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Spin-3/2 Ising model for tricritical points in ternary fluid mixturese
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We present a lattice-gas model of ternary fluid mixtures. Within the mean-field approximation, we
study a nonsymmetric tricritical point in this model. We compare our results to the experimental
observations on the system ethanol —water-carbon-dioxide. In the course of our work, we have studied a
Landau theory describing the neighborhood of a fourth-order critical point. Also, we have noted that
mean-field theory indicates the existence of a fourth-order critical point in the spin-1 model of Blume,
Emery, and Griffiths, corresponding to K & 0, J + K & 0.

I. INTRODUCTION

We present an Ising spin--', lattice-gas model of
a ternary fluid mixture. Within the mean-field ap-
proximation, we study a nonsymmetric tricritical
point in this model. A tricritical point can be de-
fined as a point at which three phases simultaneous-
ly become identical. "Nonsymmetric" means that
when the fields all have their tricritical values, the
Hamiltonian has no special symmetry. This is in
contrast to the symmetric tricritical points found
in He -He mixtures, which were studied by Blume,
Emery, and Griffiths. A natural three-dimension-
al space in which to view the phase diagram in the
neighborhood of a symmetric tricritical point is de-
fined by choosing as variables the temperature T,
a field 4 which conserves the symmetry of the
Hamiltonian, and a field H which breaks the sym-
metry. As noted by Griffiths, the symmetric tri-
critical point is the terminus of three critical lines
existing in the T, b, , H space (Fig. 1).

The natural space in which to exhibit the phase
diagram in the neighborhood of a nonsymmetric
tricritical point is four dimensional. Because the
Hamiltonian has no special symmetry at the tricrit-
ical point, there does not exist a distinguished
three-dimensional subspace. For a ternary fluid,
one may choose the variables to be the tempera-
ture T and the chemical potentials p, &, p. z, p.3 cor-
responding to the three types of constituent mole-
cules. There exists a two-dimensional surface of
critical points in the T, p, ~, p, ~, p.3 space. The
tricritical point is a special point on this surface,
located at the intersection of two lines of critical
end points (Fig. 2).

Using a one-order-parameter Landau expansion,
Griffiths has presented an enlightening discussion
of the tricritical points in ternary fluid mixtures.
We have extended the work of Griffiths, by relating
the properties of the phase transition to the under-
lying molecular interactions. Qf course, we have
approximated the actual fluid by a simplified lat-
tice gas, and we have studied the thermodynamics
only within the mean-field approximation.

Stell and Hemmer and Theumann and Hoye have
studied nonsymmetric tricritical points in certain
one-dimensional systems with long-range Baker-
Kac potentials. These models are interesting in
their own right, but they are not easily interpret-
able as models of ternary fluid mixtures. Our
spin- —,

' model can be straightforwardly compared
with the results of experiments performed on ter-
nary fluids. References to the experimental work
can be found in the papers of Widom and Griffiths.
We have (Sec. V) established a correspondence be-
tween the lattice-gas model and the system ethanol-
water-carbon-dioxide studied by Shvarts and
Efremova.

Let us briefly describe our method of locating
nonsymmetric tricritical points in the spin- —,

model. The molecular interactions are parame-
trized by four interaction energies between molecules
on nearest-neighbor sites. Consider the eight-di-
mensional space formed by the four interaction
constants, the temperature, and the three chemical
potentials. In this space, there exists a four-di-
mensional surface of symmetric tricritical points,
which are joined to a four-dimensional surface of
nonsymmetric tricritical points at a three-dimen-
sional surface of symmetric fourth-order critical
points. To find a nonsymmetric tricritical point,
we have systematically searched in the neighbor-
hood of a symmetric fourth-order critical point.
After determining one typical tricritical point, we
fixed the interaction energies and considered the
temperature and the densities of the three compo-
nents as variables. We have computed (Table II)
the densities of the three components in the criti-
cal and coexisting noncritical phases for selected
points on the critical end-point lines. Qualitative
agreement is found with the system ethanol-water-
carbon-dioxide. However, the projections of the
critical end-point lines onto the pressure-tem-
perature plane for model and experiment have a
qualitative difference. In the ethanol-water-car-
bon-dioxide system the tricritical point appears at
the maximum temperature and pressure, while in
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The Kronecker 6 function is denoted 6„,. We con-
sider a lattice having N sites, with each site
possessing z nearest neighbors. The model Hamil-
tonian is

s=i A,=i
(2. 2)

FIG. 1. Schematic phase diagram for He -He4 mix-
tures in the T, 6, H space.

the model it appears at the maximum temperature,
but minimum pressure. Agreement with experi-
ment may be possible by making an alternate choice
of interaction energies. Choosing the interaction
energies to optimize agreement between model and
experiment remains for future work, as does study
of the model away from the tricritical point.

The paper is organized as follows: In Sec. IIA we
define the lattice-gas model; in Sec. IIB we de-
velop the mean-field approximation; in Sec. IIC
we derive equations determining the critical points;
in Sec. IID we locate the symmetric tricritical
and fourth-order critical points. In the course
of our work, we noted that there exists in the
Blume, Emery, Griffiths model a symmetric
fourth-order point corresponding to ferromagnetic
exchange, J& 0, and negative biquadratic exchange,
K&0, with J+K&0; see Eq. (2. 29). In Sec. III,
we use a Landau expansion to study the neighbor-
hood of a symmetric fourth-order critical point.
Based upon the intuition gained from our study of
the Landau theory, we locate, in Sec. IV, a non-
symmetric tricritical point in the spin- —, model.
In Sec. V, we compare our model with the experi-
mental system ethanol —water-carbon-dioxide.

II. GENERAL FORMALISM

A. Definition of model

Eo~= o (2. 3b)

The complexity of the mean-field calculation is
kept within bounds by restricting our attention to
interactions of the form

E„,=EO+EA, (X, o =1, 2, 3) . (2. 3c)

When there are, for example, no type-2 mole-
cules, the spin- —,

' Hamiltonian (2. 2) becomes
equivalent to the spin-1 Hamiltonian considered by
Mukamel and Blume (S; = 1, 0, —1),

3CM» = —Q [JS,S)+KS;S)+C(S;S~+S,S~)]
&ij)

—AQ S( —HQS, .
i=i i=i

(2.4)

We use (ij) to indicate that the sum is over near-
est neighbors, and p, ~ to denote the chemical poten-
tial of molecules of type A. =1, 2, 3. The interaction
energies are symmetric,

(2. 3a)

and vacancies are inert,

We shall study the thermodynamics of a lattice-
gas model of a ternary Quid mixture within the
mean-field approximation. Our goal is to locate
a nonsymmetric tricritical point, i.e. , one such
that the Hamiltonian has no special symmetry when
the fields have their tricritical values. We shall
denote the three types of molecules by 1, 2, and 3
and a vacancy by 0. The projection operators P' '

are defined by

FIG. 2. Schematic drawing of the two-dimensional
critical surface, existing in the four-dimensional phase
space appropriate for ternary mixtures. Critical-end-
point lines AT and A'T meet at the tricritical point T.
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In the absence of type-2 molecules, the projection
operators (2. 1) can be expressed in terms of the
spin-1 operators by P' ' = 1 —S, P' ' = —,

' (S +S),
P( ) =0, P' '= —,'(S —S). The spin- —', Hamiltonian
(2. 2) is in that case equivalent to the spin-1 Hamil-
tonian (2.4) with

where

Trp, =A&+Aq+A3+Ao = I .
Then, the density P„ is given by

A„= Tr(pP', .") (~ = 0, 1, 2, 3) .

(2. 9b)

(2. 10)

J= (E1+E3)/4z,

K= (E +1E 3+4E )0/4 z,

C = (E, -E,)/4z,

ff = k(p1 —)13),

&= z(P1+P3) ~

The conditions

E„+E, & 0 ()(4 cr = 0, 1, 2, 3),

(2. 5a)

(2. 5b)

(2. 5c)

(2. 5d)

(2. 5e)

(2. 6)

B. Mean-field approximation

are necessary and sufficient (Appendix A) to rule
out staggered order at zero temperature for all
values of the chemical potentials. In the following,
we only consider interaction parameters satisfying
(2. 6) and we assume that there is no staggered or-
dering for nonzero temperatures. Therefore, when

performing the mean-field calculations, we only
consider translation-invariant states of the sys-
tem.

The model specified by (2. 2) and (2. 3) differs
from the spin- —, Ising model considered by Sivar-
diere and Blume. Their Hamiltonian contained
dipolar and quadrupolar exchange, but no octupolar
exchange. Hence there were interactions capable
of driving critical fluctuations in only two of the
three possible order parameters. Also, they con-
sidered only symmetric exchange interactions. Our
Hamiltonian possesses interactions coupling to all
three order parameters, and also contains nonsym-
metric interactions. In fact, the model considered
by Sivardiere and Blume is not a special case of
our model, since the in'teractions cannot be pa-
rametrized in the form (2. 3).

Using (2. '7) together with (2. 2) and (2. 3) we find

3

2 EQ(A1 +A2+A3) . Q (3 E1A1 + u1A1)

+ p Q A1lnA1 .
X=O

(2. 11)

The best approximation to the free energy is de-
termined by choosing A&, A2, and A.3 to minimize
the right-hand side of (2. 11). The local minima
of (I( are determined by S(/(()AS, = 0 ()(= 1, 2, 3) to-
gether with the condition that 8 (I)/()A„BA, be a posi-
tive definite matrix. If for a given set of fields
there are several local minima, it is necessary to
select the-one corresponding to the smallest value
of (I). If () (I)/8A18A, has a zero eigenvalue, it is
necessary to consider higher derivatives to deter-
mine stability. When there is stability, the exis-
tence of a zero eigenvalue corresponds to critical-
ity.

The equations sp/BA„=O (A. = 1, 2, 3) relate the
densities A1 to the fields p,„. Using (2. 11), we
find

1 Eo(A1+A2+ 3) E1A1+ P I ( 1/ 0)

(2. 12a)

p2= —EQ(A1+A2+A3) - EQA2+ p 11n(A2/AQ),

, (2. 12b)

p.3 EQ(A1 +A2 +A3) EQA3 + p ln(A3 /A())

l(2. 12c)

In Appendix 8, we show how these three equations
can be reduced to one equation, suitable for nu-
merical solution. The second-derivative matrix
18

P NP = Tr(p3C) + P —Tr(p lnp), (2. 'I)

We derive the mean-field approximation by using
the variational principle for the free energy

9A„BA~

Qp

QO

QO+ QP QO

~a

(2. 1$)

where F is the exact free energy and p is any trial
density matrix. To obtain the mean-field approxi-
rnation, we assume

(2. 6)

where p,. is a density matrix defined on the single
site i. For a translationally invariant system, we
can write

where we define

n„=-E„+(PA„)' () =O, 1, 2, 3).

The determinant of (2. 13) is given by

detl = (20n1o.2+ ()'0&2a3

(2. 14)

3

p JAP(x)
x=0

(2. 9a) + QOQ3Qg+ QgQBQ3 ~ (2. 15)
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C. determination of critical points

Suppose the determinant (2. 15) has a simple'
zero for the critical values of the densities A
= (A, , A2, As). A special direction in the density
space is defined by the eigenvector Z = (Zz, Z2,
Z3} of the second-derivative matrix (2. 13) corre-
sponding to the zero eigenvalue. Consider devia-
tions in the density spa, ce from the point A in the
direction Z, measured by the small parameter 4,
l. e, q

(Al, A2, A3) —(Al, A3, A3) + (Zl ) 22 i Z3)4
(2. 16)

—(PA&) . Therefore (2. 18) together with C3=0
implies

E~ ——E3=-E,
A, = A, = 1/PE .

(2. 2Oa)

(2. 2Ob)

These critical points are symmetric, since the
Hamiltonian with the fields having their critical
values is invariant under the exchange of type-1
and type-3 molecules. It is easy to verify that
(2. 19) is a necessary and sufficient condition for
the positivity of the two nonzero eigenvalues of
(2. ia).

The determinant (2. 15) also vanishes when

af
Qp +Qy +Qg +Q3 =0. (2. 2i)

y(A) = y(A)+g (2. i7a)

where

For yg~3, we find

C„(A)= P (n —2)!

An expansion analogous to a Landau expansion in
the one-order parameter 4 is given by

The second class of critical points, corresponding
to (2. 21), will be nonsymmetric. Let us rewrite
(2. 21) in the form

Ap Ag Aq A3+ + +
1 —pEOAO 1 —pEqAq 1 —p@Ap 1 —pE3A3

(2. 22a)

Since the eigenvector of (2. 13) corresponding to the
zero eigenvalue is Z = (o.&, na, n3 ), we see from
(2. 17) that the condition C~ = 0 i.s

Ap A~ Aa
(1 —pEOAO) (1 —pE, Ag) (1 —pEaAp)

3

Ap
" Zg+Zp+Z3 "+ A~ —Z)!

A3
(i —PE, A, )' (2. 22b)

(2. 17c)
Note that the expansion (2. 17a) of P about the
critical point begins with the @ term. The extremal
conditions 8$/8A~= 0 (A = 1, 2, 3) imply the term
linea. r in 4 vanishes. At criticality, det(8 g/
BA~BA„) =0. We chose Z to be the eigenvector of
the Jacobian matrix corresponding to the zero
eigenvalue, so

Z„= 0 (!L= 1, 2, 3),s A„sA~

showing that the term quadratic in 4 vanishes. A
necessary condition for a stable critical point is
that C3 vanish, otherwise, instead of a minimum
one has a saddle point.

There are two classes of critical points corre-
sponding to the vanishing of determinant (2. 15).
The first class corresponds to vanishing of two of
the alphas. To be specific, we shall consider

Equations (2. 22) are necessary conditions which
must be satisfied by the nonsymmetric critical
points. The two nonzero eigenvalues of (2. 13) are
again positive if Qp & 0 and Qz & 0 .

Some of the symmetric critical points given in
(2. 20) are tricritical. Let us derive a necessary
condition which must be satisfied by those that are
tricritical. We generalize the form of the devia-
tions considered in (2. 16), letting

(Ag, Ap, A~) = (Ai, A2, A3) + (1, 0, —1)4'+ (u, v, u) + .
Then the analogue of a Landau expansion becomes

P(A) = g(A)+R4'+O(4'),

where

R = ~ cko(2u+v) + ~ G2v —PE u+ 6 P E

We choose u and z so as to minimize R, and we
find (no& 0 and na& 0)

Qy= Q3 = 0,
with

Qp& 0, Qp& 0 ~

(2. 18)
R.„=--,' O'E'(1/n, + 1/n, )+-,' p'E'.

A necessary condition for tricriticality is R „
=0, i. e. ,

The eigenvector corresponding to the zero eigen-
value of (2. 13) is Z = (1, 0, —1), hence CB = (PA3)

4 ~ -g Ap Ap
(p ) (2. 23)
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2J=—Ej ——E3,
2H = )L(, g

—p3,
2A—= p. ~+ p3 )

K= Eo+J,
M =—Ag -A3,
Q—= Ag+A3 .

Equations (2. 12) become

H = —J'M +—ln
@+M

(2. 24a)

1 Q —M
2P 4(1 —Q -A )

(2. 24b)
1 A2

p~ = —Eo(Q+Az) —E2A2+ —ln I1 —Q —A2

(2. 24c)

As is expected from (2. 5), in the limit A~- 0 these
equations reduce to those of Blume, Emery, and
Griffiths. In their model, M=(S, ) denotes the
superfluid order parameter and x= 1 —Q = 1 —(S,)
denotes the concentration of He .

It is straightforward to determine H as a series
in powers of M,

H= 2aM+4bM +OcM +SdM + ~ ~ ~ (2. 25)

The coefficients a, b, c, and d are functions of the
fields 6, p, 2, E„, and P. These coefficients are
most easily expressed in terms of A~ and Q, which
are implicitly defined as functions of the fields by

& = —Eo(Q+ A2) —ZQ +—ln
1 Q

p 2 1 —Q-Aa
(2. 26a)

1 A2
p2 = —Eo(Q+A2) —E+2+ —ln

p 1 —Q+A2
(2. 26b)

When M = 0, Az-—A~ and Q = Q, we find

2a= ~+(PQ) ' . (2. 27a)

The symmetric critical points are determined by
a= 0 and b & 0. The constraint (2. 19) assures that
this specifies a local minimum of g, and not a
saddle point. When a=0 (i. e. , Q=1/PJ),

1 2Q Aa Ap

8pQ 3 1 —pEg A2 1 —pEO Ao

D. Symmetric tricritical points

I et us consider the special case E, =E, and lo-
cate the symmetric tricritical and fourth-order
critical points. In order to make clear the rela-
tionship of our work to that of Blume, Emery, and
Griffiths on the spin-1 Ising model of He -He
mixtures, we define

dition a = 5 = 0 is equivalent to (2. 23), derived in
the previous section. When g= 5=0,

1 4Q A2 Ap
48I3Q' ls5 (I —PEa&s) (I —P&o&s) )

(2. 27c)
Since M=O, it follows that A2=A~ and Q=Q at the
symmetric critical and tricritical points. There-
fore Eqs. (2. 27) can be directly used to determine
the position of the symmetric tricritical points.
The fourth-order critical points are given by a=5
= c=0, d&0.

The nonsymmetric critical lines which meet the
symmetric critical line at a tricritical point can be
determined by solving numerically Eqs. (2. 22).
As an explicit example, consider Ej =E3= 1 Ep
=1.2, E2= —0.62, P=9. 0. In Fig. 3(a), we plot
the critical lines in the neighborhood of the sym-
metric tricritical point located at Az —-A3= P, A&
= 0.77526. In Fig. 3(b), we consider the case of
K~4 Es. In particular, we exhibit the critical lines
when

E,=1+e,
E3= 1 —e,

(2. 28a)

(2. 28b)

Q= I/(I+a'10),
PJQ= 1,
2WQ = (3Q —1)/(1 —Q),

(2. 29a)

(2. 29b)

(2. 29c)

with e = 10 . The critical lines do not intersect,
and there does not exist a nonsymmetric tricritical
point in the neighborhood of the symmetric tricriti-
cal point. The critical line corresponding to M
&0 terminates in a critical end point. As e-O, the
critical end point approaches the symmetric tricriti-
cal point.

Just as the neighborhood of a symmetric tricriti-
cal point is a good place to look for nonsymmetric
critical lines, the neighborhood of a fourth-order
critical point is where to find nonsymmetric tri-
critical points. Before continuing our discussion
of the spin- —', model, let us point out that there
exists a fourth-order critical point in the spin-1
model (2.4) considered by Blume, Emery, and
Griffiths (C = 0) and Mukamel and Blume (C 4 0).
They considered only positive biquadratic exchange
K& 0. The fourth-order critical point exists for
K&0 and J+K& 0. Since J+K&0, there is no
staggered order at zero temperature for any val-
ues of the magnetic and crystal fields. Within the
mean-field approximation, considering only trans-
lation-invariant states, a stable fourth-order criti-
cal point is located at

(2. 27b) C=H=O. (2. 29d)

where Ao ——1 —Q -Az. The symmetric tricritical
points are determined by g = b = 0, c & 0. The con-

There exist nonsymmetric tricritical points in the
neighborhood of (2. 29) with Co 0.



404 S. KRINSKY AND D. MUKAME L

0.16 — U

0.12—

0.08—

0,04—

0—

-0.04—

-0.08—

-0.12—

—0.16 I- V

I L J~
0.74 0.76 0.78

A2

0.16 — U

0.12—

0.08—

0.04—

-0.04—

-0.08—

-0.12—

-0.16 V

0.74 0.76 0.78

A2

der near the fourth-order critical point. The fact
that the a, are related to the physical fields by a
linear transformation implies that the topology of
the phase diagram near the fourth-order critical
point should be the same in the a,. space and the
space of the physical fields. We shall therefore
consider the phase diagram corresponding to the
free energy (3.1) in the a,. space. This phase
diagram is obtained by studying the minima of the
free energy. The equilibrium free energy is given
by the concave function

7= min E[a;;4] .

FIG. 3. Projection of a portion. (A2 —'0. 74} of the
critical lines onto M, A2 plane. When (a} e= 0, nonsym-
metric lines VT and VT meet symmetric line TS at sym-
metric tricritical point T. When (b} 8=10 ~, the line VC
terminates in critical end point C. The points 8 in. (a)
and 8 in (b} correspond to A&+A2+A3=1.

In Sec. IV, we find a fourth-order critical point
in the spin- —', model, and we locate a nonsymmetric
tricritical point. But first, in Sec. III, we present
a qualitative description of the neighborhood of a
fourth-order critical point using a Landau expan-
sion. The Landau theory is very useful for devel-
oping the intuition necessary to find a nonsymmetric
tricritical point in the spin-& model.

To study the minima, it is more convenient to re-
write the free energy (3. 1) in the form

E=EO+(4' —eg) [(4 —ep) +Rp] [(4 —es) +R3]

x[(@—+4) +R4] ~ (3. 2)

where I o, 4, , and R& are parameters which are
related to the a,. in a straightforward way. The
phase diagram corresponding to this free energy in
the (4;, Rz) space is summarized in Table 1, where
we assume that 4 ~

= 0. To obtain the, phase diagram
in the a,. space, one can use Ecl. (3.2) to express
the a,. in terms of 4,. and R&. This provides us with
a parametric representation of the various critical
am) coexistence surfaces in the a,. space. The
c»tical and tricritical surfaces can also be found
directly by solving the equations

III. LANDAU MODEL FOR A FOURTH-ORDER
CRITICAL POINT

gng 84'—n=0, n= 1 2 3, 4-&0,
84 (3.3)

In this section, we use a Landau model to dis-
cuss the phase diagram near a fourth-order criti-
cal point. In particular, we are interested in the
topology of the critical and coexistence surfaces
near that point. We start by assuming that the
system can be described by a one-dimensional or-
der parameter 4, which for multicomponent fluid
mixtures is some linear combination of the densi-
ties of the various components in the system. In
the Landau model, one assumes that the appropri-
ate free energy I can be expanded in a power
series in 4 . For describing fourth-order critical
points, it is sufficient to consider this expansion
up to eighth order in 0,

E[a;; 4']= Q aP' . (3.1)

To maintain stability, a8 should be positive, and
without loss of generality, one can assume that a8
= 1. The coefficients a,- are functions of the physi-
cal fields which appear in the Hamiltonian of the
system. Following Landau, we assume that the
coefficients are analytic functions. One can there-
fore expand the a, in power series in the physical
fields, and consider the expansion up to first or-

for critical points, and

en~ g6I;
n =0) n=1, . . . , 5, —~&094 (3.4)

for tricritical points.
Let us now consider the coefficients of the Landau

expansion to be related to the fields in the spin- —,
'

model. For E, =E3, we derived in (2. 25), (2. 26),
and (2. 2V) an expansion of H=——, (p~ —ps) in powers
of M=A, -A3, which is of the Landau form (3. 1),
with as=a, =av=o. For e=Ej —E340, the analo-
gous Landau expansion would have nonzero as, a5,
and a„with a„a„and a~ all proportional to e,
as e- 0. The general features of the phase dia-
gram of the spin--,' model can be understood by
studying the Landau expansion with a, = a7 = 0, but
a3 & 0. Let

I = -84+a@'+c4'+b4 +c4'+0'.
Since we are relating the coefficients in this ex-
pansion to the fields of the spin- —,

' model, we can
distinguish between "symmetric" and "nonsym-
metric" critical points on the basis of whether or
not the Hamiltonian is symmetric at the critical
values of the fields. Then, we see that a symmet-
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TABLE I. Critical and coexistence surfaces near a forth-order critical point.

No.

10

Type of surface

Fourth-order critical point

Tricritical end points

Two coexisting critical points

Critical point coexisting with two phases

Tricritical points

Critica]. end points

Four coexisting phases

Critical points

Triple points

Two coexisting phases

4;=0,
Equations

R] =-0, i =2, 3, 4

4, =4, =0, R, =-O, i=-2, 3, 4

4'2=0, C, =44, R, =0, i=2, 3, 4

4, =-0, R;=0, i=2, 3, 4

+,=4, =-0 R, =R, =O

4', =0, R, =R, =O

Rg=0, i=2, 3, 4

4, =0, R, =O

R2=R3 ==0

Dimension

ric fourth-order critical point is located at

A = 6 = a == 6 = c = 0, O' = 0 . (3.6)

The symmetric tricritical points correspond to

h=c=a=b=0, c&G, (3.Va)

Two lines of nonsymmetric tricritical points are
specified by

(a)
c=l.0
e =0.0

„idyl
, / /

b 05'", , "„.. .",' "T

'/

2 ~

-3 /'

'4:'i; /~ I

-I 0 I 2 3
0

0,5
////I/ I 2 ' I

yc33c o
04'(l6 8)
0.3

0.2
b Ol

I I I

(c)
c= -I.O
a=0.0

-O. I

~&/~/. ',////////// ~/ill//i//ill

-O. l 0 O. l 0.2 0.3 0.4 0.5

3. '7b

Ez-+(, ) v'„ lc['~' e-+l„[cl'~', c&0.

The symmetric critical points correspond to

'Qa)
c=l.O

] 0.2—

&=&=a=0, b&G, 4 =0,

and the nonsymmetric critical points to

(3.Ba)
h 0— h 0—

-O. l l-

-0.2—

-0.3—

a= --,' e4 +15c4'+564',

b =- ——,
' &4 ' —5c4' —].44',

h = —q4'+ 16cC'+644' .
(3.ab)

The solutions (3.V) and (3.8) of Egs. (3.4) and

(3.3), respectively, include unstable critical points,
for which the order parameter 4 at the critical
point does not correspond to the absolute minimum

of the free energy. The stability of the solutions
must therefore be checked separately.

I et us discuss now the phase diagram and con-
sider first the case &=0. The phase diagram (for
c = 1) in the a bplane (h = 0) -is given in Fig. 4(a)
and the projections of the critical and triple point
lines on the a —h plane are given in Fig. 4(b). The
analogous diagrams for c = —1 are given in Figs.
4(c) and 4(d). For c=-+1, one obtains the usual
symmetric tricritical point T. For c= —1, there
exists no tricritical point. The point A (which cor-
responds to 4~=4~= -43= -C~, R,. =O, and i=2,
3, 4 in the 4,. -R; representation) is a point where

0 I 2 3 4 5
-0.4 ——~-

-OI 0
~J J
OI 02 03 04 05

FIG. 4. Phase diagram corresponding to the free
energy (3.5) for & = 0. Solid lines: critical lines; dashed
lines: triple-point lines; dashed-dotted lines: coexis-
tence lines of four phases. (a) Phase diagram for c=+1
in the a-b plane. G.' is a symmetric critical line and T
is a symmetric tricritical point. Shaded part of the plane
is a coexistence surface of two phases. (b) Projection of
the critical- and triple-point lines on the a-h plane, for
c=-+1. p and p are nonsymmetric critical lines. The
critical line e of. Fig. 4(a) is projected on the symmetric
tricritical point T. (c) Phase diagram in the a-b plane
for c= —1. 0; is a symmetric critical line, A is a point
where two critical phases coexist, a, nd B is a critical end

point coexisting with two other phases. The shaded part
of the plane is a coexistence surface of two phases. A

schematic form of the phase diagram in the a-b-5 space
is given. in Fig. 5(a). {d) A projection (for c.=- —1) of the
critical lines, triple-point lines, and lines of coexistence
of four phases on the a-h plan. e. P and y are nonsym-
metric critical lines. The symmetric critical line, e,
of Fig. 4(c) is projected on the point B.
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(a) (b)

FIG. 5. Schematic form of the phase dia ram cse iagram corresponding to the free ener 3
ere, and 0 are coexistence surfaces of tw h

gy ( .5) (c= —1), in the a-b-k space. (a)

liness P and y, and the surface 0. is bounded b a s
es o wo p ases. The surface 6 is', ' "ounded by two nonsymmetric critical

oin.t A cor
un e y a symmetric critical line G. and a tri

p
' corresponds to the coexistence of two 't l

ha
wo cri ica phases, and 8 is a cr'

p ases. A and 8 are connected by aa coexistence line of four phases (the das — ' . o zero
*. critical end point coexisting with t th

points A and 8 aprroach each other and th
ases e ashed-dotted line). As c goes to zero h

the b
er an t ey coincide for c = 0, formin a fou — ' . r

e p se i gr m i described by the pro~ections in Figs. 4( )

lower parts of the
are nonsymmetric critical lines. A and 8 are c:.;ti.a

p e coexistence surface 6 split into two diff
::.; i.al en.d points. The upper and

phases [of Fi . 5(a), .-:.,].,l"-.- -,l.—,-.'"l'-..'. :"-----in o wo i erent surfaces near the oint 8

th dth ' 'd f =0 56 f
A and 8 no ion er exi

'

g y metric tricritical point. For & & 0 =(

g r exist, and the two critical lines G. and ~ fo
r 0. oG, the critical end points

orm one continuous nonsymmet 'rlc critlcaa line

two critical phases coexist. The point 8 (which
corresponds to 4 =4 =0 C = -0, R, =0, iR = 0 and z

end point coexisting with two noncritical phases.
The points A and B are connected by a line of four

dia r
coexisting phases. A schematic form of th he p ase
iagram, for c= —1 and q = 0, in the a-b-h space

is given in Fi . 5~ ~

A and B become closer, and at c =0 they coincide&
poin. or c&0orming a fourth-order critical oi t. F

this point becomes a symmetric tricritical '
t,

where n is the symmetric critical line and ~

are the nonsymmetric critical lines [compare with
iagram or a non-

& and positive c was discussed in detail by
Griffiths and Schulma, n In thn is region there are
no tricritical points, and we shall not repeat the
discussion heion here. The phase diagram in the a-b-h
space, for small positive ~ and ——1 dc = —,is escribed
schematically in Fig. 5(b). In this case the line of
four coexisting phases [of Fig. 5(a)] splits into two
lines of triple points, the point A splits into two
critical end points A and A' and B b, an ecomes a
critical end point. As e is increased, the two
points A and B become closer and thr, an ey coincide
or & =49 3 ~

c
~

~, forming a nonsymmetric tri-
critical point. The projections of the critical- and

ues of q, are given in Fig. 6.
» solvmg Eqs. (3. 3) for the critical points

finds
in s, one

tions for & 4 0 and c fixed One line is y, and the
other is a line which consists of the stable se
ments cv and

es eseg-

between. the
connected by an unstable seg tegmen

een the critical end points A and B 'F' 5' "

Th e unstable part is not shown
'

th f'in e igure. As
e is increased towards its tricritical value [E

~„", the unstable part shrinks to a point, so
ue q.

the critical end ointsp A and B approach one another
and meet at the nonsymmet

' t ' t'ric ricri ical point.
Therefore in looking for a nonsymmetric tricriti-

intersection of two lines of solutions of theo e critical
ions &~. ~ qas one usually does when looking

for a symmetric tricritical point), but rather we
look for the a ropp ach of two critical end points lo-
cated on one line of solutions to Eqs. (2. 22). The
point where they meet is the nonsymmetric tr'
critical ointp . This procedure is described in de-
ta, il in Sec. IV.

IV. DETERMINATION OF A NONSYMMETRIC

TRICRITICAL POINT

Ne are now ready to find, within the mean-field
a roxima onpp

'
abon, a nonsymmetric tricritical point in

the spin-& model. To begin, we consider the ex-
p

'
( .25) of H= —(p~ 2—ps) in powers of Mpansion 2. 25

—=A, -A3. The symmetric tricritical points are
an e fourth-or-e aracterized by p= b=0 t."& 0 d th

er critical points by g= b=e=0 d&0. Th
ei ht inde

here are
g in ependent variables in the spin- —,

' model,
and they can be chosen to be p E E
A A an

Ez, E3,
~, and A3. These are related to the coeffi-

cients of (2. 25& b 2) y ( .27). In the eight-dimensional
parameter space there exists f -d'a our- imensiona, l
surface of symmetric tricritical points. This
surface joins a four-dimensional surface of nonsym-
metric tricritical points at th -da ree- imensional
surface of fourth-order critical ointsgroin s. Since our

a is o etermine one nonsymmetric t ' 't' l
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01—

-0.1

A=A

Bh

1

0 0.1 0.2 0.3 0.4

(a) exists a symmetric tricritical point at gg ——gs ——p
Ay=0. VV526, as was noted in Sec. IID. The criti-
cal lines meeting at the tricritical point were shown
in Fig. 3(a). By varying E2, one sweeps out a line
of symmetric tricritical points. When E2
= —0.613523, the line terminates in a fourth-order
critical point, located at A&=A3= P, AS=0. 7V650.
To find a nonsymmetric tricritical point near the
fourth-order point, we should increase E~ past its
fourth-order value, so that there exists an "un-
stable tricritical point' with a= b=0, v&0, and
d & 0. A suitable choice is

0.5—

0.3—

0.2—

01—

A

c =-1.0
e= 0.1

A

1 I
lh

1 I I

-0.1 0 0.1 0.2 0.3 0.4

(b)

(c)

Ep= —0.613 .
Our motivation lies in the discussion of the Landau
theory presented in Sec. III.

For e = 0 and Ez = —0. 613, we draw the proj ec-
tion of the critical lines onto the M, A.~ plane in
Fig. 7(a). The two nonsymmetric critical lines do
not interesect. They each terminate in a critical
end point, denoted A and A', respectively. These
critical end points correspond to H= 0, and non-
zero magnetizations of equal magnitude, but of
opposite sign. Usually, a critical end point cor-
responds to a critical phase coexisting with a non-
critical phase. The critical end points A and A'
are special, since they coexist with each other;
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0.12— A

0.08—
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0.12

0.08—

0.04—

M 0-
-0.04—

-0.08—

1 T

2,0x IO

—0.25 — A'

-0.5—

I

0.74 0.76
A~

0'16
U

078

(b)

-0.12—
A

-0.16—
V

I ~ j
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e=l.5 xlO
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M 0— W

FIG. 6. Projection of the critical- and triple-point
lines on the a-b plane (for c= —1) and several values of

As & is increased from zero, the two critical end
points A, B approach each other, and will meet at the
nonsymmetric tricritical point for & = 0. 56.

-0.12 —
A

-0.16—
V

I

0.74 0.76
A2

0.78 0.74 0.76
A

0.78

point, we are free to fix several variables at our
convenience. We choose

p 9 ) Eo 1 2 E&= 1+e, E3= 1 —e,
where e will play the role of a symmetry-breaking
parameter.

First, we consider e=0. For E2= —0.62, there

FIG. 7. Projection of a portion (A2 ~ 0. 74) of the
critical lines onto the I, A2-plane. When (a) e=0, the
critical end points A and A ' correspond to H = 0, and co-
exist with each other. The critical end point B corre-
sponds to H=O, and coexists with two noncritical phases.
As e is increased to (b) e=l„5&&10, (c) e=2. 0&&10, and
(d) e=2. 25&&10, the critical end points A and B approach
one another. Eventually, they meet at the tricritical
point. The point S' corresponds to A&+A2+A3 =1.
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hence each coexists with a critical phase. The
symmetric critical line terminates in a critical
end point marked 8, which corresponds to II= 0 and
M = 0. It is also special, since at B a critical
phase is coexisting with two noncritical phases.
The nonsymmetric critical lines have been found
by solving numerically Eqs. (2. 22). The critical
end points have been determined by finding all solu-
tions of Eqs. (2. 12) corresponding to the critical
values of the fields, and then comparing the free
energies Q of each solution. The method used to
solve (2. 12) is discussed in Appendix B. It is in-
structive to compare Fig. 7(a) with Figs. 4(c) and
4(d), its analogue in the Landau theory.

Now, we consider e& 0. As e increases from
zero, the critical end points A and 8 move toward
each other. Where they meet is the nonsymmetric
tricritical point. The projections of the critical
lines corresponding to e=1.5&&10, 2. 0&10, and
2. 25x10 ' are shown, respectively, in Figs. '7(b),

7(c), and 7(d). The critical end points now corre-
spond to a critical phase in equilibrium with one
noncritical phase. We see the critical end points
A and B have almost met for 8=2. 25x10 5. For
slightly larger values of e, there exists only one
continuous line for M& 0. The only critical end
point remaining would be A', corresponding to
M&0.

V. CORRESPONDENCE BETWEEN SPIN-3/2 MODEL AND
THE SYSTEM ETHANOL-WATER-CARBON-DIOXIDE

A,

Critical end point [CEP(I)]

9.0050
9. 0010
9.0004
9.0001

0. 174
0. 162
0. 159
0. 156

0. 759
0. 765
0. 766
0. 767

0. 065
0. 072
0. 074
0. 076

0. 327292
0. 325683
0. 325451
0. 3253356

Coexisting phase [CX(I)]

9. 0050
9.0010
9.0004
9.0001

0. 115
0. 136
0. 139
0. 144

0. 777
0. 773
0. 772
0. 771

0. 107
0 ~ 089
0. 087
0. 084

0. 327292
0. 325683
0. 325451
0. 3253356

Critical end point [CEP(II)]

9. 0050
9. 0010
9. 0004
9. 0001

0. 135
0.145
0. 147
0. 149

0. 774
0. 771
0. 770
0. 770

0. 090
0. 083
0. 081
0. 080

0. 327240
0. 325676
0. 325448
0. 3253351

Coexisting phase [CX(II)]

9.0050
9. 0010
9.0004
9.0001

0. 194
0. 173
0. 165
0. 161

0. 749
0. 760
0. 763
0. 765

0. 056
0. 066
0. 070
0. 073

0. 327240
0. 325676
0. 325448
0. 3253351

TABLE II. Densities A~, A. 2, A3 and the pressure
P =——@ corresponding to inverse temperature P for the
critical phase CEP(I) and the coexisting noncritical phase
CX(I), and the critical phase CEP(II) and the coexisting
noncritical phase CX(II). A rough estimate of the numeri-
cal uncertainties is given by + 1% for A& and A3 in critical
phases, while A2 has only round-off error; and +2% for
A&, A2, and A3 in noncritical phases.

We consider the lattice-gas model of ternary
fluid mixtures defined by the Hamiltonian (2. 2),
with the restricted form of the interactions speci-
fied by (2. 3). We fix the interaction energies at
the constant values ED=1.2, E&=1+e, E&= —0.613,
E3 1 —e, and e = 2. 25 && 10 '

~ The the rmodynami c
variables may be taken to be the inverse tempera-
ture P and the densities Ag y A2p and A3. The dis-
cussion of Sec. IV assures the existence of an iso-
lated nonsymmetric tricritical point in the four-
dimensional P, A space, with the tricritical temper-
ature approximately given by P=9. The explicit
values of the interaction energies listed above are
neither unique nor optimal. We are going to study
one typical point on a four-dimensional surface of
tricritical points, in the eight-dimensional E, P,
A space.

Below the tricritical temperature, there exist two
lines (in the four-dimensional P, A space) of criti-
cal end points, meeting at the tricritical point.
For selected points along these lines, we present
(Table II) the values of P, A~, A2, A3, and pres-
sure p=——Q, corresponding'to the critical and co-
existing phases. The entries in Table II were com-
puted in the following manner. Leaving P fixed,
we varied A~ in steps of magnitude I 4l =0. 00025,
and solved Eqs. (2. 22) for the corresponding criti-

cal values of A~ and As. This determined critical
lines in the three-dimensional A space. The
stability of each critical point P(A2) along these
lines was checked by finding all solutions of Eqs.
(2. 12) corresponding to the critical values of the
fields. In practice, we usually found that a critical
end point lay between a point P(Az) such that (2. 12)
had only the one critical solution, and a point
P(A2+&) such that (2. 12) had three solutions, a
noncritical solution being stable. The parameters
describing the critical end point were approximated
by the average of the critical parameters corre-
sponding to P(Az) and P(A&+ b). The densities
corresponding to the coexisting noncritical phase
were less accurately determined. First, they had
to be determined from the solution of (2. 12), while
the critical densities could be more directly de-
termined by averaging two solutions of (2. 22).
Also, the uncertainties in the noncritical parame-
ters were harder to estimate, because the noncriti-
cal phase usually did not appear before it was the
stable solution of (2. 12).

Shvarts and Efremova have observed the two
lines of critical end points meeting at the tricriti-
cal point in ethanol-water-carbon-dioxide mixtures.
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APPENDIX A: PROOF OF EQ. (2, 6)

We prove that the conditions

Eq+E, &0, &+0=0, 1., 2, 3, (AI)
AI

FIG. 8. Density A~ plotted against the inverse tem-
perature P, for the critical phase CEP(I) and coexisting
noncritical phase CX(I), and the critical phase CEP(II)
and coexisting noncritical phase CX(II). Error bars in-
dicate rough estimate of uncertainties in the numerical
calculations.

They estimated the tricritical molar fractions to be
N(CzH5OH) =0. 15, N(CO2) =0.83, and N(H&O)= 0. 02.
In our lattice-gas model, the molar fractions of the
&-type molecules is given by N(X) =A~/(A~+Aa+A3).
From Table II, we see that Ao= 1 -A& -A& -A3
= 10; so N(A) =A„ is a good approximation. Com-
paring the table of Shvarts and Efremova' to Ta-
ble II, we make the correspondence

1-type molecules C&H,OH,

2-type molecules CO2,

3-type molecules H~O .
Carrying the correspondence further, we identify

CEP(I): critical phase in liquid-liquid equilib-
riurny

CX(I): gas phase coexisting with the liquid-
liquid critical phase;

CEP(II): critical phase in liquid-gas equilib-
rium;

CX(II): heavy liquid phase coexisting with the
liquid-gas critical phase.

In Fig. 8, we plot the temperature-ethanol rnole-
f raction (A~) curve, and find qualitative agreement
with the corresponding Fig. 2 of Shvarts and
Efremova. The projection of the critical-end-
point lines onto the temperature-pressure plane is
given in Fig. 9. There is a qualitative difference
between this figure and the analogous Fig. 1 of
Shvarts and Efremova. In the ethanol-water-car-
bon-dioxide system, the tricritical point lies at the
maximum temperature and pressure. In our lat-
tice-gas, the tricritical point lies at the maximum
temperature, but the minimum pressure.

0.3257—

0.3256—

0.3255—

0,3254—

9.OOIO 9.0005 9.0

FIG. 9. Projection of critical end point lines onto
pressure p = —fII), inverse temperature p plane. Tricrit-
ical point will lie at maximum temperature and minimum
pressure. This is in contrast to experimental observa-
tions, which show tricritical point to lie at maximum tem-
perature and maximum pressure.

are necessary and sufficient to rule out staggered
order at zero temperature for all values of the
chemical potentials. There are four types of
translationally invariant orderings at T = 0, cor-
responding to A„= 1 (A = 0, 1, 2, 3). The energy
per site associated with each type of ordering is
given by Eqs. (2. 2) and (2. 3),

E(A.) = —~ (E„+ED)—p„(A.= 1, 2, 3),
(A2)

E(0)=0 .
The energy per site of a staggered ordering of
molecules of types A. and o is given by

E(X, o) = —,' Eo ——,'(p„+ p, )—, (A., o O 0),
E(0, X) = ——,

'
p~ .

Suppose now that the ground state is translation-
ally invariant for all values of the chemical poten-
tials. We shall show that E,+E, & 0. Consider a
value of the chemical potentials such that the ground
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state is A„= 1, and it is degenerate with A, = 1.
For these values of the chemical potentials one has

E(~,.) —.'B(~) E( )], (A4)

which implies Iby using Eqs. (A2) and (A3)] E„
+E, &0.

On the other hand, if E~+ E, & 0, then using Eq s.
(A2) and (A3) one obtains

be replaced by the single equation in the one un-
known A1,

&i = —(Eo+ E~)&i —Eo f( ) f( )+-—

P-1 l 1
& -» f(&a)I-P&g X(*s-)IP&s)

E(» o) ' ' P'(~) + E(o)], (A5) Once A1 is found from this equation, then

for all values of the chemical potentials. This
means that either E(X) & E(&, o), or E(o) & E(&, o),
and the staggered order is not the ground state.

APPENDIX B: ANALYSIS OF EQS. (2.12)

In order to check the stability of a local mini-
mum of P, it is necessary to determine all of the
solutions of Eqs. (2. 12) corresponding to the given
values of the fields. We shall reduce the problem
of solving the three simultaneous equations (2. 12)
to that of solving one equation in one unknown. It
is then straightforward to numerically determine
all of. the solutions of this single equation. To
proceed, note that (2. 12) implies

g( fj,2- ~1-E1A1~ gE 2A22= 1e e
8( vS- v1"E1A1} 8B3A3e

We implicitly define the function y =f(x) by y = xe'.
We introduce the notation

~(~2 I 1"@1A1)
&2 —P

—P~ A eI'(I"3 &1 ~1A1&XS —P 3 1e

It is now clear that the three equations (2. 12) can

&A1

BP 1 P2gs

8A1

&2 u 1~3

&A1

~~s

&A2 8A2 &A2

~1 ~2is ~2 f1fs ~3 f1~2

l BA3 8A3 &As

u2vs I 2 v1c 3 ~3

Letting d denote the Jacobian given in (2. 15),

d = QpQ1Q2+ QpQ2QS + QpQSQ1+ Q1Q2QS ~

we find

Ao =f(x2)/ pE2,

Ao =f(xo)/PEo .
The function f(x) appearing in the above equations
is double valued. We search for solutions corre-
sponding to each of the four possible choices of
branches. Even for a given choice of branches
there are, in general, several solutions. The
stable solution is the one which corresponds to the
minimum value of the free energy Q.

From (2. 12), we can determine the susceptibility
matrix

D=d —QpQ3

—QpQ2

—QpQs

oo(o'i+ ns) + o'sos

—QpQ1

—QpQ2

—QpQ1

a, (a, + a,) + a, a,)
Recall that the o."s were defined in (2. 14).
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