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Donor and acceptor ions in compensated semiconductors at low temperatures are not completely
randomly distributed —positive and negative charges tend to be closer to each other than allowed by
chance. This gives rise to a kind of screening effect, which is usually taken into account in calculations

by rcplac1ng thc 1on CouloIQb potcnt1al by a Dcbyc-type scI'ccncd potential. %c show that this

replaceIQent is wrong in principle; it leads to a statistical fluctuation of potential which is too small by
a factor of 2 and, at least in the case of small screening lengths, to a distribution of the total ion

potential whose shape is substantially diferent from that obtained in a more fundamental calculation.

A number of experimental propexties of com-
pensated semiconductors depend upon the statis-
tics of the spatial fluctuations of the total electro-
static potential from RB of the ionized donors and

acceptors contained inside the sample exy'stal.
These fluctuations affect mobility and freeze-out
of eax'riers at low temperatures as well as optical
linewidths in, for example, luminescence, impur-
ity absorption and spin-flip Raman seRtterlng.

This paper is concerned with screening at low
temperatures in semiconductors of high purity.
By low temperatures, we mean temperatures T
such that kT is much smaller than the energy dif-
ference between the ground state Rnd first excited
state of a bound carx ier. By high purity we mean
that typical separations of nearest-neighbor im-
purity centers are much greater than the effective
Bohr radius of bound carriers. Under conditions
of low temperature Rnd high purity, it is a very
good approximation to assume that the donor and
acceptor ions present can be treated as a static
arrangement of point charges; our discussion wiB
be based on this assumption. '

The Coulomb potential U of an impurity ion of
charge q, (for definiteness we will consider q;
=+ [e() has the familiar form

U(r - r, ) = qt/e, J
r - r t f,

where x& locates the center of the impurity ion

(taken to be a point charge) and eo is the static
dielectric constant of the hos't lattice. (We will

always be concerned with values of (r-r;~ much

larger than the lattice spacing. )
Because of certain theoretical difficulties asso-

ciated with the slowness of decay of U(s') with r,
it is customary in doing calculations to replace
(l) by the more tractable potential

where t', is some-"screening length" and is inde-

pendent of r.
Although the replacement of V by U', may be

justifiable in some cases, it is not correct in prin-
ciple when the concentration of free carriers is
negligible (the carriers having been localized on
donor or acceptor impurities). Nevertheless, this
replacement is made quite routinely in studies of
compensated semiconductors with very low free-
carrier concentration. ~ 6

Vfe shall show that U, can be understood only as
an average potential —not as an actual physical po-
tential at the point r. A consequence of this in,
fol exanlple~ ionized-lmpurlty-scRtterlng CRlculR»

tions, is that it is not eorxect in principle to cal-
culate the scattering from potentials of the form
(2) (which amounts to averaging the potential first
and then computing the scattering). One should
instead avexage the scattering from the vaxious
charge configurations which give rise to the aver-
age potential. %hether there are any physical sit-
uations fox which these two procedures are equiv-
Rlent does not seem to hRve been lnvestlgRted.

In problems of carrier freeze-out in compensat-
ed semiconductors the statistical distribution of
the total potential, U~, given by

where the sum is over all impurity ions, is of di-
rect interest. Correlations in impurity positions
can affect this distribution, but, as we shaB show

here, such correlations cannot in general be prop-
erly accounted for by xeplacing the U's in the
right-hand side of (3) by their average values.

An elementary argument shows why (2) cannot
represent the real variation of potential ax"ound.

any impurity ion in the absence of mobile charges.
The extra charge density p which must surround
the impurity at r,. to produce the screened poten-
tial U, in (2) can be found from Poisson's equa-
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tion,

e,V'„[U,(r —r, }—. U(r —r,.)j = 4-vp(r r—, )

It is easy to verify that

p(r —r;) d r =-q;.

Clearly it is impossible to construct a charge dis-
tribution at all resembling p(r- r, ) in (4) by some
arrangement of charged impurity ions, each one
with charge +lel, around the ith impurity atom,
even if we remove (as we will) all constraints of
discreteness of allowed impurity positions arising
from the lattice structure in locating the various
screening impurities.

In order to understand the meaning of U, in (2)
let us evaluate at point r the "average" potential
of all the impurity ions in the crystal, given that
a positive charge is located at r,. %hat we are
after is the result of a hypothetical experiment in
which we measure the potential at a displacement
r —r, from each positive ion in the crystal and
take the average. As we change this displacement
the average will change and we will obtain a func-
tion describing the dependence of this average as

a function of displacement, U(r —r,). We assume
that U can be calculated by fixing r and r, and
averaging over an ensemble of ion configurations
specified by the ionic positions r» r» ... , r~„,
with the probability density of any configuration
given by P(r„r„.. . , r»). We shall further as-
sume that (i) the impurity system is sufficiently
dilute and correlations are of sufficiently long
range that we can treat the crystal as a continuum,
(ii} there are equal numbers K of positive and neg-
ative impurity lons and (ib) N and V are so large
that it is always permissible to take the limit
N- ~ holding N/V constant.

We require that P(r, r2„) be normalized to I
and that the system be spatially homogeneous so
that

where JU' means the multiple integral over all ion
coordinates except rz.

From the statistical theory' we know' that the
probability of finding a value U~ of the total poten-
tial at point r is given by

where

{x)

f(y, r, r,)=, , exp -ik Q U(r - r, ) P(r, ~ ~ r,„)d'r, ~ ~ ~ d'r, „.
27rP p ~)

The mean value of U~ at x is given by

U(r, r,) = f U+(U„, r, r, )dU
~ Oo

(9)

Interchanging orders of integration and using

dU„e" r=2v5(k),

Inserting (7) into (9) and integrating by parts yields

U( ) =-— dU dk
-oo ~ -oo 8k'

we obtain in the infinite-volume limit

—
( )

2v sf(0, r, r, )
i eA,

=U, (r-r, )+NV J U, (r-r, )P„(r»r,)d'r, + U (r-r, )P+ (r»r, )d'r, (10)

both r, and r~ being coordinates of positive
charges, and

r, and r, being coordinates of charges of opposite
sign. [The superscript (a, 5) on the integrals
means that the integral is over al1. ion coordinates
except r, and r,.] In (10) we have, of course,
made allowance for the possibility that a positive
charge may have a different pair-correlation func-
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tion for other positive charges than it has for neg-
ative charges. We shall assume here, however,
in order to simplify future discussion that

p (r., r,) =p„(r„r„).
What we learn from (10) is that the quantity

fe f VV[P„(r„r,)-P, (r„r,)]
acts as the effective charge distribution producing
the average screening potential U(r„r, ) —U, (r —r,)
associated with the positively charged ion at r,.
No assumption as to the specific form of P(r, ~ r„)
has yet been made. This shows that pair correla-
tions alone determine the average potential at r.
[However, to obtain the distrSution of potential at
r we must know the detailed form of P(r, ~ r„).]

From the foregoing we conclude that the replace-
ment of U by U, requires an implicit assumption
about pair correlations of charges. In fact, this
assumption amounts to

VN[P„(r„r,) -P, (r„r,)]
1 exp(-irI-r, (/I, )

( )4I(r',
) r, —r, (

in view of (4). For the screening of a negative
charge at point r, (12a) changes to

To obtain an exact answer we should resort
again to the statistical theory, using equations
similar to (I) and {8), except that now we no lon-
ger require that an ion be fixed at r,. We consid-
er instead all possible configurations of ions sur-
rounding an arbitrarily chosen fixed field point,
where we place the origin of coordinates. Denot-
ing the distribution of the total potential at the ori-
gin by D(Ur) and its first and second moments by

(U„) and (U'~) we obtain from the statistical theory
the analogs of (I)-(9):

D(U, ) =~I due"'"f(II), (13a)

(lab)

The fact that the crystal is homogeneous with an

equal number of positive and negative ions present
implies that (Ur) =0. By a development similar to
that leading 'to (10) it ls stralgll'tfoI'ward 'to show
that

(U',) = U', D(U, )dU, =-2v e'f (0)
Bk

—VV[P (r„r,) —P, (r„r,)]
1 exp(-

~ rI - r, ) /r, )
4wr', [r, -r, /

Let us turn now to a related but slightly differ-
ent problem, the problem of calculating the mean
square fluctuation of total potential at some ar-
bitrarily chosen point in the crystal. This quantity
is important in, for example, the theory of freeze-
out. '

(14)

Because the potential U is a function of a single
ion coordinate, evaluation of (14) requires knowl-

edge of the pair correlation functions only. All
three of these functions appear upon integrating
(14), corresponding to the three types of products
(e.g. , U, U„U,U, and U U ) in [g, I U(r;)]'.
We obtain

Taking P =P+, and P(r, ) =1/V we have

(r)'„)= ——a'». —, a'», [),.(r., r,)-P, ( .. .)[). (16)

Specializing to Debye-type screening, we substitute (12) into (15), arriving at

(16)

The multiple integral in (16) can be performed
analytically. [It is convenient to introduce new
variables of integration by R= —,'(r, +r,), r„=r,—r,
and integrate first over d'A. The resulting diver-
gence of the integral of the first term in the large
parentheses in (16) is exactly cancelled by that of

the second. ] Our result ls

A different result, given in (18), has been ob-
tained or quoted in the literature"' by replacing
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the true potential (1) by the average potential (2) for
the ions and then further assuming that the ions are
randomly distributed. In this case the statistical
theory gives for the mean square fluctuation of the
total screened potential at an arbitrary point

8
(0', ) =—,exp —&(0)),

where

J'(k) = cos —k ' —1 d'r.
&0

Since sZ(0)/ek =0 and J(0) =0, we have

2W s'd(0) 2g e(U'„) =-—,=—4v — e '"'"~«
V Bk V

construct a specific charge distribution satisfying
(12), consisting, for simplicity, of randomly
placed pairs of positive and negative charge, and

compare the resulting distribution of potential to
that calculated from the SPM. (We shall use sub-
scripts RPM to denote quantities calculated in our
random-pair model. ) Thus we hope to be able to
judge how reliable the SPM may be in general for
calculating quantities dependent on the shape of the
distribution of potential (or, by extension, on the
shape of the distribution of potential gradients,
etc. ).

Labeling the positions of the jV positive ions by
r, ~ ~ ~ r„, and those of the negative ions by
r„„~ ~ r», we assume that P(r, ~ r») is a prod-
uct of pair functions g of the form

-27 r.—— (18)
p(ri r2„)

which is the standard result '' and is smaller by
a factor of 2 than (17).

In the foregoing derivation of (U', r) we have ex-
plicitly assumed that our system of charges con-
sists of 2N randomly scattered ions, N positive
and N negative, with screened potentials given by
(2). From this model, which we shall eall the
SPM (screened-potential model), we can calculate
not only (U', r) but a complete distribution function
for U, ~. We have just established that this distri-
bution function is, crudely speaking, too narrow
when compared to distributions arising from
charges which have Debye-type pair correlations,
a,s given by (12). Still, we may wonder if the dis-
tribution of potential from the SPM has a shape at
least qualitatively similar to those which one would
compute from models of charge distributions obey-
ing (12).

In an attempt to answer this question, we shall

1 1
g(» —r~. i)g(ra —r~.2) g (rs —r2~»

where g means the sum on all permutations of
the indices of the negative charges and

(20)

One can verify that P is normalized and that

g(r, —r, ) 1
P+ ( tl7 5) ~V V2 Pi (21a)

p„(r„r,) = p (r„r„)=—,.
y (21b)

The statistical distribution of the total potential
Ur at the origin is given by (13a), but f (k) now has
the special form

f(k) =2 „II d'r, d'r„, ~ exp ik -—— g(r& —r„„.)
2m VN

j=l 0 rj rN+f

d's~ g (s~) 1 +— d'R, exp ik ——-—1
2p p &0 r) rN+

exp —— d'sg s 4 s, k

where we have introduced relative coordinates
s, = r, —r„„and R, = —', (r, + r„„), taken the usual
limit N- ~ (V- m, N/V constant), and defined

Z(s, k) = 1 —exp ik —— -d'8, .
&0 ~~ ~N+&

(23)

So far we have made no approximations.
Specializing now to

(s) =
S

(24)

we notice that only pairs of charges whose separa-
tion is less than or of the order of x, contribute to
the integral in the exponent in Etl. (22). For r,
sufficiently small compared to (V/V) ' ' this
means that for the overwhelming majority of con-
figurations s;«8;, so that we can make the dipole
approximation in (23),
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1 1 1

III(+ s(/2 I IR( - s(/2 I

s ~ R
8'.

i
(25)

-8asj'2
D»„(ur) =— coskur e dk,

7T Q

(26)

where now H; is the position of the dipole i, which
has moment ~ets, . In this approximation, then,
f(k) in (22) is the Fourier transform of the distri-
bution of potential (at a randomly chosen point)
due to randomly placed point dipoles of random
or~entatcon whose dcstnbutcon of dipole-moment
magnitudes is proportional to g(s).

Evaluating J(s, k) from (23) and (25), inserting
into (22) for f(0) and then applying (13a), we obtain

RpploxllllRted (for Udr llot too slllR11) by sllpposlllg
that the only charge contributing to U, ~, the total
screened potential at the origin, is the charge
nearest to the origin, which we have called the
"nearest charge. " The reason for this is that if,
in a given charge configuration, x„ is the nearest
distance, i.e. , the distance of the nearest charge
from the origin, then other charges give important
contributions to U, ~ only if they lie within a dis-
tance r„+dr, from the origin, where A is a con-
stant greater than, say, 3.

The probability that no charges lie in the spher-
ical shell with inner radius r„and outer radius
x„+A.~, can be calculated from the general formula
for the probability that within a large volume V
containing 2' particles the small volume 6 V is
empty (6 V is fixed and we assume N- ~, N/V
fixed):

where p=, ( 2)v'" and Ur =(il,«/e, )(X/V)"'ur.
Here u~ is the potential in dimensionless form;
p, ,« is an effective mean dipole moment defined by

p Ile.„J=d (e)e"'d'e t','e e)'" le ie. =-

gy 2N

@
-(3jI(r/ V) AV

From (28) we conclude that the probability that
one or more ions lie between r„and r„+Ax, is

(28)

= 2.22V(e(r, .
(29)

It is easy to show that DR»((ur) in (26) is just the
distribution of potential from point dipoles of ran-
dom position and orientation with fixed dipole mo-
ment il,«and of concentration N /V. '

The dipole model will most accurately reproduce
D„»,(ur) when P(r, ~ ~ r») is of form (19) with g
given by (24), when 1, is small compared to
(V/N)'", a typical interdipole spacing. For con-
figurations of charges such that the charge closest
to the origin is much farther away than x, the ap-
proximation (25) will be accurate. Such configura-
tions become overwhelmingly probable as
(N/V)'I'r, becomes very small. Charges in those
few configurations for which the nearest charge
(e.g. , the charge nearest to the origin) is approx-
imately of distance r, or less from the origin will
produce potentials with magnitudes of order ~e~/
eor, or greater. Thus the high-potential tail of
DRpM(u„) will not be properly given by the dipole
model. [As an example, for r, =0.01(V/V)"' we
expect that D„,„(ldr) as calculated from {26) should
become inaccurate for gr z100.]

We have no physical reason for expecting r, to
be small in compensated semiconductors; we have
dlscllssed tile CRse of snlRll 'v because D»M(sr)
can be calculated in a simple way when r, is small
and, for comparison, the distribution of total
screened potential gp D(u Mr) can also be easily cal-
culated in this limit.

For r, «(N/V) '", Dsp„(U, r) can be accurately

Clearly, as r, approaches zero this probability
vanishes linearly with x„and the nearest charge
gives the main contribution to U, ~ for the over-
whelming majority of . configurations.

For a given value of x, we can estimate the re-
gion of U, r in which D,»((U, r) is accurately ap-
proximated by the distribution of potential from
the nearest charge. For example if we take x,
=0.01(V/V) '~' and require

(2IV/ V)II (r„}~ 0.05,

with A =5, we obtain r„0~174(N/V) '". and

=—1.6x10 '.
To compute the distribution of potential from

the nearest charge we observe that the probability
that a positive (or negative) charge has the near-
est distance, r„, is, in view of (28),

P( )d e Pe)ee„exp e——( ") de„,

from which we deduce

-8~ v ,p,.„„(,„)=—e —e'„(e.„)e p p pe'„(e„))
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where

exp( r-„/r, ) V "'
u sT

n

(30b)

0.125

%lie have calculated D,p„ from (30a) by numerically
inverting (30b) to obtain r„as a. function of u, r.
The resulting distribution is plotted in Fig. 1,
where D ,a„(u )ris also displayed for comparison.
To ensure that the approximations used in calcu-
lating these distributions are valid in the range
plotted, we have chosen a small value of x,
[r, =0 01(N/. V) "']. The steep increase of Ds»,
near the origin is a general characteristic of dis-
tributions of short-range potentials (or other field
quantities of short range). The marked difference
between D»M and 01,PM evident in Fig. 1 suggests
that the SPM should be used with great caution.

In closing, we wish to point out tha, t linewidth
studies can give information about the degree of
randomness of donor and acceptor ions in com-
pensated semiconductors. Analysis of linewidths
of certain magneto-optical transitions of neutral
donors in compensated GaAs samples has led to
the suggestion that donor and acceptor ions may
be weakly paired in these samples. ' In strong
magnetic fields certain donor absorption lines in
GaAs are broadened by the quadratic Stark effect
(linewidths are proportional to the distribution of
a weighted sum of squares of components of the
total electric field), while other lines have widths
proportional to the width of the distribution of the
gradient of the electric field along the magnetie-
field direction. The assumption of a completely
random distribution of ions gives calculated
quadratic-Stark-effect-induced widths which are
too large relative to the calculated field-gradient-
induced widths, when compared to the experimen-
tal observations.

We have reinvestigated this question of relative
widths using the independent-pair model intro-
duced here. Indeed, we find that decreasing r,

0.100—
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0.050

0.025

0.05 0.15 0.2

FIG. 1. Comparison of probability distributions of po-
tential, D(u), for the random-pair model (RPM) and
screened-potential model (SPM) for rs = 0.01(N/ V)
The potential u is plotted in units of (~e ~/eo) (N/ V)

decreases the quadratic-Stark-effect widths rela-
tive to the field-gradient widths, as conjectured
in Ref. 9. However, our results are valid only
for r, «(N/V) '", whereas we expect that r,
& (N/V) "' in semiconductors, so that no quanti-
tative conclusions can be drawn. It should also be
pointed out that we have no strong reason to expect
that an independent-pair model accurately repre-
sents the distribution of ions in compensated semi-
conductors; furthermore, it is not at all certain
that the Debye-type pair correlation given in (12)
accurately approximates pair correlations in real
semic onduc tors.

*Work sponsored by the Department of the Air Force.
~An electron bound to a donor ion (or, in p-type material,

a hole bound to an acceptor ion) is here assumed to
completely neutralize its ion, forming an uncharged
center. This approximation can be valid only if the
electron (or hole) is not smeared over more than one
ion. As one increases temperature and/or impurity
concentration, the carriers, which are initially bound,
tend to become delocalized. In that, case, one can no
longer classify centers as either neutral or charged
and the discussion given here does not apply.
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