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The electronic contribution to the c-axis elastic constants of hexagonal crystals
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The effect of c-axis elastic strain on the first Brillouin zone for hexagonal crystals is determined. The
electronic contribution to c-axis elastic moduli is estimated for graphite, a semimetal, and boron nitride,

an insulator, using the parabolic and other band models. It is found that a large contribution to the
elastic constants can arise from the effect of strain on the electronic energy, arising from a
redistribution of electrons within the strained Brillouin zone, or from changes in the bulk electronic
properties. It is shown that experimental c-axis moduli for graphite can be described empirically if both
ion-ion and electron band energies are considered.

I. INTRODUCTION

In a previous publication, ' the authors obtained
experimental values for the c-axis elastic parame-
ters, C33 and C44, of graphite and their strain
derivatives. These measurements allowed a direct
comparison to be made with theoretical predictions
based on simple pairwise ion-ion models of the
interplanar force. A serious discrepancy was
demonstrated between the computed ratio, C«/C~„
and that obtained experimentally, as suggested
before by several authors. ' ' This relative insensi-
tivity of short-range isotropic potentials to c-axis
shear is a direct consequence of large interplanar
spacing compared with in-plane spacing. In-plane
structural details, seen from other planes, are
unimportant mathematically to an excellent degree
of approximation in such models, so that the c
planes can be represented as uniform carbon sheets.
As a result of this difficulty, the authors were led
to an examination of electron band contributions to
the interplanar moduli.

The manner in which electrons influence certain
crystal elastic moduli is readily illustrated by use
of the Brillouin-zone picture. As a Brillouin zone
distorts in response to homogeneous crystal strain,
electrons are transferred from one region in k
space to another. If this redistribution leads to
an energy change to second order of strain, an
electronic contribution is made to the associated
elastic modulus. For an unfiBed band, it may be
possible for the altered electron assembly to under-
go relaxation, effecting further changes in the elas-
tic energy. Another possibility is that the energy
levels of the electrons are changed by the applied
strain, for example, through changes in interplanar
overlap energies. So far, theory has concentrated
exclusively on crystals and strains in which the
electrons generally respond only by changing the
radial displacement from the Brillouin-zone center,

II. FIRST BRILLOUIN ZONE FOR c-AXIS STRAINED
HEXAGONAL CRYSTALS

A hexagonal unit cell can be defined by the three
translation vectors illustrated in Fig. 1.' The
Brillouin zone for c-axis shear is examined first.
Assume a shear such that a material displacement
vector transforms, according to the rule

(x, y, z)- (x, y, x+ 5x),

where (x, y) lie in the c plane and 5 is the shear
parameter. The only nonzero strain from (l) is

(Voigt notation) . (2)

The c-axis elastic energy density W for hexagonal
crystals is"

W gC44(e4+e~)+ ~C33E3
3 1 3

From (2) and (3) one finds

8 8'
ggP 44 ~

6=0

Under the shear strain, (l), unit-cell transla-
tion vectors become

permitting use of convenient mathematical ap-
proximations. 6 " The situation is more complex
in hexagonal crystals, where the elastic moduli are
very sensitive to the details of the energy-band
structure. In this paper, the Brillouin zone for
the c-axis strained crystal is developed in Sec. II,
and the electronic contributions to the elastic
moduli C33 and C44 then computed for simplified
energy-band models in Sec. III. It is demonstrated
that electronic contributions are important for both
elastic constants. Other electronic contributions
to the c-axis moduli are also discussed in Sec.
III.
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TABLE I. Theoretical electronic elastic parameters for completely filled two-elec-
tron band. ~

Elastic parameter
Contribution from

in-plane dispersion

12P—
nt(+

Contribution from
out-of-plane dispersion

Parabolic
dispersion
model
(8 -k2)

Linear
dispersion
modelI- 1 k l)

2. 53P—1m~f

1—7. 59P —~
WE f

0.632P (1.20~ —1}—1
mj

—0.632P (3.61& —1)—~mi'

'X =(—//p); p = {s~/VSa); m~ =m/m, ; p = — p'(- .I Tf h' 1~3
c (2~)3 m, 9 c

C44 q and their 0-Rzls compressive strain deriva-
tives were computed by introducing the dispersion
relationships (8) into the definitions (9). Results
are presented parametrically in Table I. Several
combinations of the model can be formed readily.
For example, suppose

From Table I one finds

C„=2a(I/m,*)+—", P(X/m*, ) .

In Sec. III 8, theoretical moduli are examined
for graphite and boron nitride. (Details of the

present calculations can be obtained on request. )

B. Electronic moduli for graphite, boron nitride

Lattice constants for the hexagonal isoelectronic
series, graphite (C), boron nitride (BN), and beryl-
bum oxide (BeO), are compiled in Table Il. " In-
cluded are the derived parameters, I, and p, for
each material. The values for boron nitride and

graphite are quite similar, although atomic posi-
tions within the unit cell are different. Beryllium
oxide is a strongly ionic structure with markedly
smaller e/a ratio than boron nitride or graphite
No theoretical or experimental moduli are known

to the authors, in the literature, so that this com-
pound will not be discussed further.

Previous investigations of the interplanar binding

TABLE II. Hexagonal lattice parameters for C, BN,
and BeO.

a g)
c {A)
X (10-')
g (100 N/m)

2.46
6.71
l. 01
4.22

BN

2. 50
6.66
l. 06
4.14

Be0

2. 70
4. 38
2. 76

in graphite have centered upon models using ion-
i.on interactions only "' '8 The calculated elastic
ratio, C4, /C», from these interactions is an order
of magnitude too small, in view of experiment.
Similar calculation for boron nitride, but using an
ion-ion potential which includes an ionic (ion-
charge) term, gives a C44/C» ratio close to that
measured in graphite. ' Although no shear mea-
surements have been made on boron nitxide, over-
all mechanical characteristics of this substance
are very similar to graphite. It is reasonable,
then, to assume that the actual elastic xatio in
boron nitride and graphite are approximately equal.
Consequently, one can speculate that while a purely
ion-ion model suffices for boron nitride, it fails
badly for graphite.

Case 1. In contrast with these earliex ion-ion
models, let us assume here that the interplanar
forces in boron nitride and graphite are entirely
electronic in nature, the ion-ion forces being
negllglbl.
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FIG. 6. Energy dispersion relationship for principal
symxnetry directions from Doni and Parravicini (Bef. 21).
Only the highest valence and lowest conduction bands are
shown, in both cases derived from atomic P~ orbitals.
(a) Boron nitride (&~-5 eV). (b) graphite (bands overlap
by -0.04 eV).

First, one must choose electron dispersion
equations appropriate to boron nitride and to graph-
ite. Typical results of electron band theory for
these materials are shown in Fig. 6 [see also Fig.
3(a)]. Since c-axis strains affect only electrons
close to the first Brillouin-zone boundary, only
that portion of the band structure is of interest
here. Unfortunately, energy changes are not
known along the ALH (boundary C) planes. This
region is clearly of great importance to the elec-
tronic moduli. The two lower bands have opposite
behavior in the QL direction on the QLKH (lateral
side) planes —one gaimng, the other losing energy.
Rather than attempt to deduce actual band details
in the neighborhood of the Brillouin-zone boundary,
we have calculated the electronic elastic parame-

ters using both linear and parabobc energy bands,
wherein these models are understood to apply only
near the Brillouin-zone boundary and not neces-
sarily to the remainder of the zone.

Second, if the interplanar binding is due entirely
to electronic effects, the interplanar electronic
energy density S'must be a minimum for c-axis
strains. This is automatically true for shear.
The compressive minimum condition, 9 W/Be, = 0,
yields the constraint

I/m, =-~e (X/m, ), parabolic band

I/m, = —2. 14 (A/m3), linear band .
Equations (10) are understood easily. If mf and m3
have the same sign, Brillouin-zone energy could
be decreased simply by expanding or contracting
the zone along the C axis, depending on sign. There
must be forces opposite in sign arising from the
rn, -controlled and the m3-controlled energy dis-
persion equations.

Introducing Eqs. (10) and values for Table II in-
to Table I, one finds the elastic parameters shown
in Table III for case 1. Evidently, the parabolic
model can fit experiment somewhat better than the
linear model. After adjusting the parabolic mass
m, to fit C33 to experiment, one has m, = 0.Qmo,
rn& = —4. 8mo in the parabolic model. The physical
significance of these masses is discussed following
case 2.

Case 2. In case 1 it was assumed that all e-axis
binding arose through electronic effects. How-
ever, as noted above, other models which employ
Lennard- Jones or Buckingham-type potentials to
describe a pairwise interplanar ion-ion interac-

TABLE DI. Four-electron~ filled-band theoretical and experimental elastic param-
eters.

Experiment
(a) Graphite~

Theory (case 1)
(i) Electronic binding

(a) Parabolic band

(b) Linear band

Theory
(ii) Ion binding~

Theory (case 2)
(iii) Electronic plus

ion. binding
parabolic band

C33 (10~0 N/m2)

3.6+0.1

13.07—
m+

3
1

4. 73—qm3'

3.2

C44/C33

0.12 + 0.01

0, 11

0.006

1 BC44

C33B 3

BC44

C44 B&3

—12.2

0.6

~Four electrons per state are included to account for the spin and spatial degeneracy.
"See Ref. 1 for a recent summary.
'See Bef. 2.
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tion in graphite and boron nitride have been success-
ful in predicting C33 and (I/Cs3)(SC33/SE3} We are
thus led to consider as case 2 a model in which the
c-axis energy is a linear sum of ion-ion energy
plus electron band energy. In this model, virtual-
ly all the energy resides in the ion-ion contribution,
the electron contribution being important only for
shearing modes.

Results from one ion-ion calculation, made else-
where by the authors, using a van der Waals at-
traction and an exponential core repulsion are
shown in Table III under the heading "Ion binding. "
Since conditions (10) are not valid for case 2, val-
ues for m, and m, (parabolic) were chosen in Table
II such that the experimental moduli, C33 and C44,
are comprised of a linear sum of the respective
ion-ion modulus and electronic modulus. Strain
derivatives are calculated using the compound
moduli, and all theoretical parameters are given
in Table III under the heading "Electronic plus ion
binding. " To fit experiment in case 2, the electron
masses (parabolic) are set: m, =3.4mo and m,
= —11.1mo.

Clearly, the experimental graphite c-axis elas-
tic moduli and their compressive strain derivatives
(see Table III) can be fitted reasonably well by a
model in which the interplanar binding consists of
a mixture of electronic and ion-ion interactions.
Only a minor admixture of ion-ion binding is neces-
sary to bring the theoretical electronic moduli, in
case 1, into acceptable experimental ranges.
Empirical values for the electron masses, based
on this supposition, should be

rn3= rno,' mq = —Gmo .

The condition (11) can be understood in a simple
way. The actual dependence of energy on k near
the Brillouin-zone boundaries must be more com-
plicated than represented in the present model.
In essence, the removal of electrons from the clips
across the hexagonal faces dominates the energy
change, and results in a positive change only if m&

is negative. The energy change resulting from
redistribution of electrons in the wedge volumes
is relatively smaller.

Case 3. The deduced electron masses for cases
1 and 2 are not necessarily representative of the
general band structure. Specifically, if one sets
fFE$ m3 2mo, characteristic of the general dis-
persion in graphite, then the electronic elastic
moduli are, according to Table I,

C„=11.5x10'0 N/m'; C«- 4. 22x10' N/m

Both these moduli are much larger in magnitude
than actually observed. The negative C«derives
from use of positive mass in the dispersion rela-
tionships (8). Under c-axis shear, prismatic
slices of electrons are removed from the outer

edges of the Brillouin zone [see Fig. 3(b)] and
"smeared" out in equal amounts along the C-plane
boundaries and 1ateral sides. This redistribution
decreases the average sizes of (0'„+k,') and 0', for
the transported electrons. A gain in magnitude of
0, for some electrons is obtained through the re-
moval of wedge-shaped regions from along one half
of each lateral side of the Brillouin zone and re-
placement on the adjoining half (see Fig. 4). This
latter increase does not offset completely the aver-
age loss in (k2+ 0,) from the "smearing. " Conse-
quently, there is an over-all loss in zone energy,
signified by a negative shear modulus (instability
under shear). Thus, near the Brillouin-zone
boundary, the actual electron dispersion function
must deviate substantially from that of the general
band, unless other large positive electronic con-
tributions to C44 are important.

Further interpretation of these results from
simple band models is discussed in Sec. IV.

If it is possible to compute the zone-boundary
electron masses for boron nitride through scaling
of general band calculations with those for graphite,
then a complete set of predictions can be made also
for the boron nitride c-axis elastic moduli. As
seen in Fig. 6, band energies in boron nitride are
smaller than in graphite by a factor approximately
equal to 4. One might reasonably expect that, for
boron nitride, electronic moduli are corresponding-
ly smaller than for graphite. Such moduli would

surely be too small to be of major interest. Be-
cause it is unlikely that an appreciable ionic bond
character can be associated with the graphite lat-
tice, one could propose that interplanar interactions
which control c-axis shear movement in graphite
are primarily electron-band-related, while those
inboron nitride are mainly ion-charge-ion-charge-
related.

C. Effect of overlap electrons

Graphite in reality is a semimetal rather than an
insulator, as in the model above. Consideration
must be taken of the small electron overlap, from
one of the valence bands, along the first Brillouin-
zone lateral edges.

The lateral sides of the first Brillouin zone do
not change perpendicular displacement from the
origin for either of the c-axis strains, c3, cs. As
a result, it is relatively easy to compute the over-
lap corrections to the closed-band electronic modu-
li. Under c-axis compressive strain, all Brillouin-
zone symmetry is preserved while only the c/a
ratio changes; under c-axis shear strain, only a
small fraction of the hole volume is affected,
while overlap electrons are completely unshifted.
Normally, it is assumed that the electron "bubble"
is fixed to the associated strain-displaced Bril-
louin-zone surface, allowing for relaxation through
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The energy density Wis here measured relative
to the bottom of the valence band of width Eo (see
Fig. 7). Equation (12) may be rewritten as

g(
W=

i~ En„(E)dE+ En, (E) dE
~0 &o-3~3

En„(E)dE (13a

= W„+ W(e)- W(a), (13b)

C'll~(E) df + NEO,

. (14a)
„0

W(h) =
l~

(Eo+ e) n„(q) de =
~ gy

an„(e) d~+ PEO,

(14b)
vrhere & measures electron energies relative to
the top of the valence band (Fig. 7), allowing (14a)
and (14b) to be evaluated using the dispersion re-
lationship for electrons near the overlap region
developed by Slonczevrski and gneiss. 3O It may be
shorn that the first terms in the right-hand side
of (14a) and (14b) are negligible (their contribution
to C33 amounts to -10~-10' Nm ~) and they will be
neglected in the folio@ring treatment. Thus

W - Wf ~+ (N - P) Eo

and, since N= P in an intrinsic crystal,

where n„(E) and n, (E) are the densities of states in
the valence and conduction bands, respectively;
W, ~, W(e), W(h) are the energy contributions from
the filled valence band, conduction-band electrons,
and valence-band holes, respectively. In this ex-
pression the valence and conduction bands overlap
in the interval Eo-2ya to Eo (see Fig. 7) where Eo
is the valence-band vridth.

The terms W(e) and W(h) may be written as
gQ

W(e)= (Eo+~)no(~)d~=
~

3/3 " ay2

FIG. 7. Sketch of the density of states for the semi-
metal graphite. The valence band, of width Eo, over-
laps the con.duction. band by 2y2, where y2 is a next-near-
est layer overlap integral.

exchanges vrith the other "bubbles" in the zone.
Evidently in graphite, during c-axis shear strain,
the relaxed overlap electron assembly is indistin-
guishable from the unstrained assembly, thereby
not contributing to the shear strain energy.

The additive modification to the energy density,
W, from electron overlap may be obtained from the
total electronic energy in the band at 7=0 'K:

+Ep
Es(E) dE,

~0

where n(E) is the electronic density of states.

Modification of the c-axis shear modulus, C«,
by electron overlap must be very small, since
only a minute fraction of the hole volume in the
first Brillouin zone is affected by shear. An ap-
proximation can be made of the magnitude of this
effect by estimating the ratio of the sheared hole
area to the sheared Brillouin-zone area. The
hole cross-sectional area A.„at the Brillouin-zone
C-plane boundary divided by the total C-plane
boundary area, 4„, is approximately

which is far too small to be important.

D. Contributions to elastic moduli arising from changes in bulk
electronic properties

In all crystals the energy levels are modified to
various extent by strains. In a layer material such
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as graphite, the dependence of the energy levels on
strain can conveniently be described using the tight-
binding approximation. Clearly, for c-axis strain,
only the interplanar distances are changed ap-
preciably, so that only interlayer overlap integrals
need be considered. (The c-axis linear compres-
sibility is approximately 20 times that in the basal
plane. ) In this theory, the energy variation with
basal wave vector throughout most of the Brillouin
zone is controlled by the in-plane (covalent) elec-
tronic overlap. This can therefore be taken as
approximately invariant under c-axis strains. OLl

the other hand, interplanar overlap integrals con-
trol the energy variation with out-of-plane wave-
vector (0,).

The total electronic energy in the valence and
conduction bands, W, is given by Eq. (13a). Thus,
from Eqs. (9), the c-axis elastic compressive
constant may be written as

where y is an average energy difference between
the mid-plane [I'QK in Fig. 3(a)j and the C-plane
[AI.II in Fig. 3(a)] boundaries of the Brillouin zone.
This energy y is essentially the difference in band-
width energy (Eo) between the three-dimensional
and two-dimensional crystal and is proportional to
the interplanar overlap energy. The value of t, a.
dimensionless geometric parameter, depends on
the energy dispersion relationship in the C-axis
direction. It is calculated directly from Eq. (12).
For reasonable choices of this relationship, t lies
in the range 10-15. Differentiating, one finds

Ey ~lny 1
a c ~6 y ~c

Taking a typical value for y (-0.1 eV), " a' and

assuming that Slny/&e, -&Iny, /&e, , where y, is the
nearest-neighbor interlayer interaction parameter
appearing in the bRnd theory of Slonczewski Rnd

%'eiss, one obtains using experimental data

C u'" -3X10' Nm

(In the Slonczewski-Weiss theory, the energy
difference between point K and point II is approxi-
mately 2y, . Thus, the assumed equality of the
strain derivatives of y and y, should be reason-
able. ) This bulk electronic effect presumably con-
trols a substantial proportion of the c-axis com-
pressibility of graphite. Usually, van der &Rais
forces have been employed to describe this c-axis
compressibility. While such other theories are
mathematically satisfactory, the interplanar inter-
action in graphite may originate largely in the bulk

electronic effect.
An attempt has been made by Santos and Villagra

to identify the compressive energy with an ion-elec-

tron interaction. Their approach gave a reasonable
value for the compressive modulus C». Further
calculation by one of us (JFG) shows that the strain
derivative is also predicted reasonably by their
model. However, their model used a charge dis-
tribution which was uniformly smeared across
carbon planes, so that no predictions could be
made regarding the shear modulus C44 or its strain
derivative.

In the present case we may also assume that an
electr'onic contribution to the c-Rxls modull Rrlses
from the effect of shear strain on the c-axis over-
lap integrals. By analogy with the above compari-
son for the compressive modulus C», we may
conjecture that a contribution to C«, normally
described by the Lennard-Jones interatomic po-
tential, arises from this shear dependence of the
overlap energy y. In principle, this contribution to
C«may be calculated from Eqs. (9). However,
as pointed out above, hexagonal symmetry is broken
by c-axis shear. Consequently, simplifying as-
sumptions, which allow the hexagonal crystal inter-
action matrix to be reduced to a 4&4 matrix, no
longer hold. Since, in addition, no experimental
estimates of the shear dependence of the interlayer
overlap integrals exist, no further attempt can be
made here to calculate the bulk electronic contri-
butions to C«. Since the effect should be at 1.east
comparable in magnitude to ion-ion contributions,
a calculation is clearly of major interest.

IV. DISCUSSION OF RESULTS

In Sec. III, the electronic c-axis moduli C», C«
were calculated for parabolic and linear electron
models. It was found that large contributions could
be expected from the electronic effect, and that the
presence of free carriers in the semimetal graphite
mould not affect this result appreciably. The dis-
persion relationships used here were chosen for
computational convenience. They allowed the elec-
tlonlc contributions Rllslng from c-axis strRlns of
the Brillouin zone to be coolputed by adjusting, at
most, two parameters. It was then shown that
good agreement could be obtained with experiment
for graphite, if both electronic and ion-ion effects
were considered together. The effective mass
values obtained were quite different from the gen-
eral band masses, particularly the effective basal
mass wf 67%p . This is discussed below.

First, it must be recognized that the electronic
contribution arises from the redistribution of elec-
trons near the surfaces of the Brillouin zone, as
detailed in Sec. III B. Particular dispersion rela-
tionships used here are simply convenient ways of
representing differences in electronic energy of
these surface electrons. As discussed earlier,
if general band electronic effective masses (m,
=m3-2mo) are used to estimate these surface ef-
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fects, then an unreasonably large contribution to

C» is obtained. This strongly suggests that the
bandsbehave in a more complicated way across the
Brillouin-zone C-plane boundaries [ALP in Fig.
3(a)] (where the electrons are being diffracted)
than across the median planes [I'If Q in Fig. 3(a)],
where band calculations have been made.

Furthermore, a large negative contribution to
C44 is obtained if these general band effective mass
values are used. This arises primarily from the
over-all average decrease in electron wave vector
occasioned by the removal of electrons from the
clipped regions of the Brillouin zone to the zone
C-plane boundaries [ALP in Fig. 3(a)]. This result
also suggests that the actual dispersion relationship
for these surface electrons is more complicated
than that proposed. A detailed calculation of the
electron energies in the regions near the surface
of the Brillouin zone should resolve this uncer-
tainty.

No other satisfactory explanation for the observed
ratio, C44/C33 in graphite has been proposed, to
the knowledge of the present authors. Kelly has
suggested that conventional ion-ion potentials could
possibly explain the discrepancy in C44 for graphite,
if a potential with a sharper minimum were used,
perhaps corresponding to a pileup of electronic p,
orbitals between atoms in adjacent layers. Such
a charge distribution would lead to large energy
increases, yielding serious problems with the cal-
culated value for C33. Equivalent difficulties are
associated with other models which assign frac-

tional electronic charges to interstitial positions
between neighboring atoms in the basal plane.

In the absence of other explanations, we have
given values for the electronic parameters m& and

m3 in our model to account for the observed c-axis
moduli and their strain derivatives. It is cautioned
that these masses must be interpreted with some
care. Detailed calculations using a more realistic
disperion relationship are clearly required, but
at present no such relationship is available, except
near the zone corners. 0

A detailed theory for the moduli C» and C44
should take into account both the effect of transfer
of near-surface electrons across the Brillouin
zone and the effect of strain on the bulk electronic
properties. These bulk and zone-surface effects
can certainly give a contribution of the correct
order of magnitude to C4, while maintaining the
correct value for the ratio C«/C». The results
obtained here are probably applicable not only to
graphite and boron nitride, but also to a wide
range of materials having planar structures in
which the interlayer forces are weak, and have been
described previously by van der Waals dispersion
forces.
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