;,

(f )=
G f*J ~*a) ))e, (-~;) ))e,)-~;)If;;&';d';.

(6)

Here QE is the single-occupancy configuration
integral in the uncorrelated or Einstein approxi-
mation. For a nearest-neighbor model of a mona-
tomic crystal there is only one independent non-
zero (f„), which we shall eall q„and in the limit
of a large crystal, so that surface effects can be
ignored, the number of nearest neighbor pairs of
atoms is —,

' Nz, where z is the coordination num-
ber.

In the next set of terms containing two f„ fac-
tors, the contributions are easily evaluated for
the case that no atomic index is common to both
pairs of atoms. In fact,

(f ~ f») = (f~;) (f») = (q, )' if k e i c I and k ojx I .

(6)

The number of ways of choosing two pairs of
nearest neighbors from a lattice of N atoms, with
no atom appearing in both pairs is

—,'(-,' Nz)( —,
' Nz —2z+ 1) .

y, (u, ) =Q ly(IRg —Ri —u~ I ) —y(IR& —R I )j,
(2)

The remaining terms are of the form

y, (u;, u;) = y(i R;+up —R; —ui I )+ 0 (IRg —Ri I )

-y(l R;+u, —Ri I) —y(i R& —R; —u.
I )

e ~ =exP -IBN p
—~

X 1+— + ~ ~ ~

When this substitution is made the configuration
integral is obtained as

Q=QE 1+—;+ ~ ~

Q
—BN Cpgj!!!'

E (4)

Here P(R) is the two-body potential, R; is the
position vector of the center of the ith Wigner-
Seitz cell, and u; is the instantaneous displace-
ment of the atom in that cell. The term i =j is
excluded from all double sums.

We now introduce correlation factors f;; given
by

expI -)6$,(u, , u, )] —= 1+f„
and expand the Boltzmann factor in a series

Atom i can be chosen in N ways and one of its
neighbors, k say, can be selected in z ways. The
contribution from the cluster then depends on
which of the z —1 possible values is assumed for
the other neighbor j. The different values can be
written q, &

and the configuration integral to
second order in the correlation factors is

—= 1+ (-,
'

Nz)q, +-,'(-,' Nz)(-', Nz —2z+ 1)(q,)'
E

z

+(& Nz)g q, ; +0(f') .

The fourth term has been divided by 2 to allow
for the fact that the order in which the two neigh-
bors of atom i are selected is immaterial. We
note also that for a particular crystal structure
the q, , are not all independent. For the face-
centered-cubic structure four different values
must be considered. There is 'no difficulty in
generalizing this equation to include longer-ranged
interactions. The theory can also be extended to
third-order in the correlation factors. It is then
necessary to count the number of ways of choos-
ing three pairs of nearest neighbors with no atoms
in common. This number depends on the particu-
lar crystal structure. For the fcc case we find it



4010 K. WESTEBA AND E. B. COWLEY

36N' —414N' + 1292N . (6)

it seems possible to extract the —,
' Nz root and in a.

low-order theory this gives a better result. We
therefore write

The clusters in which atoms are shared can be
enumerated simply.

We thus obtain the first few terms of a series
expansion of Q/Qs. The series obtained in this
way is almost identical to that given by an alter-
native form of the cell-cluster theory developed
by de Boer and co-workers. ' " The two differ-
ences in de Boer's formulation are that in each
cluster integral the coordinates of every atom
are integrated over the whole volume of the clus-
ter, and that the terms are grouped slightly dif-
ferently. For example in the close-packed lat-
tices it is possible to find three atoms which are
all nearest neighbors of the other two. In the
theory we have developed, such a group of atoms
contributes three terms of second order in the
correlation factors and one term of third order.
In de Boer's theory these contributions occur as
a single sum. Thus this difference in the theories
is one of ordering only. The other point of differ-
ence is expected to be small in the solid, and in-
volves grouping in a part of the multiple occupancy
contribution to the configuration integral.

Whichever form of the theory is used, the vari-
ous terms have differing dependences on N and
we recognize the familiar problem that some sort
of summation of the infinite series must be car-
ried out in order to obtain a physical1. y reasonable
result. An important point to recognize in doing
this is that considerable cancellation occurs be-
tween the contributions from different clusters
and the method of summation must incorporate
this. Taylor and Barker have effected an ap-
proximate summation based on the application
of Eq. (6) even when an atom is shared between
correlation factors. That is, they assume

where q„ is any expectation value of a product of
n correlation factors. The series may then be
summed immediately to give

Q/Qs = (1 + q, )"*".

This solution demonstrates a necessary property
of the exact solution, that in the thermodynamic
limit of large E the configuration integral must
behave as some quantity raised to the Nth power.
We therefore propose to extract the Nth root of
Eq. (7) on a term by term basis. This procedure
applied to an imperfect gas does yield exactly
the same results as those commonly obtained
through the evaluation of the grand partition func-
tion. In fact for the first few terms of the series

Q/Qs = (1 +r, +r, + ~ ~ )" I',

where x, is linear in the correlation factors, r,
is quadratic, and so on. The exact values for the
x,. are found by multiplying out this expression
using the binomial theorem and making a term
by term comparison with Eq. (7). We find

and the third-order result can be similarly ob-
tained. An essential property of the r; which we
verify in this comparison is that they are inde-
pendent of N. The Helmholtz function is then
given by

kT 1nZ = --(2 NkT) ln(2mmkT/h')

+NP, —NkT lnG —(2 NzkT) ln(1+r, +r, + ~ ~ ~ ),

where x, and x, are defined above. All other ther-
modynamic properties may then be obtained by
suitable differentiations.

Cohen, de Boer, and Salsburg' have applied a
different procedure to give a partial summation
of the series. They neglect all terms in the series
except those corresponding to a number of dis-
connected pairs of atoms, derive an approximate
formula for the numbers of ways of choosing such
clusters, and then find an approximate sum for
the series so obtained. We believe that this pro-
cedure is definitely inferior to the one we have
used, since it neglects entirely the large cancel-
lations which do occur between connected and dis-
connected cluster s.

Before closing this section we should mention
the modified cell-cluster theory proposed by
Salsburg. " In order to avowed the dxffIcult corn-
binational problem involving the disconnected
clusters, Salsburg has proposed a relation be-
tween the Helmholtz functions of successively
larger clusters. The series thus obtained has
some similarities with the final equation (11),
but the exact relationship is not obvious. On the
question of ordering, Salsburg's theory follows
that of de Boer, in grouping terms arising from a
cluster of a given number of atoms rather than
ordering terms depending on the number of cor-
relation factors.
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III. APPLICATION TO HARMONIC AND WEAKLY

ANHARMONIC CRYSTAL

the ease B; =0. The result is

1+x +r + ~ ~ ~ =1+0 03280

The theory to second order is very easily ap-
plied inthe case that the atoms interact with har-
monic two-body forces. The interaction between
atom 0 at the origin and atom f at (x, y, z), at a
distance A from the origin, ean be described
entirely in terms of the first and second radial
derivatives of the two-body potential evaluated at
this distance:

+0.007 12 + ~ ~ ~ = 1.039 92 + ~ ~ ~

so that

In(Q/Qs)/N = 61n(1.039 92) = 0.234 86 .

The exact value obtained from conventional lattice
dynamics" is 0.24685. The cluster expansion
taken to second order is thus in error by 5/0 and
even the first-order theory is surprisingly good,
with an error of 22/0.

Another way of writing these results is to com-
bine the above corrections with the Einstein inte-
gral G to give for the Helmholtz function

E = N&f&0- 3NAT in[(l+ ri+ t2+ )'2kT/5(us],

Furthermore the one-particle potential is

where the sum includes all atoms which interact
with atom 0. For three-dimensional cubic struc-
tures this reduces to

where d is a sum of potential derivatives. The
integral 6, defined in Eq. (3), is then given by

and the first cluster integral involving atoms 0 and
ls

X, = [1 —(B,/d)']'[1 —(A, /d)'] .

In obtaining these results we assume that the
limits of integration ean be raised to infinity once
more.

The second cluster integral describing the cor-
relations of atom 0 with atoms i and j is

+ 1

sin2 g

where 8 is the angle between the bonds joining
atom 0 to atoms i and j. With these two formulas
the theory is easily applied to a crystal with forces
of arbitrary range. We apply them here to the
nearest-neighbor faee-centered-eubie model for

(us = ((f/m)"'

is the Einstein vibration frequency. The familiar
result of harmonic lattice dynamics is

E = Npo- 3NAT In(AT/Kcu, ),
where cu, is the geometric mean frequency. Corn-
parison of the two results gives

(()z ——(()&/{1+9") + t'2+ ' ' ') (12)

Thus each cluster approximation can. be regarded
as giving an approximation to the geometric mean
frequency. The exact value" for (() /&us is 0.9210.
The values given by the first- and second-order
cluster expansions are 0.9375 and 0.9247, respec-
tively. We thus have an analytic approximation to
~~ which is in error by less than 0.5%%uo. This could
be used, for example, to give a value for the Qru-
neisen parameter y, , which determines the high-
temperature thermal expansion in the quasihar-
monic approximation.

It must be pointed out that the third-order clus-
ter expansion is disappointing. We have carried
out a, complete enumeration of the contributions to
x3, and have evaluated them for the harmonic mod-
el. The result is that r, is very small and actual-
ly changes sign (for the I ennard-Jones potential
discussed in Sec. IV) in the range of lattice spac-
ings of practical interest. This indicates that it
is probably not profitable to proceed in an un-
selective fashion to higher orders. However, we
do not regard this as a serious limitation of the
theory as applied to a nonharmonic potential, for
reasons discussed in Sec. IV.

We now consider the application of the theory to
a weakly anharmonic crystal such that the extra
contributions to the Helmholtz function can be ob-
tained from anharmonic perturbation theory. The
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results of this theory are well known. For the
model we are using, and with an extra simplifica-
tion known as the leading term approximation, the
anharmonic contributions to the Helmholtz function
are"

,(0.16754r' 0.05609(9"')'
jj 2 11 3 (13)

, (0.15769'" D.03964(9"')
11 2 11 3 (15)

A comparison of the two approximate results
(14) and (15) with the exact result (13) is illuminat-
ing. It is widely believed that the cell model yields
good values for thermodynamic properties such as
the heat capacity. This belief is almost entire1y
based on results obtained for the inert gas crys-
tals interacting with Lennard-Jones or similar
potentials. ' For this case the second term in
Eq. (13) is approximately half of the first term
(closely so if the leading term approximation is
not used) and of the opposite sign. The cell model
result (14) then is in agreement with this. Similar
agreement can be obtained with other models in-
volving a short-range potential. ' However, for
most models and most actual crystals the two
terms in Eq. (13) are of comparable magnitudes,
and in extreme cases can cancel each other within
a few percent. " This behavior is much better re-
produced by Eq. (15). While the two coefficients
there are both too small, this will tend to cancel
out. We suggest therefore that the cell model,
with no cluster corrections, is unreliable when
applied to models for which the cubic anharmonic-

where Q"' and Q'" are the third and fourth radial
derivatives of the two-body potential.

The anharmonic contributions to the Boltzmann
factors arising in the cluster integrals can simi-
larly be treated by perturbation techniques. We
have actually evaluated the lowest order contribu-
tions to G and q, exactly, but for simplicity we
give only the leading term results here. The an-
harmonic contribution to the Helmholtz function in
the cell-model approximation is

(14)

The numerical coefficient here is exactly half the
coefficient of the first term in (13).

The first cluster integral q, (=r, ) can be treated
similarly with the result

0.01108(k T)Q
'"

q, =ql, h rnioni (pic)2

0.006 885 (k T)(9')"')'

( ")'

The total contribution to the Helmholtz function
arising from this and from (14) is

ity is relatively large, such as ionic models of
alkali-ha1ide crystals.

IV. NUMERICAL PROCEDURES AND RESULTS
'

As pointed out earlier the main strength of the
cell-cluster theory is that the numerical evaluation
of the cluster integrals removes the need for a
perturbation expansion. The three-dimensional
integral G is easily evaluated, and we describe
here an accurate evaluation of the six-dimensional
integral q, . An earlier attempt" using a Monte
Carlo procedure gave very low numerical accuracy.
However, it seems doubtful if the methods we used
could be applied to the nine-dimensional integrals
arising in second order, and as indicated in the
previous section the convergence of the expansion
worsens after this. We have therefore, rather
than ignoring the higher-order clusters, applied
a technique which effectively sums all the higher-
order clusters in a harmonic approximation

We rearrange Eq. (12) to give, for a harmonic
crystal,

(1+r, +r, + )„.. .„,, = ((5)s/(4)~)'"

(r2+ ' ' ') h;, ,„,, = ((5'z/(4)0) —1 —(r5) „„„„,,

The terms on the right-hand side of this equa-
tion all have simple analytic expressions, except
for ~~, and this can be evaluated in a convention-
al Brillouin-zone summation. The Helmholtz func-
tion given by Eq. (11) can then be evaluated, with
exact numerical integrals for G and r, and the
harmonic value for the remaining cluster contri-
butions. We believe that this procedure gives
very high accuracy since the contribution to I
from the higher-order clusters is very small
anyway. The expression for the Helmholtz func-
tion with this approximation can be rearranged to
read

I"= E„,.„,„„—NkT 1.n
G

l&armonjg.

—6Ã571 ( ' ' "'""'""i
) . (16)

(1+ r5 + r2 ) harmonic

This is almost intuitively obvious, and is quite a
convenient form for the Helmholtz function.

We therefore need only to consider the accurate
numerical evaluation of G, given by Eq. (4) and q„
which is equal to the right-hand side of Eq. (5).
G can be evaluated easily by several methods.
We initially replaced the integration over the
signer-Seitz cell by summation over a set of
points uniformly distributed on a cubic mesh ex-
tending through the entire Wigner-Seitz cell, or
actually through the ~«th of it in which all indepen-
dent values of Q, are obtained. The results de-
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scribed below were obtained in this way. While it
was possible to achieve very high accuracy (up to
nine significant figures) by this method, very fine
meshes of points were required at low tempera-
tures, and we noted that even at temperatures in
the vicinity of the melting temperature of our mod-
el the contributions to the integral from points ly-
ing more than one third of the way to the cell
boundary were negligible. We therefore investi-
gated the use of meshes with much fewer points,
not extending to the edges of the cell, and with a
spacing which is scaled with the square root of the
temperature. When the mesh size was carefully
chosen excellent results were obtained. However,
we are presently using nonuniform meshes with
spacings corresponding to the Gauss-Hermite
technique of numerical integration, and these
give even better results.

The six-dimensional integra, l (5) was evaluated
by a double summation over a coarse, uniform
mesh of the type described above. This is rela-
tively time consuming since the amount of sym-
metry which can be used to reduce the range of the
summations is limited. In fact, for the fcc case,
the summation over the position of one atom must
be carried out over the entire Wigner-Seitz cell,
and the summation for the other atom can then be
reduced to one-eighth of the cell. This utilizes all
of the mirror plane and rotational symmetry for
the lattice, and also the fact that there is a center
of symmetry between the two atoms. One check on
the accuracy of the results is obtained if the nu-
merical integration is carried out for a harmonic
potential. The number so obtained agrees with the
exact value to better than 1 in 10'.

For the nonharmonic calculations we have chosen
to work with the Mie-Lennard- Jones potential

The discussion of Sec. III indicates that this choice
leads to a small value for the cluster correction,
and hence an insensitive test of the theory. How-
ever the many earlier calculations carried out

with this potential make it an obvious choice for
comparison purposes. To compare our results
with experiment we have used the values of & and
8„for a nearest-neighbor model of xenon. " How-
ever, we carried out our calculations using a set
of reduced units such that the nearest-neighbor
distance was measured in units of It'~, and the
temperature in units of e/k.

Values of the integral q, for a representative
set of temperatures and lattic spacings are given
in Table I. We believe this is the first time that
values of this accuracy have been obtained. It can
be seen that for the smallest lattice spacings the
change of q, with temperature is small compared
with the harmonic (T=O) value. This indicates
that, for this choice of potential, the principal ef-
fect of the atomic correlations is to add a volume
dependent term to the entropy. We can also note
that the lowest-order perturbation expansion is
valid only at very low temperatures, perhaps be-
low one tenth of the melting temperature, and that
at high temperatures the results cannot be well
fitted by any sort of finite power series in the
temperature.

The various thermodynamic properties can now
be calculated and are shown in Tabl. e II and in
Figs. 1-5. Most of the differentiations required
were performed numerically, but one extra ad-
vantage of the cell-cluster formalism is that the
various differentiations with respect to tempera-
ture and volume can be carried out analytically,
and we now do this in our most recent programs.
Also shown in the figures are experimental data
for Xe," reduced to dimens ionless units using the
parameters appropriate to a nearest-neighbor in-
teraction. ' For the thermal expansion, heat ca-
pacity at constant volume and Gruneisen param-
eter, two sets of experimental points are shown.
These are based on two different measurements
of the thermal expansion. ""If they are taken as
an indication of the uncertainty in the experimen-
tal. results we can say that the calculation is in
acceptable agreement with experiment, except

TABLE I. Representative values of the binary integral q&. R is the nearest-neighbor
distance and T is the temperature.

kT/c 1.0 1.0125
R/Ro
1.025 1.0375 1.05

0
0.1
0.2
0.3
0.4
0.5

0.032 796
0.033 080
0.033 311
0.033 517
0.033 708
0.033 892

0.030 941
0.031 410
0.031 768
0.032 073
0.032 350
0.032 612

0.027 872
0.029 545
0.030 080
0.030 518
0.030 905
0.031 263

0.026 260
0.027 484
0.028 258
0.028 862
0.029 384
0.029 857

0.023 309
0.025 249
0.026 325
0.027 127
0.027 803
0.028 446
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TABLE II. Thermodynamic properties, in reduced units, for the nearest-neighbor 12-6
potential. P is the volume thermal expansivity and Ez is the isothermal compressibility.

T (e/k) p (k/e) C (Nk) Cp (Nk)

0
0.125
0.225
0.300
0.375
0.450
0.500

1.0000
1.0087
1.0164
1.0231
1.0307
1.0395
1.0464

0.2184
0.2476
0.2765
0.3150
0.3669
0.4348

0.018 03
0.021 73
0.025 49
0.030 67
0.037 93
0.046 38

3.0000
2.9105
2.8372
2.7806
2.7216
2.6597
2.6265

3.0000
3.150
3.309
3.462
3.661
3.929
4.268

3.019
2.982
2.953
2.922
2.889
2.883

for low reduced temperatures, where quantum-
mechanical effects become significant. The tem-
perature at which the classical approximation be-
comes inadequate will depend on the crystal in-
volved. For neon the limit may never be appro-
priate, for a metal such as copper it should be
adequate for reduced temperatures above 0.1.
We have therefore carried out calculations over
the complete temperature range. In the case of
xenon the discrepancy becomes pronounced for
reduced temperatures below 0.2.

We can also compare our calculation with Monte
Carlo calculations using exactly the same poten-
tial' and this is done in Table III. The uncertain-
ties quoted for the Monte Carlo results are based
entirely on the statistical. fluctuations in a run of
approximately 1 && 10' configurations for a system

of 108 atoms. Cell model results are also given
there, and it can be seen that the largest effect of
the cluster corrections occurs in the calculation
of the pressure. As indicated above we believe
that this is to some extent a feature of the particu-
lar force model we are using. The agreement be-
tween Monte Carlo and cell-cluster values is on
the whole satisfactory, except for the heat capac-
ity C„. The higher-order clusters make no con-
tribution to C„ in the harmonic approximation we
have used for them, except in so far as they influ-
ence the volume at which the calculation is made.
In a more complete theory there would be some
contribution to C„arising from anharmonicity in
these clusters. Since the harmonic contribution
to the Helmholtz function from these clusters is

1.04

0

1,03
R
O

lK

~ 102
LLI
(0

O

1.01

0.4—

LLj

X
0.1—

C)0

ii/

pr' O

1.00
O. I 0.2 0.3 OA Q5

I I I

O. i 0.2 0.3 OA

TE MPERATURE (&/k)

TEMPERATURE (e/k)

FIG. 1. Calculated and representative experimental
values of the nearest-neighbor distance in xenon.

FIG. 2. Volume thermal expansivity in xenon. The
two sets of experimental values at high temperatures
are from Refs. 22 and 23.
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FIG. 3. Isothermal compressibility of xenon.

TEMPERATUR E (e/k)
FIG. 5. Gruneisen parameter in xenon. The two

sets of experimental values at high temperatures cor-
respond to the two values of the thermal expansivity.

already small. it seems unlikely that this approx-
imation could account for the difference from the
Monte Carlo value, and this may be a real. discrep-
ancy.

3.0

I I I I

O. l 0.2 Q3 0.4 0.5
TEMPERATURE (~tk)

FIG. 4. Heat capacity at constant pressure (0), and
at constant volume () in xenon. The two sets of ex-
perimental values for C„at high temperatures are
derived from the C& curve using different values for
the thermal expansivity.

V. DISCUSSiON

%e have developed the theory, and described a
practical. procedure, for evaluating the Helmholtz
function of a crystal in the cell-cl.uster approxima-
tion. There is little doubt that the cell-cluster ex-
pansion carried out to all orders does lead to cor-
rect results. Salsburg and Huckaby" have shown
that Salsburg's modified version of the cell-clus-
ter expansion applied to harmonic models of fcc
and hcp lattices does lead to the correct result,
and we expect that the same would be true of other
versions of the theory. However„ in order for the
theory to be useful in the nonharmonic case, the
series must converge quickly, and our version of
the theory has been set up with this requirement
in mind. Thus the first-order cluster expansion
applied to the harmonic crystal includes V8% of
the difference between the exact and Einstein re-
sults, and the second-order expression includes
95% of the difference.

Moreover, the technique of summing high-order
clusters in the harmonic crystal. , l.eading to Eq.
(16), provides an exact treatment of the harmonic
contributions (at the price of an extra Brillouin-
zone summation), and the perturbation expansion
of Sec. III shows that the first-order cluster cor-
rection includes (70-80%) of the lowest-order a.n-
harmonic terms. At high temperatures the cluster
expansion has the considerable advantage over an-
harmonie perturbation theory that all of the anhar-
monicity in the correction q, is contained in the
numerical integration. %e therefore believe that
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TABLE III. A comparison of Monte Carlo, cell-cluster and cell model results for xenon.

T = 120 'K, R =4.443 A
Monte Carlo Cell-cluster Cell theory

T=160'K, R=4.493 A
Monte Carlo Ce11-c1uster Cell theory

(4)/Nk T
I V/NkT

C„/Nk

-14.83 + 0.01
-0.014+ 0.03

2.82 + 0.03
2.99 + 0.02

-14.835
0.070
2.733
2.929

—14.834
0.349
2.719
3.077

—10.59 + 0.01
0.358 + 0.02
2.78 + 0.05
2.97 + 0.05

-10.607
0.390
2.646
2.876

—10.621
0.655
2.621
3.001

M. L. Klein (private communication).

the procedure we have outlined is one of the most
powerful presently available. The technique which
has so far been most successful in anharmonic cal-
culations at very high temperatures is the Monte
Carlo procedure, but that suffers from the disad-
vantages of low statistical accuracy and of restric-
tion to a small sample size. The cost of such cal-
culations is probably more than two orders of mag-
nitude greater than for our calculations, which
were carried out on a relatively modest computer,
the Burroughs B5500.

There are two obvious developments to be car-
ried out. The theory in its present form is clas-
sical and hence applicable only at high tempera-
tures. We are not aware of a practical method of

extending it to low temperatures. The Monte Carlo
method suffers from the same restriction. Second-
ly, an essential. test of the expansion is to apply it
in a situation where the correlation effects are not
so small. We are currently making calculations
on an alkali-halide model and the results are ex-
tremely encouraging.
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