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Fourth-order elastic constants and the temperature dependence of second-order elastic
constants in cubic materials*
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A theory analyzing the temperature dependence of second-order elastic constants on the basis of a
quasiharmonic-anisotropic-continuum model is applied to LiBr, KC1, RbF, P-brass, Cu, Ag, and Au.
The number of fourth-order elastic constants is reduced from 11 to 2 by assuming that nearest-neighbor

(nn) and next-nearest-neighbor (nnn) central-force interactions predominate in fourth order. The
fourth-order elastic constants found from the experimental results show that nn interactions are
dominant for the NaC1 structure and that nnn interactions are dominant for the CsC1 structure, as

would be expected for a potential containing a term describing a rapidly varying central-core repulsion.

Using recent measurements for Cu in the low-temperature T' regime where the anisotropic-continuum

theory should be exact, a potential is derived which is in close agreement with one used extensively in

point-defect calculations.

I. INTRODUCTION

Information about higher-order elastic constants
is extremely useful for understanding the nature
of short-range repulsive forces in solids. " This
information is most readily obtainable through
study of the anharmonic properties of particular
materials. For example, the thermal expansion'
and the pressure dependence of second-order elas-
tic constants" are both expressible in terms of
second- and third-order elastic constants, while
the temperature dependence of second-order elas-
tic constants ' ' is expressible in terms of second-,
third-, and fourth-order elastic constants. This
latter relation, which was derived in the preceding
article' (hereafter referred to as I) on the basis of
a quasiharmonic-anisotropic-continuum model,
will be used here.

Explicit expressions for the high-temperature
(linear), low-temperature (T4), and zero-point
(T =0) elastic constant changes are given in I. The
low-temperature T4 regime corresponds to the
T' regime of the Debye theory of specific heat,
and the elastic theory given in I should agree with
the thermal data in the same sense that the Debye
temperature can be calculated from elastic data.
More explicitly, the theory takes account of polar-
ization and orientation dependence of phonon fre-
quencies and their strain derivatives, but assumes
the derivatives are wavelength independent. At
low temperatures, where the phonons have long
wavelengths, these quantities should be describable
in terms of the static second-, third- and fourth-
order elastic constants.

In particular the fourth-order elastic constants
of Liar, KCl, RbF, P-brass, Cu, Ag, and Au will
be estimated using known values of second-order
elastic constants near 0 K and at 300 K in con-

junction with experimental and theoretical esti-
mates of the second- and third-order elastic con-
stants. This is an extension of the approach of
Hiki et al. 4 (noble metals), Swartz2 (NaC1), and
Swartz et al. s (P-brass), who worked solely in
the high-temperature region. Another difference
in the present work is that theoretical expressions
rather than experimental results will be used for
the isothermal to adiabatic and constant-volume
to constant-pressure corrections to the tempera-
ture dependence of the second-order elastic con-
stants. It will be seen that the fourth-order elas-
tic constants found here are quite reasonable, al-
though there are not yet sufficient low-temperature
data available for crucial tests of the theory.

A great deal of experimental work has been done
on the alkali halides, ' "P-brass, 6~'~a" and the
noble metals. '4 ' The data, where available at
the highest temperatures, show that the elastic
constants are linear functions of temperature up
to the melting point. ' This justifies the quasihar-
monic approximation used in I, as anharmonic ef-
fects would lead to nonlinear temperature depen-
dences at high temperatures. However, most of
these results are of such a form that they cannot
be readily compared with theory. For example,
measurements on the same material by different
workers often show variations which are greater
than the effects under examination here. Also
there is only one material (Cu) for which data in
the low-temperature T regime are available. In
this work only a small sample of experimental
results will be dealt with. This will be materials
for which suitable information exists for both third-
order elastic constants and the temperature depen-
dence of the second-order elastic constants. Agree-
ment between theory and experiment will be seen
to be dependent on the particular material and
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second-order elastic constant under consideration.

II. TREATMENT OF FOURTH-ORDER
ELASTIC CONSTANTS

The expressions for the temperature dependence
of the second-order elastic constants derived in
I show a linear relationship to the fourth-order
elastic constants, which will be treated as param-
eters of the model. As listed in Table I of I there
are eleven fourth-order elastic constants in cubic
materials, However there al 6 only tI1ree second-
order elastic constants to work with. In order to
reduce the number of parameters to be determined,
a number of assumptions will be made. First, it
will be assumed that the following Cauehy rela-
tions'7'8 hold for the fourth-order elastic con-
stants:

C1112 C1155 o

C1122 —C1266 —C4444 ~

C1123 —C1144 —C1P55 —C1456 —C4455 .

(2. 1)

(2. 2)

(2. 3)

C1112 = C1122 and C11 3= 0'

for the CsC1 structure:

C111P. C112P. C»23'

for the fcc structure:
1

C111P, C1122 2 ~»»

Then only four of the constants need to be con-
slderedp 6 g y C»»y Cl»2y C»22& and C1123'
sically we are assuming that the short-range re-
pulsive forces, which contribute the most to the
higher-order elastic constants, may be reason-
ably represented by central forces. Secondly, it
will be assumed that only nearest-neighbor and
(in the case of the alkali halides and P-brass) next-
nearest-neighbor interactions contribute to the
fourth-order elastic constants. ' '6 This assump-
tion follows from the predominant contribution of
the short-range forces to these higher-order elas-
tic constants. The following relations hold under
the above assumptions':

for the NaCl structure:

ture.
The number of parameters has now been reduced

from eleven to two, say C1111 and C1112 ln the case
of the NaCl and CsCl structures, and to one, say
C»», in the case of the fcc structure. Thus, an
analysis of the temperature dependence of three
second-order elastic constants should overdeter-
mine their coefficients and provide checks on the
simplifying assumptions made.

III. COMPUTATIONAL DETAILS

In I, results were expressed in terms of sum-
mations over directions n. Evaluation of an ex-
pression for a, given direction nis performed at
the center of the element of solid angle ~Q~. The
three components of n are given by

n, = sin8cosp,

tEg = sin 8 sing

(3.1)

(3 2)

g3 = COS8;

furthermore,

&Q~ = 2 sin8 sin( —',68)ap .

(3.3)

(3.4)

J( [001]

In the above equations 8 and P are spherical angles
and 48 and &P are the increments of spherical
angle indicated in Fig. 1. By cubic symmetry one
need only work with directions in one octant and
then multiply the result by eight. 48 and 4P may
be determined for a given direction by dividing an
octant of the Debye sphere into a network of nearly
equal areas with &8 equal to (-,'v)/m, where m is
an integer constant, and &y equal to (—,'m)/m', where
m' is an integer which varies with e. We choose
m' so as to give areas that are nearly equal by
equating AA/m' as closely as possible to bA~, «, /
m, where ~ is the area of a typical strip of sur-

For the NaCl structure only next-nearest-neighbor
interacti. ons contribute to C111P and C»». For the
CsCl structure only nearest-neighbor interactions
contr&bute to C»», C»22, and C»23. For the fcc
structure next-nearest-neighbor interactions con-
tribute nothing to C»», C»22, and C»» and con-
tribute relatively little to C», 1 in comparison with
nearest-neighbor interactions; hence only the lat-
ter are being taken into account for the fee struc-

[ioo] [010]

FIG. 1. Network of elements of so'kid angle BQ„- over
one octant of the Debye, sphere.
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face elements of constant 8 in the octant and

AA„,«, is the area of the bottom strip. Then

m' =ISA/~~, «, ——m sin8/sin( —,'v- —,
' b 8)

=m sin8/cos(-, ' &8), (3.5)

where Eq. (3.4) has been used with n, y eclual to
—,'w. Thus m' is given by m sin8/cos( —,

' &8) rounded
to the nearest integer. In the present work m was
chosen to be 24; with this choice there are 366
dlrectlons over the octant,

In determining the fourth-order elastic con-
stants from the temperature dependence of the
second-order elastic constants, the various quan-
tities arising in the expressions given in I must
first be evaluated. The notation of I is now adopt-
ed. For example, the factor N„/N used in the
expressions for the low-temperature region is
simply —,

' for the alkali halides and P-brass be-
cause half of the modes are acoustical modes and
the other half are opttcaL The particle density
&/Vo ts 8/R~ in the NaCl structure and 2/R' in
the CsC1 structure, where R is the lattice con-
stant. The mass density p is given by

M(N/VD) (4. 1)p=

where M is the molecular weight, s is the number
of different kinds of particles in the crystal, and
I is Avogadro's number.

We now consider the pxoblem of how to evaluate
the various quantities for the static lattice, de-
noted by superscriyt 0. For the lattice constant
this problem is readily solved by making use of
the relatlonp VRbd to first older ln stlainp

(4. 2)

where the superscript A refers to the high-tem-
perature region. In this region the vibrational
strain yarameter q is proportional to the tempera-
ture T [Eq. (3.5) of I] and the volume thermal
expansion P. In practice the room-temperature
values for 8" and P" (T =300 K) will be used.

The question of evaluating the static lattice
second- and third-order elastic constants is not
as straightforward. In principle, these elastic
constants can be evaluated by extrapolation of
the high-temperature linear region back to 0 K.
However, there is considerable uncertainty in
determining the high-temperature asymptote.
More importantly, experimental data on the tem-
perature dependence of the third-order elastic
constants, Rnd even on the room-temperature val-
ues of the third-order elastic constants for most
materials, are unavailable. In this work experi-
mental room-temperature values for the second-

and third-order elastic constants are used when
both are available; when experimental third-order
elastic constants are not available (LiBr, RbF),
Ghate's calculated 0 K values in conjunction with
experimental 0-K second-order elastic constants
a,re used. The justification for this approach is
that the expression for the temperature dependence
of the second-order elastic constants derived in I
involve ratios of the static-lattice third-order and
second-order elastic consta, nts. We will assume
that the ratios for the static-lattice elastic con-
stants are approximately equal to the ratios fox
the elastic constants at a given temperature.

Table Ihsts the structure (NaCl or CsCl), molec-
ular weight M, room-temperature lattice constant
R", room-temperature volume thermal expansion
P", calculated static-lattice constant Ro, calculated
static-lattice particle density N/Vt, calculated
static-lattice mass density po, and input second-
and third-order elastic constants for Liai, KCl,
RbF, and P-brass. P-brass (Cu-Zn) assumes the
CsCl crystal structure and hence may be analyzed
by the saxne ayproach used for the alkali halides.

Table II, shows how the expressions for the
temperature dependence of the second-order elas-
tic constants are linearly related to Cffff Rnd Cfffg
for LiBr, KCl, RbF, and P-brass (see Sec. II).
In these tables C' is given by

C' = k(Cu —Cia) ~ (4.3)

C' is a more useful elastic constant for the purpose
of comparison with experiment than C,2 is because
it is directly measurable from experiment while
C,~ is found by taking the difference between ex-
perimentally measurable quantities which for the
alkali halides are usually much larger than their
difference.

If data in the low-temperature T4 regime were
available, we would proceed by using these to
determine the fourth-order constants. The three
measurements for two constants would provide a
test of the two fourth-order elastic-constant as-
sumption. The three high-temperature linear
coefficients and the three zero-point changes could
then be calculated and compared with experiment.
This would test the assumption of wavelength in-
dependence of the phonon frequencies and their
strain derivatives. However, as there are no
measurements in the T regime for these materials
we simply attempt to see if reasonable values of
the two fourth-order elastic constants are obtained
when the data are fit in an overall sense to be
described.

We will use the following iterative procedure to
determine Cffff Rnd Cfffa froD1 the llneRx' lelRtlons
of Table II plus certain experimental information
about the second-order elastic constants. Pixst
we make an initial estimate of de,"/dT and dC44/
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TABLE I. The structure, molecular weight M, room-temperature lattice constant R~, room-temperature vol-
ume thermal expansion p~, calculated static-lattice constant R0, calculated static-lattice particle density P/V0,
calculated static-lattice mass density p, and input second- and third-order elastic constants (101 dyn/cm ) for
three alkali helides and p-brass. [Values for M were taken from the Handbook of Chemistry and Physics, 51st
ed. (The Chemical Rubber Co. , Cleveland, Ohio, 1970-71).]

Material

NaCl
NaC1
NaC1
CsCl

86.85
74.56

104.47
128.91

5 49
6.28
5.64
2 94

15"
11.04c
9.5'
7 8

5.41
6.21
5.59
2.92

x/v,"
(1022/cm3)

5.05
3.34
4.58
8.03

3.64
2.07
3.97
8.59

Material

LiBr
KCl
RbF
p-brass

47.21
40.90
65.27

124, 1

15.90
7.04

12.55
104.2

20. 52'
27h

9.520'
80. 9~

—863.8
—726
—943.7

—1252.2

-71.96
-24
-62.11

-475.2

-71.96
—26
—62.11

—395.6

28. 89
11
25.86

-466.6

Ci44

28. 89
23
25.86

—384.7

C456

28. 89g
16"
25.86~

-397.8~

See Ref. 20.
"See Ref. 21.
See Ref. 22.

See Ref. 23.
See Ref. 12.

fSee Ref. 24.

See Ref. 19.
"See Ref. 25.
'See Ref. 26.
jSee Ref. 6.

dT from the experimental curves. Next we use
the appropriate linear relations to find initial esti-
mates for C»» and C1112 Then we go through the
following series of steps for ten iterations: (i) We
calculate the zero-point effect for C» and C« from
C»1, and C», 2 using the appropriate linear x'ela-
tions; (ii) we calculate C» and C« from the zero-
point effect plus experimental values for C „"and

C44 q (ill) we calculate new values for dCtg/dT and

dC44/dT from the relation
dC85 C8300 K ~ 0

iikl $Nl ~ iikE (4. 4)dT 300

where we use experimental values for the second-
order elastic constants at room tempex"ature
C~s&~~~~ ", and (iv) we calculate new values for C„„
and C»» using the appropriate linear relations
and the new values of dCtstdT and dC4a4/dT. It has
been found that this process generally reaches the
limit values to within 0. I /q in less than ten itera-
tions. Once the final values for C«» and C»» are
found, we may use the linear relations to predict
the zero-point effect, T4 curve, and high-tempera-
ture asymptote for all the elastic constants.

Table GI lists the final values of C»» and C«»

TABI E Q. Calculated temperature dependence of the second-order elastic constants in terms of C&&&& and C&&&&
(10' dyn/cm ) for I,iar, KCl, Rbr, and P-brass.

Elastic
constant LiBr

Coefficient of C«»
(units of 10"4)

KCl RbF P -brass LiBr

Coefficient of Cfif2
(units of 10 4)

KCl RbF LiBr
Constant term
KCl RbF

(100 dyn/cm K)

dC jdT
dC jdT

dc,"4/dr

dC'"/dT 2.10

3.61 4, 29 22. 2

15.3 20.6

20.6

6.68

30.0

18.2

18.2

12.1

16.4

-8.63

—1.27

—0.809

-3.68

-6.57

—0.240

-0.257

34 17

—V. 43

—0.590

-0.683

-3.42

-9.Vl

—4.96

-4.95

-2.38

(10i0 dyn/cm~)

OK

Ci2- Ciq
0 OK

c44-- c44
0 OK

PO grOK

—3.45

10 73

-3.01

-1.51 -1.32

-2.64 -3.08 -19,6

—13.3

13' 3

22 ~ 1

—14.1
—14.1

-19.5
-12.4
—12.4

—16.1

-19.2
—19.2

6.76

0.642

4.81

0.269

0.166

5.41

0.583

0.460

2.41

9.14

5.67

4.63

(102 dyn/cm2 K4)

(COK CSf)/Z 4

(CO K CSI)/y4

(C44 —C44)/T

(Ct 0 K Ctf)/y4

—2.25

-1.13

-2.05 -1.83 -5.55

0 0

-0.917 -2.77

-9.49

-7,00

—V. 00

-1.25

-42, 3

23 ~ 2

23 ~ 2

-38.8

-21.2
-21.2
—8.78

0.454

-5.09

-5.09

5 ~ 19

0.928

0.479

2 13

5.56

0.230

0.400

0.201

0, 943

9.87

l. 13

4.10
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TABLE III. Calculated values of Cif fi and Cffi2
0.0 dyn/cm ) for three alkali halides and P-brass.

Material

LiBr
KC1
RbF
p-brass
p brass
p-brass

12 000a
8280a
6600a

128OO'
12100b
156OO'

C1112

35 4
55 9

310
743

1070"
2390C

Reference for experimental
values used in the calculation

Marshall and Cleavelin (Ref. 24)
Norwood and Briscoe (Ref. 27)

Cleavlin et al. (Ref. 26)
McManus (Ref. 12)
McManus (Ref. 12)

Swartz et al. (Ref. 6)

Values found by using C&& and C44.
Values found by using Cii and Ci2.
Swartz et al. (Ref. 6).

found by the method described above, for LiBr,
KCl, RbF, and P-brass. It also gives values of
C,«q and C,», for P-brass, where we have used
C„rather than C44 in the method described above,
as well as the Swartz et al. values of C»» and

C»» for P-brass. Figures 2-4 give the theoretical
and experimental temperature dependences of C,&,

C44, and C' for LiBr, KC1, and RbF. In these
figures we have fit the theoretical T curves to
the 0 K experimental values. Also, the iteration
process that we have used forces the high-tempera-
ture asymptotes for Cyy and C« to pass through the
300 K experimental values.

As expected for a repulsive potential, C»» and

C&»2 are found to be positive. C»» is always much
larger than C,«„ thus nearest-neighbor (nn) inter-

cu 50
E
O
c 48'

00 46
O

22
E
O

2l

O
&:& 20
0

6.7

~E 6.6

~~ 6.5
0
O= 6.4
O

6.3

I I I I I I I I I I I I I I I

60 l 20 l 80 240 300
Temperature (K)

FIG. 3. C&&, C44, and C' vs temperature in KCl.

E

0o 46

44
N

E 22

o~ 2l
O
~ 20.

I8

l6.
O

C
l4

O
O

l2—

l0—
I I I I I I I I

'
I I I I I I I

60 120 180 240 300
Temperoture (K)

FIG. 2. C~&, C44, and C' vs temperature in LiBr.

actions predominate for LiBr, KC1, and RbF while
next-nearest-neighbor (nnn) interactions predominate
for P-brass. That this result is reasonable may
be seen by making the relatively crude order of
magnitude assumption that the potential is of the
form 1/r" for both the nn and nnn interactions. For
the NaCl structure C;;„/C;», then becomes 4(2"~ ),
or 256 if n equals 12; for the CsS1 structure C;«&/
C»q~becomes (~)(~)", or about 0. 28 if n equals 12.
C»» is expected to be approximately an order of
magnitude greater than and opposite in sign from
C»&, which is indeed the case. For example, for
a potential of the form 1/r" we have C„»/C», equal
to approximately (n+6) fo-r the NaCl structure and
roughly - —,'(n+6) for the CsCl structure. All of
these relationships follow from basic expressions
for the third- and fourth-order elastic con-
stants

Values for C»» and C»» by Swartz et al. dif-
fer from those of the present work mainly because
of the differences in the temperature derivatives
of the second-order elastic constants which were
used.

From Fig. 2 we see that the predicted T depen-
dence of C„and C44 fits in quite well with the ex-
perimental results for LiBr. A test of the T4
temperature dependence cannot be made with these



POURTH-ORDER ELASTIC CONSTANTS AND THE. . . 4003
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60

OJ
IE

9.5

t2 9.4
(2

C3
~ 9.5

I 1 I I I l I i l . I l ( I I

60 I20 ISO 240 500
Temperature (K)

FIG. 4. C~«, C44, and C' vs temperature in RbF.

data. Such a dependence holds only for the lowest-
temperature 9 range and measurements for changes
less than about ~% would be ~squired. However,
it would be expected that the data should always
be between the T low-temperature and the linear
high-temperature asymptotes. In Pig. 2 a much
smaller temyerature dependence for C' is predicted
than is actually observed in LiBr.

From Pig. 3 we see that the predicted T' curves
fail to fii the experimental curves for KCl but rather
ride well above them. From Pig. 4 we see rathex
good agreement between theory and experiment in
RbP, except perhaps in the high-temperature re-
g1on fol C .

In the alkali halides with the NaCl structure, it
is found experimentally that C~~ often seems to
incx ease with temperature. This result contra-
dicts the general case illustrated in Pig. 1 of I
and is not given by the present theory using the
VRlues of the foul th-order elRstlc coDstaDts 11sted
1D Table GI. The values that we f1nd for C»» and

C,»~ if we try to fit the experimental dCPz/dT do
not fit the expected pattern of elastic constants as
weH. as those of Table DIi C»» tends to be too
small and/or C,«z too large. For LiBr, KCl, and
RbP rough values for C»» and C», z are 3800 and

1600, 5800 and 330, and 2300 and 764, respectively
(umts of lo" dyn/cm').

%e note that both C~&3 and C«change very litte
with temperature in comparison with C,&, a result
which readily follows from the present theory, if
it is assumed that nearest-neighbor interactions
predominate over next-nearest-neighbor ones in
alkali halides with the NaCl structure.

To summarize, the fourth-order elastic con-
stants that we have determined are quite reason-
able, but we have failed to predict the increase of
C&~ with temperature. Trying to adjust the input
values of the second- and third-order elastic con-
stants does not help matters in this regard. Fur-
thermore, this failure cannot be explained by any
failure of our assumption about the fourth-order
elastic constants, as values for these parameters
have been found to be reasonable. Another possible
explanation might be that dislocation movements af-
fect the C&~ measurementbut not the C44 ones. How-
ever, dislocations would also affect the C,&

mea-
surements; no such effect is seen, as the results
for C„are quite good. The final, and most rea-
sonable, explanation for this failure is the invalidity
of the assumption that the strain dependence of the
frequencies is independent of wavelength when this
assumption is used in the calculation of the C~2

ternpel Rtul e dependence.
Leibfxied and Ludwig ~ predict that the ternpera-

ture-dependent part of the adiabatic second-order
elastic constants is proportional to the vibrational
energy, and thus the curve of elastic constants vs
temperature would have the same shape for all
adiabatic elastic constants in a given material. No
such prediction is made in the present theory.
Thus, it would be of interest to look for materials
for which this prediction fails but which can be
explained by the present theory. However, more
accurate data will be needed to resolve this point.

V. NOBLE METALS

The fcc noble metals Cu, Ag, and Au have parti-
cle density N/Vo of 4/R ', where R is the lattice
constant and the mass density is given by Eq. (4.1).
Equation (4. 2) is used to determine the static-
lattlce constRDt R from ihe room-temperature
lattice constant 8" and volume thermal expansion
8". Finally, room-temperature values of the
second- and third-order elastic constants1 are used
as input values. The justification for doing so is
given in Sec. IV. TaMe pf lists the molecular
weight M, room-temperature lattice constant R",
room-temperature volume thermal expansion g"
calculated static-lattice constant 8 0 „calculated
static-lattice particle density N/V 0, calculated
static-lattice mass density p, and input second-
and third-order elastic constants for Cu, Ag, and
Au.
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TABLE IV. The molecular weight M, room-temperature lattice constant R", room-tem-
perature volume thermal expansion P, calculated static-lattice particle density N/V 0

cal-
culated static-lattice mass density p, and input second- and third-order elastic constants
(10' dyn/cm ) for Cu, Ag, and Au. [Values for M were taken from the Handbook of Chenz-
isAy and Pjgysies, 51st ed. (The Chemical Rubber Co. , Cleveland, Ohio, 1970-71). Values
for itt" were taken from Kittel (Ref. 2()). Values for P" were taken from Hiki et al. (Ref. 4).
The input elastic constants are room-temperature values taken from Hiki and Granato
(Ref. 1).]

Material

63.54
107.87
196.97

gh

(10 ' cm)

3.61
4.08
4.07

pII

(ao-'/K)

4.98
5.67
4.26

gO

(10 8 cm)

3.59
4.06
4.05

x/v(
(10 /cm3}

8.65
5.98
6.02

p
(g/cm3)

9.12
10.70
19.68

Material

Ag
Au

166.1
122.2
192.9

119.9
.90.7

163.8

75.6 —1271 —814 —780 —50 —3
45.4 —843 —529 —637 189 56
41.5 —1729 —922 —648 —233 —13

—95
83

—12

Table V gives the temperature dependence of the
second-order elastic constants in terms of C1111 f
Cu, Ag, and Au (see Sec. II). In this table C' i".
given by Eq. (4.3).

In order to determine C»» we may use the iter-
ation procedure described in Sec. IV. However,
in this case we treat the elastic constants C11, C4~,
and C' separately to yield three different calculated
values for C]111 Thj s process generally
the limit values to within 0.1% in less than ten

iterations. Table VI lists the calculated values
of C»« for Cu, Ag, and Au. The three values for
each material are considered to be reasonably
consistent with each other ln consldelatlon of our
crude assumption of a single fourth-order elastic
constant. C»» is expected to be approximately an
order of magnitude greater than and opposite in
sign from C„„which is in fact the case. For example,
for a potential of the form I/r" we have C,«i/C»,
equal to ——,'(n+6) for the fcc structure in the

TABLE V. Calculated temperature dependence of the second-order elastic constants
in terms of Cffff (10' dyn/cm ) for Cu, Ag, and Au.

Elastic
constant

Coefficient of Cffff
(units of 10 4)

Cu Ag Au

(103 dyn/cm2 K}

dCff /dT

dC,',"/dT

dc44/d T

dc'"/dT 2. 12 2.27

—12.8
—6.61

—6.78

-3.09

—4.17

-6.27

—3.44

-13.5
—6.90

—5.34

3 ~ 32

(10'0 dyn/cm )

0 OK

C12- Cf2
0 OK

0 OK

Cr0 CIOK

—9.38

—4.69

-4.69

-2.35

—6.54

3 ~ 27

3 ~ 27

—1.63

-4, 64

2 ~ 32

2 ~ 32

—1.16

13.7 7.03 6.85

3.95

(10' dyn/cm' K4)

(CO K C81)/T 4

(CO K CS~)/y 4

(C44 —C44)/&'

(C I 0 K C I l)/T 4

-5.46

~2y73

2e 73

—1.36

-20.8

-10.4
—10.4
—5.20

—61.6
-30.8

—30.8

—15.4

10.1

17.6
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TABLE VI. Calculated values of C:ffff (10' dyn/cm ) for Cu, Ag, and Au.

4005

Material

Second-order elastic
constant used in the

calculation

C»S

C44
C'

S

C44
Cl

S

C44
CI

10 500
8770

10 700

9020
9640

12 800

11000
9030

12 800

Reference for experimental
values used in
the calculation

Overton atl Gaffney (Ref. 14)

Neighbours and Alers (Ref. 15)

Neighbours and Alers (Ref. 15)

nearest-neighbor approximation, as follows from
basic expressions for the third- and fourth-order
ela, stic constants. ' ~'~ '

Figure 5 gives the theoretical and experimental
temperature dependence of C~~, C44, and C for
Cu. We have fit the theoretical T4 curves to the
0 K experimental values. For each elastic con-
stant, we have used the value of C»» determined
from that elastic constant by the iteration process,
so that the high-temperature a,symptotes must
pass through the 300 K experimental values. In

Fig. 5 for C we have also drawn the high-temper-
ature asymptote using the value of C„q, determined
from C44. From Fig 5 we see that reasonably good
fits for C„and C«can be obtained. There is a
discrepancy between theory and experiment for
C; from Fig 5 and Table V we see that it is im-
possible to pick a value for C»» which fits well
both the zero-point effect and the high-ternpera-
ture region. In fact, the iteration technique yields
a negative zero-point effect for C in both Ag and
Au. (The zero-point effect for C in Cu is positive
but too small. ) Thus, although we have obtained
reasonable values for C»» the zero-point effect
is app arently too sensitive to be accounted for by
just one fourth-order elastic constant. It can be
seen from the tables that the calculated zero-point
effect depends on the subtraction of two nearly
equal quantities, so that a 25% error in C»» can
cause a much larger error in the calculated zero-
point effect.

There is a discrepancy between the calculated
results in this work and the measurements of
Alers for C44 in Cu in the low-temperature T
region in that the coefficient of the T4 curve using
Alers's data is 2. 3 times as large as that given in
Table V. This discrepancy cannot be exp lained in
terms of error multiplication or with any reason-
able value of C»» and was considered to be very
serious because the continuum approach should be
valid in the T region. However, while this report
was in preparation, measurements of all three

I I )
I I

f
I I ]

& I
f

I I

cu 1 v0 CIE

c 178

Oo 176
V):
C3

174

E 84

o~ 82
O

80
C3

26.0

25.6'

'E 252

24.8
O

24.4

24.0

25.6

60 120 180 240 500
Temperature (K)

FIG. 5. C&&, C44, and C' vs temperature in Cu.

elastic constants in this region were given by Rehn
et al. These results differ from those of Alers
for C«and are in good agreement with the present
results for Cu in the T region; using three of the
bottom four relations of Table V they calculated
values for C»» of 12 000 (from C,~), 7000 (from

C4~), and 13 000 (from C ), where units are 10~0

dyn/cm~. These values are reasonable (are of
about the order of magnitude expected on the nn
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assumption used earlier) but differ by amounts that
are greater than can be ascribed to the measured
third-order elastic constants used in the calcula-
tions. We conclude that the one fourth-order elas-
tic-constant approximation is too crude. When
compared to the values obtained in Table VI by the
fitting process described earlier, these values are
seen to be of th'e same order, but slightly different,
suggesting that the wavelength dependence of the
strain derivatives of the phonon frequencies may
not be strong in Cu.

An example of the usefulness of fourth-order
elastic-constant measurements is provided by the
example given by Hiki et a/. in an analyis of high-
temperature data. If the fast-changing part of the
interatomic potential is described by a Born-Meyer
expression of the form

so (r) =Re ""~"0-'& (5.1)

where co(r) is an energy per ion pair and ro is the
equilibrium separation between nearest neighbors,
then the material parameters A and B can be de-
termined from the ratio of C»» to C&«under the
assumptions already made. Using the average of
the three values of C»» determinedby Rehn et al.
and the measured value of C&qq= —12. &&& 10 dyn/
cma given by Hiki and Granato, one finds 8= 13.6
and A =0.06 eV. These values are close to those
which have been found to be most useful in com-
puter simulations of defect properties in Cu by
Gibson et al. 3~ who used B= 13.0 and A = 0.051 eV.

As further measurements become available in
the T4 region in other materials, it may be useful
to relax the short-range-interaction assumptions
made here. A practical approach may be to use
only the Cauchy conditions, which reduce the num-
ber of fourth-order constants from eleven to four.
As only three independent elastic constants may be
measured in the T4 regime, one further condition
is required, but this could be obtained by analysis
of pressure-volume data at high pressures. The
resulting fourth-order elastic constants could then
be examined for inferences about the range of the
effective potential. Measurements of the tempera-
ture dependence of the elastic constants at high
temperature and the zero-point effect could then be
used to assess the approximation of wavelength in-
dependence of the strain derivatives of the phonon
frequencies,

VI. SUMMARY

A comparison of the theory given in I with ex-
periment has been carried out for several alkali
halides, P-brass, and the noble metals Cu, Ag,
and Au. The experimentally observed linearity at
high temperatures confirms the validity of the
quasiharmonic approximation, as a failure of this
approximation would give rise to higher-order

terms in the temperature.
In order to carry out the comparison with experi-

ment several assumptions have been made so as
to determine values for the static-lattice properties
used in the theory. Thus the static-lattice con-
stant was found from the room-temperature lattice
constant and thermal expansion. Either room-tem-
perature values of the second- and third-order
elastic constants were used, if available, or 0 K
values of the second-order elastic constants and
theoretical values of the third™order elastic con-
stants (calculated for 0 K) were used. The assump-
tion was made that the ratios of the static-lattice
third-order and second-order elastic constants
could be approximated by the ratios for the elastic
constants at a given temperature. The temperature
dependence of the second-order elastic constants,
using the above-described inputs, could be ex-
pressed as a linear relation in the fourth-order
elastic constants, about which additional assump-
tions were made in order to reduce the number of
these to be determined. In particular, the Cauchy
relations were assumed to hold for the fourth-or-
der elastic constants. Furthermore, for the alkali
halides and P-brass only nearest-neighbor and next-
nearest-neighbor contributions were included, re-
quiring just two fourth-order elastic constants,
say C„„and C»ia For the noble metals only
nearest-neighbor contributions were considered,
requiring just one fourth-order elastic constant,
say C»,~. In either case, the fourth-order elastic
constants could be determined from the experi-
mental high-temperature data and 0 K values of the
second-order elastic constants by an iteration pro-
cess using the high-temperature and zero-point
linear relations.

There are two aspects to our comparison with
experiment: (i) the calculation of values for the
fourth-order elastic constants based on our previ-
ously described assumptions about these constants
and (ii) the matching of theory, using the calculated
fourth-order elastic constants, with experiment in
the regions where experimental results were not
used in the calculation of the fourth-order elastic
constants. Overall, the results are more satis-
factory in regard to the first aspect than the second.
The fourth-order elastic constants were found to
have the correct sign and order of magnitude (in
relation to each other and to the third-order elastic
constants) as predicted by theory for a central po-
tential where each particle is at a center of sym-
metry (so that the Cauchy relations are valid) and
where nearest-neighbor and next-nearest-neighbor
contributions are most important. In other words,
the calculated fourth-order elastic constants are
consistent with the assumptions used in their cal-
culations, and reflect the geometrical aspects of
the different structures.
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Of the three alkali halides considered, Liar,
KCl, and RbF, it is found that KCl shows by far
the worst agreement between theory and experi-
ment in the low-temperature region. The high-
temperature results for C in all three materials
do not agree well with experiment. (C» and C44
were fitted in the high-temperature region. ) This
problem arises from the fact that Cz~ increases
with temperature, a result which is not predicted
by theory using the fourth-order elastic constants
calculated with the experimental C44. If the experi-
mental Cz~ is used to calculate fourth-order elastic
constants, values are found which are rather dif-
ferent from and not quite as reasonable as those
found previously. The most reasonable explana-
tion for this failure is the invalidity of the assump-
tion regarding the independence of the strain de-
pendence of the frequency with regard to wave-
length.

For Cu, Ag, and Au experimental data for each
elastic constant (CL C44, and C ) have been used
independently to calculate the single fourth-order
elastic constant C11» by the previously mentioned
iteration procedure. The three values of C»» so
calculated for each material are reasonably con-
sistent with each other in consideration of the
crude assumption of a single fourth-order elastic

constant. In comparing theory with experiment
for Cu overall agreement is found to be reasonable
for C~~ and C«, but not for C . This discrepancy
can be explained by the fact that the calculated
zero-point effect depends on the subtraction of two

nearly equal quantities, so that a 25% error in

C»» can cause a much larger error in the zero-
point effect. This problem also occurs for Ag and
Au. The assumption of a single fourth-order
elastic constant is adequate for an approximate
calculation of C»» but is too crude to account for
the zero-point effect in Cu, Ag, and Au.

The region of greatest validity of the present
theory is the low-temperature T4 region. The only
pre-existing experimental measurement in this
region (C« in CuM) gives results which disagree
with the present theory while very recent mea-
surements show good agreement. From their
data, a potential is derived which is in close agree-
ment with one used extensively in point-defect cal-
culations in copper.
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