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We recall the theory of the spin-dependent Hall effect in semiconductors and give an elementary

presentation, stressing the physical aspects of the problem. The spin-dependent Hall effect arises from

the spin-orbit interaction in the crystal, via the admixture of p states into the conduction-band Bloch
functions. A remarkable consequence of this admixture is the existence of the so-called periodic part of
r, which can be interpreted as a transverse displacement of the spin-polarized electron. This transverse

displacement yields a first contribution to the spin-dependent Hall effect; the displacement contribution

corresponds to a side jump of the electron upon scattering and gives a transverse conductivity

independent of the scattering process. A second contribution to the spin-dependent Hall effect is the

skew scattering, due to a left-right asymmetry of the scattering cross section. Next, we report the

experimental study of the spin-dependent Hall effect in n-type indium antimonide. The spin-dependent

Hall effect is unambiguously separated from the much larger ordinary Hall effect by using a

spin-resonance method. The study of the effect on a series of samples of various doping levels evidences

the presence of the two contributions. In the weakly doped samples, only the displacement contribution

remains, and the measurements agree, without any adjustable parameter, with the theoretical predictions

for the transverse mobility p, „=—160 cm'/V sec. For higher concentrations, the skew scattering
becomes notable, cancelling the displacement contribution and changing the sign of the over-all effect.

The contribution of multiple scattering to this process appears to be dominant; a semiempirical

calculation is given, which agrees with experiment within a factor of 2. Finally, we report the study of
the spin-dependent Hall effect in highly doped n-type germanium. The necessary extensions of the

theory are presented. The study of the effect as a function of temperature in a sample with

ND = 3.1 X 10" cm ' reveals a behavior quite similar to that observed in the case of InSb. At low

temperature, the displacement contribution is observed alone and is fourid to be in good agreement with

theory (p, „=—0.20 cm'/Vsec) without any adjustable parameter. At higher temperature, the skew

scattering increases and changes the sign of the observed effect. A model with two kinds of carriers is

shown to account for the observed temperature dependence.

I. INTRODUCTION

In the last 20 years, the giant transverse con-
ductivity observed for a long time in ferromag-
netics has become the source of an abundant liter-
ature and of many controversies between theor-
ists. ' ' Two kinds of theories were proposed to
explain this extraordinary Hall effect in magne-
tized materials: The theories of the first kind

start from the band-magnetism model (one elec-
tronic system); the others consider an Heisenberg
magnet with nonmagnetic conduction electrons
(two electronic systems). In both cases the ex-
traordinary Hall effect must arise from some spin-
orbit interaction, either direct in the first model,
or spin-other-orbit interaction in the case of two

electronic systems. Moreover, the diversity of
the possible scattering processes led to a great
number of papers, but none of them yielded good

agreement with experiment, the theoretical re-
sults being often several orders of magnitude too
small. This failure is probably ascribable to the

extreme complexity of ferromagnetic systems
at finite temperature and to the lack of knowledge

on the band structure of these materials.

The leading idea of our work is that a trans-
verse conductivity should also exist in a magne-
tized semiconductor and the theory in this case
should be much simpler since the electron wave
functions in these materials are well known and

their band structures have been extensively stud-
ied. The experimental difficulty, however, is
that there is no spontaneous magnetization and the
spin-dependent Hall effect must be separated from
the much larger ordinary Hall effect. In a pre-
liminary experiment, we have shown this to be
possible by using a spin-resonance method. '

At the same time, some theorists have worked
out the theory of the spin-dependent Hall effect
in direct-gap III-V semiconductors. " " It falls
under the category of the theories with a single
electronic system and mostly confirms the validity
of the pioneering work of Luttinger. ' The purpose
of the present contribution is to report an experi-
mental study of the spin-dependent Hall effect in

some of those simple nonmagnetic systems, thus

providing an unambiguous check of the theory.
In Sec. II, we recall the theoretical background

relevant to semiconductors. The theoretical re-
sults, usually obtained from lengthy caLculations,
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are shown to bear on a very simple physical con-
cept. In Sec. III, we present the experimental
study of the spin-dependent Hall effect in n-type
indium antimonide, which is a direct application
of the theory given in Sec. II. In Sec. IV, we con-
sider the spin-dependent Hall effect in n-type ger-
manium. This case is most favorable experimen-
tally, but it requires some extensions of the theory
because of the peculiar aspects of the band struc-
ture of this semiconductor.

II. THEORY FOR A DIRECT-GAP III-V SEMICONDUCTOR

We first recall the band structure of a III-V
semiconductor and give the expressions of the
wave functions of the conduction band. Then we
consider the matrix elements of the position oper-
ator r, which permits us to introduce the physical
concept of the transverse displacenzent of a wave
packet. This concept will be shown to be the clue
to the intuitive comprehension of the spin-depen-
dent Hall effect.

iSP 2 1
u-„. =also& —+ k lRo&3' E~ Eg+ 6

+z —— 2S (kx lRo&),
E~ E~+ 4

(2)
with

—1
1 E 3E~ +4E~ 5+2
2 E, (3E, +2a)(E, +a)

here S is the spin operator and lRo& is the vector
of components lXo&, l

Y'o&, lZo). The matrix ele-
ment (s lP„lX) has been noted iP The. band index
in uk, has been omitted, since we are concerned
only with the conduction-band wave functions.

B. Matrix elements of r: Transverse displacement

It has been known for a long time that the matrix
elements of r between Bloch states can be form-
ally separated into two parts, by performing an
integration by parts'" "

A. Band structure and wave functions for a III-V semiconductor

The band structure of a III-V semiconductor ex-
hibits a direct gap, located at the center of the
first Brillouin zone (k =0)." The eigenfunctions of
the crystal Hamiltonian can be chosen of the Bloch
type:

ik f'

4nta = In%a e

where n and o are, respectively, the band and spin
index, and u„k, has the lattice periodicity. At the
point k=0, the conduction-band Bloch functions are
s-like (u„= iso&) and the valence-band states
(lXo), l

l'a), lZo)) are P-like. The valence-band
degeneracy is partially lifted by spin-orbit inter-
action. Hereafter we call E, the band gap and 6
the spin-orbit splitting of the valence band. The
expressions of u„k, near the k origin may be de-
rived by k p perturbation theory from the k=0
wave functions and energy levels. " If one takes
into account only the lower conduction band and
the three upper valence bands, the calculation may
even be carried out exactly. The neglect of other
bands is generally a good approximation, especially
in InSb, where the band gap is much smaller than
the other interband spacings. The resulting u„k
have been given by Zawadzki'"; since in our case
the Fermi energy E~ is much smaller than E~, we
keep only the terms up to second order in k; the
periodic parts of the Bloch functions for the con-
duction band then become

d1«k' k'a

d3k

We suppose the function f(k) to be localized in the
Brillouin zone around some mean wave vector E.
We can thus write

up, (r) = uk, (r) +(k —k) [0puk, (r)]q (5)

By inserting Eq. (5) into Eq. (4), the expression
of 4 becomes

where Q is the volume of a unit cell. In the case
of plane-wave states (free electrons), the second
member of Eq. (3) would reduce to its first term
("plane-wave part" of r). The second term, here-
after noted as R, arises from the periodic part
of the Bloch function ug and is usually called
"periodic part" of r.

Some authors have proposed that R corresponds
to a "polarization" of the wave function inside a
unit cell."'" This picture is to our sense unsat-
isfactory. In fact, the physical meaning of R may
be evidenced by considering a wave packet rather
than plane-wave states. Although theoretically
equivalent, the former point of view provides
better insight to the problem.

We therefore define a wave packet by the develop-
ment of its wave function along the basis Bloch
states
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g =JG(r) u), (r)+(1/i) [Vt, u), (r)J), )=, [V, G(r)]]e'"',
(6)

where

(:(R= ff .f())"'" "'
is the wave-packet envelope function. In the case
of free electrons [u)„(r) —= 1], the expression of 4

eP
would reduce to G(r) e'"'. The influence of u(,
is double: First, 4 is multiplied by u)„(r), a triv-
ial result; to this level there is a "polarization"
of the wave function inside a unit cell; however,
the envelope function is unchanged and the average
value of r for the wave packet is not affected. Sec-
ond, an additional term appears in 0; this term
is proportional to V-, G(r), and thus results in a
disPlocement of the enveloPe function. Taking this
term into account, the average position of the
wave packet is modified by the quantity

I R.VG (I)
I I

I i

I I

I I R
I I

FIG. 1. Displacement of a Bloch el.ectron. For free-
electron states the wave-packet envelope function would
be G (r), the Fourier transform of f (.k +k). The exis-
tence of the periodic parts of the Bloch functions yields
a further contribution —R' VG (r ), which is seen to pro-
duce a shift R of the wave-packet envelope function.

R =~ +key VkQk (7)
time dependence of f(k), which is given by

This corresponds exactly to the previously men-
tioned periodic part of r, which then appears as
a displacement of the center of mass of the wave
packet, and can be greater than a lattice constant. "
(See Fig. 1.)

In the case of a III-V semiconductor, the value
of R can be obtained by carrying in Eq. (7) the ex-
pression of the periodic part of the Bloch function
u)„[Eq. (2)J. The result is

R=~Sxk or Vk&&8=2AS, (6)

with

1 1 g8 @'~ 2E
3m' E,' (E, +~)' 2 m E,(E, +a) '

This displacement is transverse (i.e. , perpendicu-
lar to the wave vector k), proportional to the spin
S and to the spin-orbit interaction; this is stressed
in Eq. (9) by the presence of the factor (2 —g*) in
the expression of X.

C. Spin-dependent Hall effect:

Displacement contribution (~r)) 1)

The transverse displacement of a spin-polarized
electron provides a straightforward contribution
to the extraordinary Hall effect. Let us consider
a polarized electron (S ~j z) in an electric field E
(E ~~x) and neglect the collisions. This would cor-
respond to the hypothetical case of an ac electric
field, of frequency (o/2)) much larger than the
momentum relaxation rate 1/r ((or» 1).

The motion of the wave packet is described by the

ik = „f(k)+p eE(koIrIk'o)f(k') .

N = f(k)+eE„X+i f(k) . (10)sf (k) I'k' . B

at 2m* 8k,

The transverse velocity of the wave packet can be
expressed as a function of f(k) and Bf(k)/Bt,

dy d
dt dt

*k Y~i k

fff s)=(""aa ) f'"'

( ) (~
. 8 Bf(k) d')!

Bk, B t (2)))'

By carrying the expression of Bf(k)/Bt [Eq. (10)]
into Eq. (11) it gives

(11)
If f (k) is localized on the scale of the first Bril-
louin zone, this reduces to

dy eE„&Y 8X
dt h ~k„&ky (12)

Therefore the application of an external electric
field results in a non-null transverse velocity of
the electron. This yields a transverse conduc-

Here —e is the electron charge (e&0). From the
expression of the matrix elements of r in the basis
Bloch states, this can be written
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tivity

ne 4p n8 ~Y
aa„ek (13)

The first term in Eq. (13) can be identified as the
time va, riation of Y when the electron is accelera-
ted by the electric field: Starting from the clas-
sical equation hdk„/dt = —eE„, a naive reasoning
would give dy/dt= dY/df =(- eE„/h) BY/Sk„; hence
o'„„=(ne'/h) & Y/sk„. In fact, the occurrence of X
in the matrix elements of the perturbation eE r
provides an extra contribution o',„=—(ne'/5) &X/&k„
leading to the final Eq. (13). This result is phys-
ically satisfactory, since it depends only on VgxH,
and is thus phase invariant (see footnote 21).

In a III-V semiconductor, using Eq. (8), Eq. (13)
reduces to

o,„= X(2S,) .

If one defines a transverse mobility by 0',„=net.,„,
then

A typical order of magnitude is obtained with the
band parameters of InSb; in this case p.,„=160
cm'/V sec for a spin-up electron.

D. Displacement effect". Role of the collisions (mr &&1)

For a de electric field, the problem is far more
difficult and has been the subject of many theo-
ries. ' '" The simplest formulation has been
given by Nozieres and Lewiner. " Here we sum-
Inarize their results and show that our concept
of displacement of the wave packet provides a
simple interpretation for the various terms, whose
physical significance was, until recently, obscured
by the high degree of complexity of the calcula-
tions.

The transverse conductivity, as given by
Nozieres and Lewiner, is the sum of six terms":

OyX = ~ yX+~ 3X
—O'3X —O3X —&yX —OyX (15)

limiting ease +~ +& 1, on
and o''„=o'„' =a'"„" thus four among the six terms
cancel each other, leading to a transverse con-
ductivity opposite to the collisionless result [Eq.
(13)]. The first two terms in Eq. (15) are those
previously encountered in the case ~~»1 and are
due to the transverse drift of the polarized elec-
tron when accelerated by the external electric
field. The two following terms in Eq. (15) are
physically similar: Namely, they arise from the
slowing down of the electron during a scattering
event and can be interpreted as a sudden side jump
of the wave packet, as was emphasized by Berger. '9

o,„=—(ne'z/5) (28,),
l „„=—(e~/e) (2SJ .

For a given material, if the resistivity p is

(16)

(17)

Since the system is stationary, one expects the
effect of scattering to cancel exactly the effect
due to the acceleration by the electric field. This
is actually verified and to this level the final
transverse conductivity should vanish, a difficulty
which was pointed out by Smit."

This misleading result is obtained because the
above reasoning is somewhat naive: It implies
that the electron was initially at rest and that its
velocity arises only from the acceleration by the
external electric field. In fact, the electrons are
distributed in k space and everyone of them under-
goes a, side jump 2AS&&k upon a scattering event
with momentum change &k. In the absence of ex-
ternal electric field, the distribution function
(either Fermi or Boltzmann) has spherical sym-
metry around k=0, and the sum of these side
jumps gives zero contribution to the electrical
current. When an external electric field is ap-
plied, the spherical symmetry is broken and a
twofold contribution results.

First, because of the longitudinal shift —eE v/5
of the distribution function, the sum of the side
jumps of all the electrons no longer vanishes; this
yields the above-mentioned contribution -o„'„-0~
to the transverse conductivity.

Second, because of the energy term eE r in the
Hamiltonian, a transverse shifting of the distribu-
tion function occurs, as a consequence of energy
conservation upon scattering {see Fig. 2). As
shown by Nozieres and Lewiner, this transverse
shift of the distribution function provides a further
contribution —o',„—o',„[the last two terms in Eq.
(15)].

W'e have represented in Pig. 3 the time variation
of the transverse position of an electron. Figure
3(a) corresponds to the incomplete result and zero
transverse conductivity. Figure 3{b) corresponds
to the final result; the side drift during the accel-
eration by the electric field is compensated by the
nonzero average value of 0, due to the transverse
shift of the distribution function. In this picture
it might appear that only the side-jump contribu-
tion remains. ' Actually, the six terms in Eq. (15)
are identical (with various signs) and one may
argue that the eaneellations occur from different
manners. In any case, one cannot ignore the side-
drift contribution, since it becomes dominant in
the limiting case ur» 1.

The final result in the case &uT« 1 [Eq. (15)] is
therefore the same as in the opposite limit [Eq.
(13)], except for the change of sign:
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side-jump parallel to F:
the transition probability
from k~ is reduced !

i (k~) increases

&&i (aj Incomplete result

side-drift stele "]UNp

It)) Final result

Side -JUrAp

OS
side-jump antiparallel to E-,

the transition probability

from k& is enhanced;

t (N~) decreases

FIG. 2. 71RQsverse shift of the Nstx'ibUtioQ fUxlctioxl
RQd the displacement effect. The cix'cle drawQ 16 full
hne schematizes the distribution function f (k), shifted
from ~ilibrium by the trivial quantity h%„=-eE &/~,
As shovfn iQ the figure, the eiectx'on side)utQp QpoQscat-
tering causes R ch~e in potential energy, which re-
sults im. a further shift of the distribution function h%~
= PAs @x Z)m*/S. The dashed circle sohematizes the
final (stationary) position of f (rt).

changed by varying the temperature or impu»ty
content, the transverse mobility should remain
constants and lf @ is unchanged~ the RnoxQRIGQS

Hall constant B,„h slodube proportional to p', a
behavior often observed in ferronm~etic metals. ' ~

E. SRC% -sc8ttcAHN colltflbQtioQ to the extFSoi'diAagy 888 cNcct

A second type of contribution to the extraordinary
Hall effect 18 due to the spiD-orbit corrections to
the matrix element of the scattex'ing yotenti. al,

(kc iVik'c) = V-„-„,[1-fk(kxk') I. (18)

Here the scattering potential V has been assuxoed
to be slowly varying GQ the scale of a unit ceB
and, the spin-dependent terms have been limited
to the lowest ordex ones in k and k'.

Using this expression fox' the matrjx element of
V, the transition probability Pl,~ k.~, vzhen calcu-
lated'to the second Born approxiIQation, involve8
spin-dependent terms of the form (kxk') ~ 5. The
Qet result 18 a left right asymmetry Gf the scatteI'-
ing cross section (skein sc««ring). The corres-
ponding contribution to the extraordinary Hall
effect has been calculated by Leroux Hugon and
Ghazali, 23 taking for V a scx'eened Coulomb poteQ-

FIG. 3. Motion of an electron (schematic). 7'he figure
shows the time variation of the transverse position of the
wave packet. The curve in (a) corresponds to the IQcoIHi.

pf.ete resUIt &smit, see Ref, 3); the side drift of the vfave
packet i.s compensated by the fast side jump during the
scattering event. When the transverse shift of f %) is
considered (see text), a further contrjbution resUlts Rnd
RQ average electron behaves as sho~ iI1 g3),

tial with arbitrary screening parameter b = l/v
= 4A'ss/has. The anomalous Hall angle () is the relevant
pRx'ametex' fox' this effect, since it. does Qot de-
pend on the impurity content (which should lead,
in principle, to a behavior R,„ccp). The result for
uQlt spin polarlziatlon 18

where the sign is plus for x"epulsive potentials and
miQu8 for attractive ones. The dimensionle88
quantity J 18 R fUIlctlon of the Screening parameter
l/v:

Jc F(v, X)dx
ln(l+ i/v) —(i+ v) '

z'(z's+ 2v) (x + p, )'Is + z
(z'+ v)(x'+ 8)'~s (z'+ t')"'-z

The anomalous HRQ angle appears as the ratio of
the displacement iH i at the Fermi level to some
characteristic length of the range of the potential.
One might wonder &out the possibility for higher
Born approxi, mations to modify the above value of

These corxections are obviously small in the



limiting case 1/v» l. In the opposite limit I/v«1,
the calculation of Lewiner et aL." shows that the
lowest Born approximation gives in fact the exact
result. Therefoxe the above expression for 4 gives
hopefully the right order of magnitude in the whole
range for I/v.

In the ea,se of a weakly polarized electron Fermi
gas (P «1) the anomalous Hall angle becomes

The factor f, of order unity, arises from the
energy dependence of the transvex se mobility
associated with the skew-scattering effect [f= 1
+ ';(Z, /p, g „)8{p,g„)/8E] Ade. tailed discussion of
this "statistical factor" has been given elsewhere. '~

III. EXPERIMENTAL STUDY OF THE SPIN-DEPENDENT
HALL EFFECT IN n- TYPE InSb

In a III-V semiconductor there is no spontaneous
magnetization and a magnetic field of several kilo-
gauss is required to obtain a complete spin polar-
ization. But, in such a high magnetic field, the
normal Hall effect is very large (8„=1 for B = 10
kG and p, = 10' cm'/V sec). The measurement of
the anomalous Hall effect (8„=10 ') is thus im-
possible by the classical dc method. The only way
to perform this measurement is to act on the spin
polarization while leaving the other parameters
unchanged. The spin resonance of conduction elec-
trons is the key to perform this experiment.

A. Choice of the material and experimental method

The choice of the material is limited to the few
semiconductors where the spin resonance of con-
duction electrons has been observed. Moreovex,
in order to obtain a spin-dependent Hall effect as
large as possible, the gap E~ must be small and
the spin-orbit splitting 6 large. Indium antimonide
seemed to us a good candidate to this expeximent.

For InSb the band parameters are E~ = 0.235 eV
and 4 =0.9 eV; the effective mass is rn*= 0.0136m
and the effective g factor g* = —51.4 at the bottom
of the conduction band. " The predicted value for
the transverse mobility associated with the dis-
placement effect is p.,„= —160 cm'/V sec for unit
spin polarlzatlon. The anomalous Hall a,Qgle a,s-
sociated with the skew-scattering contribution
depends on the electron concentration; for a typical
concentration n=10'~ cm ' and a mobility p, =10~
to 10' cm'/V sec, the corresponding effect is of
the same order of magnitude a,s the displacement
contribution. For the equilibrium polarization in
a magnetic fie1d corresponding to X-band ESH
frequency (B,=130 G), the resulting Hall angle
8„(P) is of order of 10 '.

The most severe limitation to the sensitivity of

~ g (p)
2X'&isgn(Z*)

y & x 8
0

(21)

where E„ is the amplitude of the microwave elec-

FIG. 4. Experimental arrangement. Near resonance,
the magnetization M precesses around the applied field
Bo. The product of the microwave electric field E„with
the component I» of M gives a dc Hall voltage along y.
(This figure is taken from Ref. 9,)

the method arises from the long relaxation time of
the energy of the conduction electrons in InSb,
giving rise to hot-electrons effects." Because of
these, the electric field in the sample must not
exceed 0.1 V/cm, which consequently limits the
allowed incident microwave power and the micro-
wave magnetic field 8,. The discussion of the
signal-to-noise ratio and of the experimental
method has been given elsewhere, together with
a report of preliminary experiments. ' Before
giving the results obtained with a series of vari-
ously doped InSb samples, we first recall the
principle of the experimental method.

The experimental arrangement is derived from
that of Juretschke (see Fig. 4)." The longitudinal
current I„ injected into the sample is an ae cur-
rent due to the microwave eleetrie, field E„.28 An
anomalous Hall voltage ln the y dxrectlon .ls in-
duced by the z component of the rotating magnetiz-
ation (I armor precession around the static mag-
netic field 8,). Since this Hall voltage involves
the cross product I„JI/I, , and both factors vary
with time at the same microwave frequency u&/2v,
it contains a, de component Vd,, that gives a mea, -
sure of the effect. Our samples are sufficiently
thin and resistive to leave unchanged the values
of the microwave fields inside the cavity (see
Appendix) and the expression for V„reduces to



J.-¹CHAZALylEI,

tric field and 3 is the sample length of the y direc-
tion; 8„(P) is the anomalous Hall angle for the
equilibrium polarization P in the field at which the
resonance is performed, and 2g'H, sgn(g*) can be
identified as the in-phase component of the rotating
magnetization ("dispersion" curve). From the
measured value of Vd, , Eq. (21) permits, in
principle, the determination of 8s(P).

8. Experimental procedure and results

Practical measurements of the spin-dependent
Hall effect involve several difficulties. First the
observed signals are rather small (typically 10 '
V on 10' -A source impedance) and must be op-
timized. This requires us to use very thin sam-
ples (50 pm) placed close to the cavity wall, in

order to maximize the ratio 8,/E„As .usual,
the magnetic field is modulated (300 Hz) and a
lock-in detection is used to improve the signal-
to-noise ratio. In some cases, it is of appreciable
help to add a dozen passages on a multichannel
adder.

Second, the determination of 8„(P) from the mea-
surement of Vd, [Eq. (21)] requires a good knowl-

edge of the microwave fields E„and 8,. The elec-
tric field E„ is calibrated by comparing its effect
on the electron temperature with the heating
caused by a dc current of known value. The elec-
tron temperature is monitored by two means,
since both the resistivity of the sample and the g
value are temperature sensitive and can be used
as thermometers. The microwave magnetic field

8, is determined either from the measurement of
the microwave power and quality factor Q of the

cavity, or from the magnitude of the resonance
signal observed on the resistivity of the sample
(see Appendix). The simultaneous use of all these
calibration methods provides an estimated accu-
racy of a 10/0 on the product E,xB,.

Moreover, some difficulties are brought by the

spurious effects associated with electron heating

by energy absorption at resonance (bolometric
effects). These effects are discussed in the Ap-
pendix; the most troublesome is the resonant
Nernst effect, which yields a dispersion signal,
just like the spin-dependent Hall effect. Fortunate-

ly, the magnitude of this signal can, in principle,
be calculated exactly from the measured value of
the dc (off-resonance) Nernst effect; this proce-
dure is used and the calculated Nernst signal ap-
pears generally much smaller than the spin-de-
pendent Hall signal, which warrants the validity
of the measurements.

Our samples were cut from a low-doped com-
mercial ingot (n=Nz& N„= 5X10"cm '). -Various
doping levels were obtained by neutron irradiation
of these samples, following the procedure de-

scribed by Clark and Isaacson. Some samples
were cut in the shape of Hall specimens and were
submitted to classical measurements of the re-
sistivity and Hall constant between 1' and 150'K.
This provides a good measure of the electron con-
centration and mobility. The concentration of
ionized impurities, as deduced from the 40 K
mobility data, is found to be of the form ¹

=n+4X10" cm '. The mobility at 1.2'K is plot-
ted in Fig. 5 versus electron concentration. Our

results are in agreement with the data available
in the literature. '

The other samples were polished and etched
down to a thickness 6= 50 p, m to perform the ex-
periment of spin-dependent Hall effect. The
anomalous Hall angle at the equilibrium polariza-
tion 8H(P) is deduced according to Eq. (21); then

taking for the polarization the theoretical value

P =3k+/4Ez and for the mobility p the measured
value, the transverse mobility can be scaled to
unit spin polarization"' ":

This quantity is plotted in Fig. 6 as a function of

Fermi energy E~ or electron concentration n. It
is negative at low electron concentrations, and

displays a fast variation near n=1.5 &&10" cm '.
For the higher concentrations, p.,*„becomes posi-
tive, but the uncertainties increase in this con-
centration region, because of the higher contribu-
tion of the unwanted resonant Nernst effect to the

observed signal. This is the main reason for the

large error bars in Fig. 6.

r

o~~

/
Zo

I

T=1.2 K

10 10
ELECTRON CONCENTRATION (crn j

FIG. 5 Electron mobility in our Insb samples, The
dashed curve has been drawn through the experimental
points. The full curves are theoretical: pBH is the Brooks-
Herring mobility and pl is obtained using Luttinger's
model (V~~ = constant).
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FIG. 6. Spin-dependent Hall effect in InSb: Compari-
son of theory with experiment. The curves are theore-
tical; curve A corresponds to the displacement contri-
bution alone; curves B and C give the sum of the dis-
placement and skew-scattering effects. The skew-scat-
tering contribution was calculated from the theory of
Leroux-Hugon and Ghazali (curve 8) or from the result
of Luttinger, assuming that the dominant scattering pro-
cess is scattering by impurity pairs (curve C). The
large uncertainties for the experimental points arise
from the difficulty of measuring E„and 8&, from the
rather poor signal to noise ratio, and from the errors in
substracting the unwanted resonant Nernst signal.

C. Discussion of the experimental results

The behavior of p.,*„displayed in Fig. 6 can be
qualitatively understood as follows: For the less-
doped samples (n S 10" cm '), the mobility is low
because of the high compensation ratio N„/ND,
and the displacement contribution dominates the
spin-dependent Hall effect; for higher-doped
samples, the skew scattering increases, cancel-
ing the displacement contribution and changing the
sign of the over-all effect. The signs and order of
magnitude of the predicted contributions are in
concordance with this interpretation.

In order to discuss the results quantitatively,
we must compare the experimental values of p, *,„
with the theoretical predictions

gM„'= —0.9gn =+0.9ez/h . (24)

This implies that the mobility is given by the first
Born approximation

Se
m* 2mN;V'p, (F~)

' (25)

(23)

The first term in Eq. (23) corresponds to the con-
stant contribution brought by the displacement ef-
fect. The second term corresponds to the skew-
scattering contribution; it involves the statistical
correction factor f (f= 1+—', (E~/IJ, 8„)e(p, e„)/8E]
since the experimental case corresponds to weak
polarization conditions. "

We have calculated p, ,*„ from Eq. (23), taking for
p. the measured mobility and for 0„ the value de-
duced from the theory of Leroux-Hugon and
Ghazali [Eq. (19)];f has been taken from Ref. 24.
Since ionized donors are attractive potentials and
ionized acceptors are repulsive ones, the corre-
sponding skew scatterings have opposite signs;
this effect has been taken into account by multi-
plying O„by the factor (ND Nz)/(N-n+N„) =n/N;;
because of compensation, the impurity content N;
in our samples is greater than n (N; = n+4 &&10"

cm '), which decreases appreciably the skew-
scattering contribution.

The curve resulting from our calculation is
plotted in Fig. 6. In the lower concentration
range, where the displacement contribution is
dominant, the agreement with experiment is bet-
ter than 50%, which is considered good in view of
the experimental uncertainties. Thi s agreement,
with no adjustable parameter, sets up an unam-
biguous check of the theories of the displacement
effect.

In the higher concentration range, the experi-
mental points markedly depart from the theoreti-
cal curve. Higher Born corrections in the calcu-
lation of O„are not likely the cause of such large
discrepancies. However, these could have been
expected since in the concentration region
n ~ 4&&10" cm ' the transport properties are not
well understood and multiple scattering undoubted-
ly plays a dominant role. The above theory of
skew scattering is therefore irrelevant to our
case and we must consider the problem of skew
scattering in the multiple scattering regime.

In a localized potential. model (V-„k = V= con-
stant), Luttinger has calculated the skew-scatter-
ing contribution arising from scattering by im-
purity pairs. ' The resulting transverse mobility
p, ,„does not depend on the sign of the scattering
potentials and can be expressed simply as a func-
tion of the displacement contribution" g,„:
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In fact, to be consistent, one should take into ac-
count in the mobility p. the contribution p, MS from
scattering by impurity pairs, which is probably
dominant (i.e. , p„~«gz, ). If Luttinger's result
is corrected for this effect, Eq. (24) becomes"

(26)

Luttinger's model was adapted to our case by
taking for V' the average value of V'-, on the
Fermi surface, i.e.,

e2 2 $2

~e,2k~2 4(l+h)
'

The resulting value for p, l. is plotted in Fig. 5,
together with p qq obtained from Brooks -Herring
formula, "and the experimental points. Owing to
the small value of the ratio n/N;, the corrections
arising from electron-electron interactions have
been neglected. ' The large ratio p, L/p evidences
the dominant role of multiple scattering; its order
of magnitude and concentration dependence are
roughly predicted by the theory of Moore":

¹ 1

QMS

This gives the energy dependence of the ratio
(@Ms/g~)', which permits us to predict the value
of the statistical correction factor f for p,„:

(g m/ V z, ) ~ E' hence f=', for—
The final contribution of multiple scattering to

p, ,*„ is therefore

the search of the spin-dependent Hall effect, and

actually the predicted effect for unit spin polari-
zation is much smaller than in InSb. However, a
great improvement is obtained in highly doped
n-type germanium because there are no hot-
electrons effects: The power admittable in the
sample is much higher than for InSb, and the
spurious resonant Nernst effect is smoothed out.
On the whole, the experimental conditions are
rather more favorable in germanium than in indium
antimonide. Unfortunately, in the ease of german-
ium, the simple theory of the anomalous Hall ef-
fect in a direct-gap semiconductor does not apply
directly. %'e first develop a straightforward ex-
tension of this theory, taking into account the
peculiar aspects of the band structure of german-
ium~ then we present anci ctlscuss our expel lmen-
tal results.

A. Band structure and wave functions of germanium

The energy minima of the conduction band of
germanium are located at the boundary of the first
Briilouin zone in the [111]directions (L points).
In order to build the theory of the spin-dependent
Hall effect in n-type germanium, we must thus

look for the wave functions in the vicinity of such
a point.

At the I point of the first Brillouin zone, the
conduction band is s-like and the two upper valence
bands are P-like. 3' Their wave functions are
linear combinations of ~Xa& and

~
Y'a& (the Z axis

has been choosen along the [111]direction). The
~
Sa& state is much deeper and will not be con-

Sidered here. The two upper valence bands are
separated by the spin-orbit splitting 4. Their
wave functions are

~MS gMS MS e~
px px h

(27)
-'~2(-&-&I') ~+ & for the upper level

—,
'

W2 (X —i Y) ~

—
& (energy E~), —

This quantity has been computed taking for p, the
measured mobility. The corresponding curve is
drawn in Fig. 6. The agreement with experiment
is good in view of the roughness of the model.
For higher concentrations (na4&&10" cm '), the

model (V~ k
= V) becomes very bad and our calcu-

lation overestimates the skew-scattering effect;
moreover, the multiple scattering contribution to
the transport propel ties decreases. This ex-
plains the fact that the experimental points ap-
proach the curve obtained from the theory of
Leroux-Hugon and Ghazali.

IV. STUDY OF THE SPIN-DEPENDENT HALL EFFECT IN

HIGHLY DOPED n- TYPE GERMANIUM

Because of its rather low spin-orbit coupling,
germanium might seem at first sight unsuited for

~ ~) ~
+ & for the lower level

~g( X;I)~ ) (energy-E —&).

Here E~ is not the semiconductor gap (0.74 eV)
but the gap at the L point; E~ =2.08 eV and &

= 0.19 eV."
Taking into account this reduced number of

bands, k'p theory has been applied to the deter-
mination of the effective-mass tensor and effec-
tive Landh factor of the conduction band. " The

accuracy of the method appears to be of the order
of 10%. We have explicitly calculated the periodic

parts of the Bloch functions for the conduction

band, up to second order in k~~p perturbation. The

result may be expressed as
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u-„, =a(sv)

+ k~ R~cr
m g g +

Sz ~ k~x R g

(28)

where k~ =(k», k„, 0) and ~R~) =(~~),
~
I'), 0). As

in the case of a III-V semiconductor, iP is the
matrix element (s ~P» ~X) and a is a renormaliza-
tion factor.

1 E 2E +2E 6+6
2 Ez (2E + b, )(E z6+)

The displacement R of the wave packet can be
deduced from these wave functions according to
the general definition [Eq. (7)] given in Sec. II:

P
cfR=i, u* V'], gg, =A. Szxk~ =A. Sz~k~

g ]. a

m' E' (Z +k)')

1- 8(i @ 2~'+ ~
m z, (z, +~)

The expression of R is very similar to that given
in Sec. II, but now it involves only the Z compon-
ent of the spin and the corresponding g factor.

B. Theory of the spin-dependent Hall effect in germanium

result is

pr»=-2 —Sz =-0.60 cm /Vsec for Sz =+ z.eA, 2 1

h

(30)

ke (4»ee, )'k' (kz)'[[ ~&r, =Wzz =
4

m// mg g

(31)

where Z~ and Jl. are dimensionless functions of
the screening parameter 4(kz)2((/A2z (in our case
Jr= J~ = 10 '). To first order in A, , the matrix
element of the scattering potential becomes

(ko
~
V

~

k'o) = V], [,.[1- iX(kx k') Sz] (32)

and the transition probability can be written

2g= —&~6(E[ E])-

The calculation of the skew-scattering effect is
far more difficult because integrations over con-
stant-energy surfaces lead to nonelementary func-
tions. We have performed these integrations nu-
merically after using the approximations (kz)2~
» (kz)([ and kz» (4)~ [here (As)((=2m((Ez/1f',
(kz)2~= 2m~Ez/5', and kz is the inverse screening
length]. These approximations were shown to be
reasonable for ionized impurity scattering in the
whole metallic concentration range. " To zero
order in A. , the mobility tensor was calculated
within these approximations ':

ke (4zee, )'k' (Az)z((
O'T O'XX I YY 4 ~ T p

l, J.

From the expression of R, the spin-dependent
Hall effect can be derived in the way presented in
Sec. II. However, one must be careful since, for
a given valley, the electron properties are aniso-
tropic. Within the framework of our approxima-
tions, only the Z component of the spin matters,
and the transverse conductivity has to be observed
in the XY plane, the other configurations leading
to a null result. Therefore, we first calculate
the spin-dependent Hall effect for a given valley
in this optimum geometry, then we consider the
four-valleys system as a whole to obtain the final
result.

1. Spin-dependent Hall effect in the optimum geometry

The displacement contribution to the spin-de-
pendent Hall effect in germanium is still given by
the general formula, Eq. (16),

eX 8Y 8X~rx=- ~

but now we must give R its new value XSz &k. The

(kz)z m, e'4~~ foS (34)

One should note the similarity of this formula with
the corresponding Eq. (19). Here the numerical
integral 8' is different from J in Eq. (19); it is
plotted in Fig. 7 as a function of the screening
parameter 4 (kz)2[(/kz. For ND = 3X 10"cm ' and
T=O'K, Eq. (34) gives 8„.=-0.26X10 4.

In the case of Fermi statistics and weak spin
polarization, the skew-scattering effect involves
a correction factor f=1+3(E /p8„z)[S(l], 81„)/eE],.
the same as in Sec. II. In the region of interest

2iik — Jlf"ti &ii &i"i()(ki -ki)4m'

X [ikXk') + (k'Xk") + (k"Xk)]'Skd'k"
)

(33)

The terms (k'xk") and (k"xk) disappear upon
integration over k". The resulting skew-scatter-
ing angle for ionized donors is
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FIG. 7. Numerical integral J' for the skew-scattering
effect in germanium I. see Eq. |'34)l.

for n-type germanium, one has approximately
)a e„~E; hence f =4a-.

2. Spin-dependent Hall effect for the whole four- valleys system

Given the transverse mobility p, ~ for S~,=+ &,

the mobility tensor for the ith valley can be writ-
ten in a simple manner, using the operators Pz,
(projection along Z, ) and (Sz, x) (cross product
with the Z, component of the spin):

I I=I r+(I & Ir)Pi +I-,(2S~X) (35)

Because of the small value of the intervalley
scattering time (T,„=10 " se. c in As-doped Ge) an
electron is scattered from one valley to another
without its spin being changed ( «TT, ). ' 44TIhe

mobility tensor is therefore the average value of
the four tensors Ia, (i =1, 2, 3, 4). Using g,.p&= a~,

this gives

P I (2P'r + OL) + I I g(2S'&) a (36)

where the anisotropy has completely disappeared.
For the displacement effect, the transverse

mobility thus becomes

Ia„„=ap»=-0.20 cm'/Vsec.

For N& = 3x 1017 cm 3 and T = 0 R, this gives

e'"'=e /2 2--O 12&&10-4

For the skew-scattering effect, the result involves
the mobility anisotropy K= pr/Iaa, .

gfina1 1 P T ss g
&r

6)

3 p, 2p. g+ pl 2Ã+ I

ln the case of germanium the principle of the
experimental method is unchanged. Because of
the high microwave power permissible in the
sample, the signal-to-noise ratio is larger than
for InSb, which permits us to perform the ex-
periment at higher temperatures, up to 7=25'K.
On the other hand, the absence of heating effects
suppresses a means of calibrating the microwave
electric field in the sample, which results in a
higher uncel talnty on the absolute value of the
measured effect. For this reason the experiment
was performed on a single sample, at different
temperatures. The absolute uncertainty is esti-
mated to + 30%, but the relative uncertainty be-
tween two measurements is much better.

Arsenic was choosen as the donor impurity, be-
cause in this case the spin resonance has been
extensively studied ""and the resonance line is
particularly narrow. ' The donor concentration
must be as small as possible to maximize the
equilibrium polarization P =3A&o/4'. However,
ND should not be below 3~ 10" cm ' since in this
concentration range (intermediary zone) the resis-
tivity becomes very high at low temperature and
the one-electron model is questionable.

Our sample was cut and thinned down to 50 p.m.
The two adjacent slices were submitted to clas-
sical Hall and resistivity measurements at vari-
able temperature from 1.2'K up to 300'K. The
deduced electron concentration is n =ED = 3.1
x 10" cm '. The drift mobility for the two slices
is plotted in Fig. 8 versus temperature. The
theoretical mobility, as deduced from Eqs. (31),
is 10' cm'/V sec, which is 10 to 100 times larger

I
~~%00
E
Q W

~ a a I ~ a ~

a I I a I aal~ I I I a aaal~ 100 10010
TEMPERATURE (oK )

FIG. 8, Measured mobility in our germanium sample.
The mobility is deduced from the resistivity measure-
ments, assuming temperature invariance of m. The two
curves in the figure correspond to the measurements
performed on the two slices adjacent to our main sample.
The small separation between these two curves is a
check fol the ingot homogeneity.
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than the experimental results. This could be ex-
pected, since in our concentration range kz» (kr)~
and the first Born approximation fails. Moreover
multiple scattering and electron correlations
probably play an important role.

Qn the central sample, both spin-dependent Hall
effect and classical ESR measurements were per-
formed. Two experimental curves are reproduced
in Fig. 9. The equilibrium polarization, as de-
duced from the magnitude of the ESR signal, is
plotted in Fig. 10 versus temperature; above
2.5'R it follows the theoretical law"
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Iu) F'„,(E„/ks T)
(39)

where E,~,(Z~/ksT) is the Fermi integral of order
Below 2.5'K the equilibrium polarization in-

creases with decreasing temperature (P ~ 1/T).
This type of behavior has already been observed
in highly doped silicon"'~' and arises from im-
purity band effects.

The anomalous Hall angle for the equilibrium
polarization 8„(P), as deduced from the magnitude
of the Hall signal [Eq. (21)j, is plotted in Fig. 11
versus temperature. The change of sign for 7.'

= 10'K is quite similar to the change of sign ob-
served in InSb at the electron concentration n
= 1.5X 10" cm ' and it probably bears the same
interpretation.
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FIG. 9. Typical experimental curves for germanium.

The higher curve is a conventional ESR signal (absorp-
tion derivative). The lower curve is a signal of spin-de-
pendent Hall effect (dispersion derivative). Both signals
were recorded in 50 sec.

FIG. 10. Equilibrium spin polarization in the magnetic
field Bp. The curve is theoretical [see Eq. (39)). The
experimental points are deduced from the ESR measure-
ments. Since no absolute measurements were performed,
the vertical scale for the experimental points has been
adjusted to fit the theoretical curve in the higher tem-
perature range.

D. Discussion of the experimental results

A quantitative comparison of the experimental
results with the theoretical predictions has been
attempted (Fig. 12) by plotting versus temperature
the quantity p, ,*, = p, I„I(-P) /P, where p, , P, and

&z(p) are the measured quantities. Below 2'K,
p,*„reaches a nearly constant value -0.17 cm'/V
sec, which corresponds, within 1590, to the calcu-
lated contribution of the displacement effect
(p.„,= -0.20 cm'/V sec). This agreement, rather
better than it might have been expected in view of
the experimental uncertainties, constitutes a new
check of the theory of the displacement effect.

At higher temperatures, p, „*„increases and
changes sign. This behavior is ascribable to the
growth of skew scattering, due to the increase of
mobility with temperature. By comparison with
the case of InSb, this interpretation is quite likely;
however, a calculation of the corresponding con-
tribution is hardly feasible, since the lower Born
approximation used in Sec. IV B has been shown to
be an improper approach to the transport prop-
erties of this sample, and the multiple scattering
contribution is probably the dominant process.
(As the observed mobility is much smaller than
the calculated one, the calculated skew-scattering
effect is only a few percent of the observed con-
tribution. )

Luttinger's result on the skew-scattering effect
by impurity pairs cannot be used here and the
equivalent calculation in the case of germanium
would be very complicated, because of anisotropy.
With the lack of a quantitative theory, we may
remark that the order of magnitude seems right
(by analogy with InSb); moreover, the temper-
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ature dependence, which occurs in the range k~T
& EE, can be accounted for within a very simple
model.

The energy dependence of the skew-scattering
contribution in the case of InSb was given by
p„"„'~(p/p~)'; at low energies, where multiple
scattering dominates the transport properti'es,
this gives p. MS~ (Iu„, /p~)'|XE'; at higher energies,
p, = p,» which leaves the skew-scattering contri-
bution nearly constant. This type of behavior can
be sketched by assuming two kinds of carriers.
The low-energy carriers (E& E,) have a low mo-
bility p, o and give zero skew-scattering contribu-
tion. The high-energy carriers (E&E,) have a

0
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FIG. 11. Spin-dependent Hall. angle for the equilibrium
polarization in the magnetic field B0, The continuous
curve has been drawn to guide the eye through the exper-
imental points.

high mobility p,
' and give a skew-scattering con-

tribution p.,'„ to the transverse mobility p.,*„.
Whether or not the two kinds of carriers are
ascribed to different bands ("impurity band" and
"conduction band" ) is rather a matter of vocabu-
lary.

In the case of our germanium sample, we sup-
pose 8+& E, . Then at zero temperature, all the
carriers are of the first kind and IU, ~„corresponds
to the displacement effect alone. When temper-
ature is raised the concentration n' of carriers
of the second kind increases because of thermal
excitation to the energy E„' this explains the
growing up of p, ~*„. In the limiting case k~T&&E+
the concentration n' of carriers of the second kind
ls

p(E)f(E) dE

dE
= p«c ) (s-s,)ia,r8

C

The polarization P' of these carriers is given by

(40)

h~ Sn' K~ p(E)
8E 2 ( — ) gp'

The over-all transverse conductivity is the sum

of the displacement contribution and of the skew-
scattering of mobile carriers. The resulting value
of p~ is

&yx =&yx+ ~yx p

5 (up(E, ) 1
=&~+ &ox 2' e(z;sr)gasr+ 1

For an unperturbed electron density of states, the
ratio h~p (E,)/2nj would equ'al 1. Although it is
questionable, we assume this holds in our case.
The corresponding curve for p. „*„is drawn in Fig.
12 and is se n to agree remarkably with exper-
iment. The experimental value -0.17 cm'/V sec
has been tak..n for p, ,„, since anyhow it agrees
with theory within 15~/o, and the error is most
probably due to the calibration. The skew-scat-
tering contribution p, „', and the activation energy
E, —EE have been used as adjustable parameters.
The best fit is obtained with p. ~I„=-2.6 p, ,„, the ex-
pected order of magnitude as compared to InSb,
and E, -E~= 6.6'K. This value can be used to fit
the longitudinal mobility to the experimental re-
sults
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FlG. 12. Spin-dependent Hall effect in germanium:

Comparison of experiment with theoretical predictions
from our two carriers model. The theoretical curve

corresponds to Eq, (42) (see text).

=p, ,+(p, ' — )p(pE) s ln(l+e &c s&'I a ).kgT -z)n
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The corresponding curve is drawn in Fig. 13. In
spite of the two further parameters p, , and p, ', the
agreement is less good than for p. „*„. ' This could
have been expected since the energy dependence
of p,"„' is probably steeper than that of p. [p,P ~ g'
from Eq. (26)] and the model with two kinds of
carriers results better for p.~~ than for p, .
At any rate, the possible refinements of the pres-
ent model [i.e. , assume some functional dependence
for p(E) and p,"„'(E)]would be of little interest;
any quantitative theory should take into account
electron correlations, which are also the clue to
the anomalous behavior of the spin polarization at
low temperature. "
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FIG. 13. Comparison of the mobility data with theore-
tical predictions from our two carriers model. The ex-
perimental data (full curves) correspond to the measure-
ments performed on the two slices adjacent to our main
sample. The dashed curve is theoretical; the additional
parameters in Eq. (43) have been adjusted (p, 0=160 cm /
V sec and p' = 1000 cm~/V sec) .

V. CONCLUSION

We have presented the theory of the spin-depen-
dent Hall effect in semiconductors in an elemen-
tary way, stressing the physical aspects of the
problem. Two contributions can be distinguished,
although both of them arise from the spin-orbit
interaction in the host crystal, via the admixture
of P states in the conduction-band Bloch functions.
The first contribution, the disPlacement effect,
is due to the transverse displacement of a spin-
polarized wave packet; the corresponding trans-
verse conductivity results from the side jump
undergone by such a wave packet during a scatter-
ing event. The second contribution, the skese-
scattering effect, arises from a left-right asym-
metry of the scattering cross section. The two
effects are generally expected to be of the same
order of magnitude, although the displacement
contribution is favored in the low-mobility sam-
ples.

The existence of these two contributions has

been proved by the experimental study of the spin-
dependent Hall effect in n-type indium antimonide.
In these experiments the spin-dependent Hall
effect was separated from the much larger or-
dinary Hall effect by using a spin-resonance
method. In the lowest-doped samples, the mea-
sured effect corresponds to the displacement
contribution alone, and provides an unambiguous
check of the theory. In the higher-doped samples,
the skew-scattering contribution becomes impor-
tant, but it is mainly ascribable to multiple scat-
tering. A semiempirical theory of the correspond-
ing contribution provides agreement, within a
factor 2, with the experimental results.

In Sec. IV, we have extended the theory to the
more complicated band structure of germanium.
Thanks to intervalley scattering, the anisotropy
disappears, and the theoretical results appear
essentially unchanged. The experimental study
has been performed in a highly doped germanium
sample, as a function of temperature. At low
temperature, one finds the displacement contri-
bution alone, which gives a new check of the
theory. At higher temperature, the skew-scatter-
ing contribution due to multiple scattering in-
creases and changes the sign of the over-all ef-
fect. This contribution is hardly calculable but
its temperature dependence can be simply under-
stood in a model with two kinds of carriers.

Finally, we feel the interest of the present work
is triple: First, it brings the experimental check
of the theories of the displacement effect, which
hopefully puts an end to a controversy initiated
20 years ago. Second, the experimental method
has proved its ability for measuring very small
spin-dependent Hall signals; the selectivity of
spin resonance could be fully used in the study of
the extraordinary Hall effect in materials with
two electronic systems (i.e. , resonating at two
different frequencies). Last, we have shown the
importance of the spin-dependent Hall effect in
the study of transport properties in highly doped
semiconductors and disordered media. The
measurement of the multiple scattering contribu-
tion to the skew-scattering effect already provides
new information. When the electron mobility be-
comes still smaller than in our experiments, the
Hall angle associated with the displacement con-
tribution should not increase indefinitely. Its
behavior might provide a means of characteriza-
tion of the conduction mechanism.
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APPENDIX: ELECTROMAGNETIC FIELDS INSIDE

THE SAMPLE-BOLOMETRIC EFFECTS

The electromagnetic fields in the microwave
cavity have been calculated by Juretschke. " If
4 is the sample thickness and D the distance be-
tween the sample and the bottom of the cavity,
then the microwave fields inside the sample are of
the form

Vacuum

D I Dielectric

o
vity wa

FIG. 14. Nature of the media encountered by the mic-
rowave fields from the bottom of the cavity.
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(a) The dc electric field generated by the spin-
dependent Hall effect can be deduced from the ex-
pressions of E and H.

=kfte(P) M Re[(i X' -X")E:H,].
0

In our case, 4 «5 «1/k„ I/k» then

(46)

with k, =&/c@and k, =k, v' e, , where e, is the di-
electric constant of medium I (see Fig. 14). The
wave vector k', inside the sample is complex be-
cause of absorption by Joule heating and by spin
resonance; k, = (I+X'/2+iX "/2)(1+i)/5, where 6

is the skin depth, and p' and p" are, respectively,
the real and imaginary parts of the magnetic sus-
ceptibility of the sample at the frequency (()/2z.
Moreover we have supposed o»~6040 and g', X"«1.
The magnetic field h in Eqs. (44) can be expressed
as a function of the magnetic field H. , of the in-
coming wave in region III:

E '=6) 2H,„,t(.o(d(D +z ). , 2Dz
M [1+4(Dt/6')'] " '

6

(47)

This quantity may be averaged over z inside the
sample; then if one uses Dh «O', H,„,. = 2h =H„
and

~ &„~ = t(.,(oh (D+ &/2), this gives

E(( (E ( g ( )
2X Hysgn(g*)

y 2 x fg P
0

(48)

(b) The power dissipated in the sample per unit
volume is given by the first derivative of the
Poynting's vector P = —,'Re(E~H, ); it gives

dP 2 P.0(de ' [2(D+z)'+O'X" +4z(D+z)X'].

(49)

The first term in the brackets corresponds to the
Joule heating by the microwave electric field.
The resulting contribution to -dP/dz can be writ-
ten m&E„'(z). The two other terms in Eq. (49) are
due to the energy absorption near spin resonance.
This energy, collected by the spin system, is
transferred to the kinetic energy of the electrons,
then to the lattice. Owing to the long relaxation
time (T,= 10 ' sec) of the kinetic energy of the
conduction electrons in InSb, the electron temper-
ature is modified by this heating, which gives rise
to many effects on the transport properties (the
so-called botomet~ic effects).

A typical bolometric effect is the variation of
resistivity near spin resonance; this effect arises
from the temperature dependence of the mobility.
It has been used as a means of detecting the res-
onance52; in our experiments, the measurement
of the corresponding signal provides a calibration
of the microwave magnetic field 8,.
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In the method used to measure the spin-depen-
dent Hall effect, there is no injected current in

the sample, and the only bolometric effects can
arise from the thermoelectric voltages, due to
inhomogeneous Joule heating by the microwave
electric field E„. These thermoelectric voltages
are associated with a thermoelectric field e of the
form e =AV(bT), where b T is the increase of
electronic temperature due to the heating by E„,
and A, is a transport coefficient. When additional
energy is absorbed near resonance, the resulting
increase of electronic temperature 6T produces
a variation &e of the thermoelectric field:

dA
6e =AV(6T)+

&
6TV—(r T) =6e, +6e, .

The two terms in 5e correspond to two types of
effects: The first ones are proportional to the
incident microwave power P, and the second ones
to I".

In our experiments, the largest contribution to
e is provided by the Nernst effect [e,= QB,d(r T)/dz]
and both types of resonant effects have been ob-
served. The term 6e, is proportional to d(6T)/dz,
i.e., to 4(D+2z))t' from Eq. (49). The term 6e,
is proportional to 6T, i.e., to 6'X" [the term pro-
portional to X' in Eq. (49) is negligible in this case
since 6, D «6]. The spurious signal associated
with 6e2 is not very troublesome since it has the

shape of an absorption curve, whereas the Hall
signal is proportional to dispersion; moreover
Oe, is proportional to I, and can be eliminated
by operating at low microwave power. The
spurious signal associated with &e, is more
embarrassing, since it behaves quite similarly
to the studied Hall signal. Fortunately its mag-
nitude can be calculated from Eq. (49) and from
the measured value of the dc Nernst effect e:
Taking the ratio of the gradients of the first and
third terms in Eq. (49), we find

6e, D+ 2z
e D+z

When averaged over z, this gives a predicted value
for 6e, of

6+D
~e~ =e 2X6+ 2D

In analyzing our experimental results, this pre-
dicted value of Dey was subtracted from the ob-
served signal. The susceptibility X' was given its
theoretical value, a somewhat questionable point.
However, the Hall signal was mostly much larger
than 6e„which justifies the use of this procedure.
For higher doped samples (n& 4X 10"cm ') the
two effects become of the same order of magni-
tude, which explains the relatively large uncer-
tainties in Fig. 6 in this concentration region.
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