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Resonant Raman scattering in silicon
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The resonance of the Raman scattering from the zone-center optical phonon in silicon has been
measured over a wide energy range covering the 3.4-eV direct band gap. The experimental results are
compared with both a theory deriving the Raman cross section from the optical constants and an ab
initio calculation; good agreement is found in the region where the respective theories are expected to
be reliable. The second-order Raman spectrum of silicon has also been measured at laser frequencies
between 1.65 and 3.72 eV. Above the 3.4-eV gap, we observe a strong peak in the second-order
spectrum corresponding to scattering from two optical phonons near the I point. From the resonance
behavior of the second-order scattering, several electron —two-phonon deformation potentials are
determined.

I. INTRODUCTION

Much attention has been devoted recently to
studies of the resonant Raman effect in the diamond
and zinc-blende structure semiconductors. In par-
ticular, the resonance of both first-order' and sec-
ond-order ' Raman scattering in germanium has
been extensively studied in the region of the E, and

Ey + ~y energy gaps which occur at room tempera-
ture at 2. 1 and 2. 3 eV, respectively. This photon
energy region is particularly well suited to studying
resonant Raman scattering since it is covered by
cw dye lasers and it contains a number of ion laser
lines.

Theoretically, the Raman tensor for resonant
scattering around E, and E, +~, is supposed to con-
tain terms due to the modulation of these gaps by
the phonons. These terms, called two-band terms,
are proportional to the frequency derivative of the
dielectric constant and thus should be strongly dis-
persive near E, and E,+4,. Because of the small
splitting 4, = 0. 2 eV between the corresponding
valence bands there are also so-called three-band
contributions which involve the phonon-induced
mixing of these valence bands.

Theory and experiment' show that in the first-
order scattering of germanium the three-band con-
tributions overwhelm the two-band terms in spite
of their less strongly resonant character. Conse-
quently, a broad resonance is observed with a max-
imum between the energies of E, and E, + &,. More
recently, ' the resonances of the second-order
scattering of germanium have been studied in the
same photon energy region. While the first-order
scattering has only a 12,, component (the symmetry
of the optical phonon at k = 0), I"„ I'3, , and I',~

components are allowed for the second-order pro-
cesses. Experiments, ' however, show that the I'»
component is nearly negligible while the I", com-
ponent is dominant. Resonances in the second-or-
der components I', and I"». have been observed.

As in the first-order scattering the I'2,. resonances
are due predominantly to three-band terms with the
electron-two-phonon interaction playing the role of
the electron-one-phonon coupling of the first-order
spectrum. These three-band terms are forbidden
for the I', component. Sharp resonances, peaking
near E, and E,+4„are seen for the I', components.
The I"& resonances of features due to peaks in the
combined density of two-phonon states can be in-
terpreted as two-band terms with the gap modula-
tion produced by the electron-two-phonon interac-
tion. An even sharper resonance is seen for a
Raman peak which occurs at the frequency of two
optical phonons of k= 0 (21'). This peak is absent
for laser energies below 2 eV and can be interpreted
as due to the electron-one-phonon interaction act-
ing iteratively in second order.

The phonon spectrum of silicon is essentially the
same as that of germanium after scaling the fre-
quencies by the square root of the mass ratio. '
Consequently, the second-order Raman spectra are
also very similar. ' As in germanium the 21" peak
does not occur below the lowest direct gap, which,
however, now takes place around 3. 37 eV and cor-
responds to transitions at 1 between the I'». va-
lence band and the lowest I'» conduction band. The
band structures of germanium and silicon are thus
considerably different. Instead of the 1"». -L, in-
direct edge of germanium, silicon has a I"»,
edge at 1.17 eV (at 1.3 K) (see Fig. 1). The low-
est direct edge (I'3,.- I'„ labeled Eo) occurs at 3.37
eV at 77 K and is nearly degenerate with a strong
edge at 3.45 eV. ' Calculations of Kane" indicate
that this edge is due to transitions along (ill) (A)
(E,) and also along (100) (&) with some contributions
from the (110) (Z) directions. Measurements of
wavelength modulated ref lectivity under uniaxial
stress'2 suggest that the main contribution to the
3.45-eV peak is from (ill) (A) transitions and is
thus analogous to the E, edge of germanium. In
contrast to germanium, however, the spin-orbit
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scattering assumes that the phonon frequency 0 is
small compared to the difference between the com-
plex frequency of the appropriate electronic energy
gap and that of the laser light, i. e. ,
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FIG. 1. Band structure of silicon showing the Eo and

E~ gaps, from Ref. 10.

where ~ is the laser frequency, vo the frequency
of the energy gap, and g its lifetime broadening.
In silicon 0 is larger than in germanium (64 vs 37
meV). However, structure in the optical constants
of silicon in the region of direct transitions is no-
where sharper than O. 1 eV. Hence, we are justi-
fied in using the quasistatic theory, Under these
conditions, the intensity polarized along e, scattered
by a field E is given, in terms of the susceptibility
tensor y, by

splitting of this edge (-0, 03 eV) is smaller than the
lifetime broadening of the transitions and cannot be
resolved, Under these conditions it can be shown
that the three-band terms in the Raman tensor have
essentially the same shape as the two-band contri-
butions: both are proportional to the derivative of
the dielectric constant with respect to frequency.

Because of these similarities and differences,
and the important role played by silicon among the
tetrahedral semiconductors, we have performed
first- and second-order resonant Raman scattering
experiments in silicon. We have been able to cover
the photon energy region between 1.65 and 3. 81 eV.
The first-order experiments were performed with

a pulsed dye laser (2. 57-3. 41 eV) and with several
discrete lines of the He-Cd, Ar', and Kr' lasers,
including six uv lines up to 3.81 eV. The second-
order experiments were performed only with the
gas lasers since the scattered intensity, two or-
ders of magnitude lower than for first order, is
too small for working with the pulsed dye laser.
We were able to show, however, that the shape of
the second-order resonance is essentially the same
as that of the first-order one and is reasonably
well described by Ide/d&u I . From the ratio of the
second-order scattered intensities to the first-or-
der ones and the first-order deformation potentials
calculated with the pseudopotential method, we were
able to obtain the deformation potential for the Fy

electron-two-phonon interaction for both optical
and acoustic phonons. ' " The equivalent of the 2I'

peak observed for germanium near and above E,
also appears in silicon above 3.4 eV (E,).

II. THEORY

As indicated in the introduction, the theory we

have used to interpret our experimental results is
mainly that developed for the earlier work on Ge.
Here we will only discuss the main outlines and as-
sumptions and reproduce the necessary results.

The dielectric or quasistatie theory of Raman

where (, is the phonon amplitude. For an optical
phonon at k = 0 (I'33. symmetry) dX»/d$„and thus
the Raman tensor R, has only one independent com-
ponent, which is labeled d, in the notation of Lou-
don. ' For the E, gap there are, as already rnen-
tioned in the introduction, two contributions to d, „

one due to the splitting of the equivalent (111)direc-
tions by the phonon, determined by the deformation
potential d', ,o, and the other determined by d3, O, a
result of the coupling by the phonon of the spin-or-
bit-split valence A3 bands. 3 The component d, of
the first-order Raman tensor is thus given by3

2~&x -x d, 1 &x (&')'"
W3 t1 3'0+ 2' du& ' a

where y' and y, which determine the three-band
terms, are the contributions of the two gaps, F.,
and E,+4„ to the scalar susceptibility y and a is
the lattice constant. With a negligible spin-orbit
splitting 4„as is the case for silicon, the A3 bands
are not coupled but sp/it by the phonon (6, is neg-
ligible if it is small with respect to the width ))).
Under this condition, the three-band terms become
two-band terms and only strongly dispersive two-
band terms a,re present. This can be easily seen
by taking the limit 6, -0 in Eq. (2). We find

3 1 3 dX (&')'"
d1 ~j d3e0+ 2 ~Pd1g0

While d3, 0 refers only to the valence bands, d', , ()

=d', 0(cond) —d', ,(val) has two components due to the
conduction (cond) and the valence (val) bands, re-
spectively. Near F one ean show that d3 0
= —0 2d', , 0(val) =+ V 2d,', 0. While moving away from
F along A the ratio d3 0/d', , increases in germanium
so that on the average for the whole A direction the
scattering is predominantly determined by d3 0. The
same is true for silicon as shown in Fig. 2. The
calculations of Fig. 2 were performed by the pseu-
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dopotential -k ~ p method as discussed in the Ap-
pendix. Pure pseudopotential calculations, per-
formed by Zeyher, ' are also shown in Fig. 2.
Both sets of calculations disagree with the results
obtained from the work of Goroff and Kleinman'
at the L point (these authors find d', , , = 15.4 eV in-
stead of 37 eV, d', , o(val) = —S.8 eV instead of —11
eV, and d,', o(cond) =+ 2 eV instead of —5. 2 eV; the
values of Goroff and Kleinman and ours, respec-
tively). We do not know the reason for this dis-
crepancy but in view of the reasonable agreement
between the two calculations of Fig. 2 we tend to
believe our values. As mentioned earlier, there
is some contribution of (100) transitions to the 3.4-
eV E, peak in the optical constants of silicon. This
contribution is believed to be small. '~ We never-
theless give the expression for the contribution of
these transitions to the first-order resonance
Raman tensor d, '

&&coo& 1 &X &t (& )d 4, p (4)

0
r

A

FIG. 2. Deformation potentials d& p(cond), d& p(val)
and d3 p of silicon along the & 4tIirection, as calculated byf~
the k p pseudopotential method (solid line, see Appen-
dix) and by the pure pseudopotential method (Ref. 18)
(dashed line).

to y the corresponding contribution to d, would be
somewhat smaller but close to what one would find
for (111) transitions of the same strength [Eq. (3)].

As discussed in Refs. 3 and 15 there are two
basically different contributions to the resonant
second-order spectra. One of them involves the
electron-phonon interaction used iteratively twice
with resonant final and intermediate states. These
terms are more strongly resonant than the first or-
der Raman scattering just discussed but they are
only important for phonons with k =0. The other
contributions involve the direct electron-two-
phonon interaction, "'"renormalized so as to in-
clude iterated electron-one-phonon terms with non-
resonant energy denominators. These terms have
the same resonant shape as the first-order Raman
scattering. Their I'». component near E, is de-
scribed in silicon by Eqs. (3) and (4) with d, , o,
d3 p and d 4, p replaced by the corresponding elec-
tron-two-phonon deformation potentials 2 v 2D'„
2W2Do, and 2W2D'„and ($o)'~o/a replaced by
(8)'~o($oo)'~'/a' where the subscripts 1 and 2 label
the two phonons involved. For the two-phonon
scattering the dominant component is that of Zg

symmetry. The resonance near E, is represented
by the ao tensor component (London's notation)o

«xa = ——D
3 d~ ' a' (5)

where D, is the electron-two-phonon deformation
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where the superscript (100) represents the corre-
sponding contributions and the deformation poten-
tial d~~, p has been defined in Ref. 11. We show in
Fig. 3 the values of d4, p along 4 calculated with the
k ~ p pseudopotential method as shown in the Ap-
pendix. The average value of d4, p near 0=0 is such
that if there is some contribution of 4 transitions

10
r

FIG. 3. Deformation potential d4 p of the valence bands
of silicon along the 6 direction, calculated with the k p
pseudopotential method (see Appendix).
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where 5 represents the magnitude of the sublattice
displacement. Values are presented for the coef-
ficients of ~ in a Taylor-series expansion of P
Rbout (d = 0, that lsd P 1n

P(0) P(1)~2 P(2)~4 P(3)~8 (7)

for different values of 5.
This calculation is expected to be valid at ener-

gies well below the first direct band gap; not only
is the Taylor expansion itself about (d =0 but the
calculation of the electronic susceptibility ignores
imaginary contributions, which have a significant
effect on the Raman tensor in the region of direct
transitions.

Of the three materials for which calculations
were presented, it is thus cleRr that silicon is the
best suited for experimental investigation; in ger-
manium, the first direct gap is sufficiently low in

energy (E,= 0. 79 eV) to prevent resonant Raman
measurements below E0, and in diamond the gap is
so large that no significant dispersion in the visi-
ble region is anticipated. In silicon, however, the
3.4-eV direct gap lies towards the high-energy end
of available laser sources; measurements can con-
veniently be made down to energies less than one-
half of the direct band gap.

potential of symmetry I"&.

The theory of lesoQRnt HamRQ scattering g1ven
above uses the experimentally determined optical
constants to predict the spectral dispersion of the
Raman cross section. A calculation has been made
by Swanson and Maradudin20 for diamond, silicon,
and germanium, which predicts this spectral de-
pendence directly. These authors made a pseudo-
potential calculation to obtain the electronic sus-
ceptibility for a diamond structure lattice distorted
in a mode corresponding to a k = 0 optical phonon.
The first derivative of the polarizability, the square
of which is proportional to the intensity of the
Raman scattering, can then be given by

III. EXPERIMENTS

The Raman experiments reported here were
made in the back scattering mode on a single crys-
tal of Si. The laser light was scattered from a
(100) face which had been mechanically polished.
etched in CP4, and polished with Syton X30 (Mon-
santo Corp. ). This final polishing has proved es-
sential for a good rejection of scattering of fluores-
cent light from the dye laser which otherwise ob-
scures the Raman signal. ' The incoming light was
in all experiments polarized parallel to [010]and
no analyzer was used. Under these conditions, the
first order scattering is allowed only in the paral-
lel/perpendicular configuration, i. e. , the allowed
scattering geometry was Z(X, Y)Z; in second order
the I'&+4I'» symmetry components are scattered
in the parallel/parallel configuration and the I"~,,
component in the parallel/perpendicular one. Be-
cause of the time-consuming second-order mea-
surements, we did not attempt to separate the I",
and I'». components. These components have been
separated at 514. 5 and at' 488 nm; since their ratio
is the same at these two wavelengths we extracted
the 7, and I'2,. components from our measurements
by assuming that their ratio is independent of scat-
tering wavelength and using the results of Refs. 6
and 7. The ratio of the throughputs of the spec-
trometer for the horizontal and vertical polariza-
tions was also taken into account.

The experimental system, using a nitrogen laser
pumped pulsed dye laser, has been described in de-
tail elsewhere2'; here it suffices to point out that
the laser is continuously tunable from the red-yel-
low region (575 nm) to 360 nm in the ultraviolet us-
ing a variety of dyes. Table I lists the dye and

solvent combinations we employed in our experi-
ments. The mean power obtained is relatively low,
of the order of 3 mW in the blue, being reduced to
300 pW in the ultraviolet. A gate is used in the
photon counting system, which is synchronized to
the firing of the nitrogen pump laser; this reduces
the observed dark counts of the system by a factor
2&&10 at 100 pulses/sec and permits Raman sig-

TABLE I. Dyes, solvents, concentrations, and tuning ranges obtained.

Dye Solvent Concentration Tuning range (nm)

7-diethylamino-4-methylcoumarin
7-ethylamino-4, 6-dimethylcoumax in
7-amino-4-methyl-coumarin
1,4-di- [2-(5-phenoxazolyl)]-benzene
Diphenyl stil, bene
2-(1-naphthyl) -5-phenyl, oxazole
AVCO 17/67 ~

A VCO 17/50 ~

Methanol,
Methanol
Methanol
Toluene
Toluene
Tol, uene

5&10 3 M
5x10 ' M
5&&10' M
1x10-' M
saturated
5~10 ' M

483-443
473-435
459-423
423-417
414-405
409-398
398-380
379-360

~AVCO. Everett Besearch Laboratory.
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nals of the order of a few counts/sec to be observed
and measured.

In addition to the pulsed dye laser, the cw laser
emission from a Spectra Physics 1'70 argon laser,
a Spectra Physics 165 krypton laser and a Spectra
Physics 185 helium-cadmium laser were used to
extend the first-order data further into the ultra-
violet and also into the infrared; with these lasers
six lines between 363. 8 and 325 nm are obtained.
The spectra taken with cw lasers were recorded in
a conventional photon counting mode. Great care
was used to match points taken with different
lasers; uv spectra from the different lasers were
compared with spectra obtained in the visible with
the same laser and these latter points were com-
pared by overlapping the wavelengths with those of
the dye laser. In addition, the highest-energy dye
laser point taken was in coincidence with the 363.8-
nm argon-ion line, thus providing a check on the
accuracy of the comparison.

The heights of the Raman peaks measured with
the pulsed dye laser were corrected for the satura-
tion effect which can be observed at counting rates
not small compared to the repetition rate of the
laser; the true counting rate is given by~'

R = —ln(1- R,b,),
where R„, is the observed counting rate.

The second-order scattering in Si is two orders
of magnitude weaker than the first order and it
proved not possible to measure this using the pulsed
dye laser; spectra were therefore only taken with
cw laser lines.

IV. RESULTS AND DISCUSSION

A. First-order scattering

Figure 4 shows our results for the resonance of
the first-order phonon scattering in Si between
2. 35 and 3. 81 eV. The data were compared to
CaF„as is usual for resonant Raman scattering
measurements, in order to provide a calibration
for the spectral response of the entire apparatus;
the ~ dependence of the scattering cross section
is also automatically removed by this procedure.
Since the radiating volume is proportional to the
absorption coefficient (provided 1/o. is smaller than
the thickness of the sample, a condition which holds
for our measurements) we had to correct our data
by multiplying them by n. The absorption coef-
ficient was obtained from the transmission mea-
surerr, ents of Dash and Newman~' between 1. 1 and
3.4 eV, and from a Kramers-Kronig analysis of
ref lectivity data by Philipp. ' Both sets of data
agree within their region of overlap. The match-
ing of data points taken with different lasers over
the whole curve is seen to be good; the close agree-
ment between the two independent points taken at

EXPERIMENTAL

SILICON 300K

Z
Q

3. 54 eV (350 nm) (from the argon and krypton ion
lasers, each being separately normalized to dye
laser points in the blue) is particularly satisfying.

The most prominent feature of the experimental
results is the peak observed at 3.35 eV; in addi-
tion, a shoulder is present on this main peak in the
region 2. 9-3.0 eV. The former feature clearly
corresponds to the expected resonance at the E0
and E, gaps; the latter was not anticipated as there
have been no previous reports of structure in the
optical constants of Si in this energy region. As a
comparison, we show the curve for ldll/d&u ~~ ob-
tained from the dielectric constant of Philipp' fitted
to the experimental data by means of a multiplica-
tive factor. According to Sec. II, this curve should
represent the experimental data if only one set of
interband transitions is present or, in the case of
several sets (above 3. 7 eV one sees the beginning
of the E2 transitions), if the various deformation
potentials involved are equal. The agreement be-
tween this theoretical curve and experiment is as
good as expected considering the possible errors
involved in performing the absorption correction
with an absorption coefficient obtained from a
Kramers-Kronig analysis.

The main peak is theoretically predicted at 3.43
eV; the experimental value of 3.35 eV is clearly a
little low. However, a shift of the entire theoreti-
cal curve to lower energies makes the over-all fit
away from the main peak significantly worse. Shifts
of the same magnitude but opposite sign are often
encountered between experimental and theoretical
resonant Raman curves. A shift of the experimen-
tal curve to lower energies could be due to heating
of the sample by the laser radiation. This possi-
bility, however, must be discarded in view of the

i I I &
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1 1~ 1

I
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2.5 30 3.5 4.0

ENERGY (eV)

FIG. 4. Raman cross section of first-order phonon in
silicon as a function of the photon energy of the laser
(points). p, l, so, theoretical dependence t dx/Cku I obtained
from the data of Ref. 16 (solid line).



3890 , B. RENUCCI, R. N. TYTE, AND M. CARDONA

10 =3
SILICON 300K

TABLE II. Values of P~) in Eq. (7), used to fit data
of Fig. 6; for nonzero 6 from Swanson and Maradudin
(Ref. 20), for 6=0 our interpolation.
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FIG. 5. Separate contribution of the real (X{') and the

imaginary (X2) parts of the first derivative of X to the
theoretical curve of Fig. 4.
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FIG. 6. Raman cross section of first-order phonon in

silicon as a function of photon energy of the laser (points)

at energies well below the direct band gap. Also, theo-
retical predictions from Eq. (7) for various values of 6

(see text).

observed independence of the shift on average and

peak laser power. The shift may be due to inac-
curacies in the Kramers-Kronig analyzed coeffi-
cient a which was used for the absorption correc-
tion. We thus cannot decide whether to attribute
any fundamental significance to this shift.

The shoulder observed in the experimental data
around 2. 9 eV seems to correspond to a somewhat
weak shoulder in the theoretical Idy/d&u I . This
shoulder is probably related to the strong increase
in the imaginary part of g in this region and the
related effect in y, (see Fig. 5); it is the edge lead-

ing to the Ep —E, peak, probably due to indirect
transitions. The experimental shoulder, somewhat
stronger than the calculated one, must represent
an enhancement of this edge with respect to the rest

+0.010

+0.005

—0. 010

p (0)

8.62

7. 67

6. 73

4. 91

p(i )

1.88

1,75

1.62

1.37

p (2)

0.25

0.24

0.23

0.20

p(3)

0.03

0. 03

0. 06

0.20

The variation of the shape of the second-order
2TO spectrums' is shown in Fig. 7. We have in-

of the resonant spectrum due to an increased elec-
tron-phonon coupling mechanism. We are not, at
present, in a position to make more precise state-
ments about this matter.

In Fig. 6, we give additional experimental data
for the low energy tail of the resonance; experi-
mental points are shown, corrected as those of
Fig. 4, for photon energies of 1.65-2. 80 eV. This
energy range, corresponding to 0.42-0. 82 Ep, is
a suitable one for comparison between experiment
and the ab initio calculations of Swanson and Mara-
dudin~P discussed above.

We thus also show in Fig. 6 the theoretical
curves for the Raman cross section of Si, derived
from Eq. (7), for four values of the parameter 5,
the sublattice displacement. These are the three
values used by Swanson and Maradudin, together
with our interpolated values for 5 = 0, using a
quadratic expression to fit P'"' (5). The values of
P'"' are given in Table II. The theoretical curves
were fitted to experiment by varying a multiplica-
tive factor so as to bring them into coincidence at
the lowest-energy datum point at 1.65 eV. Though
somewhat arbitrary, this procedure is justified by
remembering that the theory is expected to be most
reliable at the lowest photon energies. It is seen
that the agreement between theory and experiment
in the energy region 1.65-2. 70 eV is remarkably
good, a best-fit curve lying between those shown

for 5 = 0 and 5 = 0. 005. Swanson and Maradudin

point out that their values of P'"' are not expected
to be reliable to better than 20% and we note that
the differences in the P'"' for these two values of
5 are all less than this expected error, with the
exception of P' ', the highest-order coefficient.
Within this energy range, we are thus able to say
that the theory reproduces experiment to within an

accuracy comparable to the anticipated errors.
Above 2. 7 eV, the slope of the experimental

curve increases sharply to give the shoulder at
around 2. 9 eV already commented on; this feature
is not shown by the theoretical curves.

B. Second-order scattering
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FIG. 7. Second-order 2TO spectra of silicon for ten
different laser frequencies. The data at 1.17 eV are
from Ref. 23.

eluded in this figure the data of Klein et al. a ob-
tained with a Nd- YAG laser at 1.17 eV. The spec-
trum keeps the same shape, very similar to the
density of phonon states' with the horizontal scale
expanded by two, between 2.41 and 2. 81 eV. Above
2. 81 eV, a shoulder develops at an energy slightly

below that which corresponds to two optical phonons
at I". This peak is similar to that observed for
Ge above E, and interpreted as due to the iterated
first-order electron-phonon interaction with reso-
nant intermediate states. 3 The wave-number of the
maximum of this structure depends on laser fre-
quency in agreement with theoretical considerations.
Above the gap, for example, the intermediate state
is resonant for a phonon momentum which depends
on laser frequency. The change in resonant phonon
momentum produces a dependence of the scattering
peak on laser frequency. In fact, the behavior
shown in Fig. 7, a sharpening and a shift closer to
the 2TO(I') energy with increasing laser frequency
is very similar to that of Fig. 12 of Ref. 3. This
peak seems to be still sharpening at 3.72 eV, thus
suggesting that the most strongly contributing reso-
nant gap is not E, but either Eo (4. 1 eV) or Ea (4. 3
eV). ~ We also notice in Fig. 7 that the 2TO(W)
peak disappears between 3. 54 and 3.72 eV. A sim-
ilar effect has been observed for germanium: ac-
tually, the 3. 54-eV spectrum of Fig. 7 looks much
like that of germanium at 2. 6 eV. This effect was
interpreted as an iterated resonance with an inter-
mediate state differing in k from that of the initial
state by the k of the phonons involved. It was thus
suggested that the resonance was associated with
the indirect gap between the 1.3. critical point of
the valence band and the first maximum in the den-
sity of conduction states. From available
sources"" we find that this gap amounts to 3.7 eV
in silicon and can therefore explain the observed
2TO(L) enhancement over 2TO(W). This explana-
tion must remain tentative until the measurements
are extended to higher energies.

The relative heights of the 2TO(W) and 2TO(L)
peaks of Fig. 7 reverse between 2. 18 and 2. 41 eV.
This effect has also been explained as an enhance-
ment of scattering from phonons near 2TO(X) (with
a k equal to that of the indirect gap) due to the 1.1-
eV indirect gap. Like most iterated resonances,
this effect is expected to increase sharply below
the indirect gap and to stay nearly constant a con-
siderable range within the gap, thus accounting for
the observed behavior.

The 2TA spectrum, which contains only 1", com-
ponents, v is shown in Fig. 8 at four different photon
energies. The enhancement of the 2TA(X) peak at
low photon energies has been also attributed to
iterated processes with the indirect gap as inter-
mediate state. This enhancement also decays
slowly above the indirect gap, in a manner similar
to that discussed for the 2TO spectrum.

Figure 9 shows the height of the observed 2TO(W)
and 2TO(I. ) peaks as a function of laser frequency.
We have fitted these points with the function Idy/
d~l of Fig. 5. The fit is sufficiently good to en-
able us to use the theory of Sec. II, Eqs. (3) and
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2"dORDER BALAN

SCATTERING SILICON

TABLE III. Deformation potentials calculated with Eqs.
(3) and (5) in eV for TO and TA phonons in Si at the E&

gap. Also shown are the analogous deformation potentials
found for the E1 edge of Ge and the Eo edges of GaP, ZnTe,
and InSb.
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(5), to obtain from the ratio of the areas under the

2TO [excluding contributions from 2TO(I')] and the

first-order spectrum the ratio of the corresponding
deformation potentials. We note, however, that the

measured points lie above the Idy/d&u i

~ line at low

energies. A better fit could be obtained by adding

a constant to dy/d&u. The ratio of the areas at 3.41

eV is 0. 0833 for the I", component of the 2TO spec-
trum, and using the average potentials d,' 0= 38 eV
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FIG. 9. Baman eros's section of second-order 2TO(R')
and 2TOg ) phonons in silicon as a function of the laser
energy. Also theoretical dependence I dx/de I obtained
from the data of Bef. 16 (solid J.ine).

l
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FIG. 8. Second-order 2TA spectra of silicon for four
different laser frequencies. The data at 1.17 eV are
from Bef. 23. Those at 2. 54 eV from Ref. 7.

~From Ref. 3.
"From Ref. 26, with numerical corrections as given in.

Bef. 2.
'From Bef. 27.
"From Ref„28.

and d', , 0= 4 eV of Fig. 3, we find D, = 1220 eV for
the 2TO phonons. From the ratio of I', and I',
components of the 2TO scattering, measured by
other workers6' to be 4. 1 at both 488 and 514. 5

nm, we then calculate D3+ (1/2 v 2)D', = 350 eV.
From the ratio of the 2TA to the first-order area
at 3.41 eV we find D, (2TA) =80 eV. These elec-
tron-two-phonon deformation potentials are com-
pared in Table III with those obtained for other
materials both at the E, gap (germanium) and at
the Eo gap (InSb, GaP, ZnTe). Perhaps the most
meaningful comparison is that to germanium since
the same gap is involved. We find the deformation
potentials of both materials to be similar but some-
what smaller for silicon, a reflection of the weaker
core potential produced by the smaller nuclear
charge. " We point out that electron-two-phonon
deformation potentials several times higher than

those reported here have been obtained from an

analysis of mobility data for the 4, conduction band

of Si ""
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APPENDIX

The purpose of this Appendix is to determine the
electron-one-phonon deformatlon potentials of the
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valence and conduction bands in the [111]direction
using the pseudopotential —k ~ p method.

The eigenvalues and eigenfunctions of the valence
and conduction states at k = 0 can be determined in
the pseudopotential formalism as a mixture of plane
waves of wave vectors (2v/a)(0, 0, 0), 2v/a(l, 1, 1)
and 2v/a(2, O, O)."

%e shall denote these 15 plane waves as follows'~:

coo= [000],sv, = [111],n)2 = [111],Ms = [1111,w~ = [111],

, =[111],~, =[ill], ~, =[i»],~, =[»I],W, =[2oo],
(Al)

w, =[o2ol, w, = [oo21, w, =[2oo], w5 =[o2ol, w, =[002].

The symmetrized combination [ijk]„of the waves

[ijk] belonging to the I" representation are given in
Ref. 32 and are labeled

[ooo],„
[111],[111]„,, [111],[111]

[2oo], „, [2oo], „[2oo]„,

The pseudopotential removes some of the above
degeneracies by coupling states of the same sym-
metry. The states of symmetry I'» and I"» are
unchanged whereas those of symmetry I'„ I'~. , and
r». are given by diagonalizing 2~2 matrices. "
-Using the form factors given by Brust3 one gets
for the pseudo-eigenvectors:

l
r', &

= q[000]„,+ 8[111].. .
lI,' &=~[»11...+ i [200]r.. ,

l r,',,) = p[111]„„,+ y[200],„, ,

where

l
r ~&

= —8[OOO] r + 'q[l1 1]r

l
I q' &

= iL[ 1I 1jr, + X[200]r ~

lr";)=- y[111],„,+ p[2oo]„„, ,

(AS)

'/=0. 903, 8 =0.430, X=0.816, p. = 0. 577, P=0. 793, y= 0. 605 .

Because of the symmetry of the I'». optical phonon
which corresponds to a shift of the two sublattices
along the [ill] direction it is convenient to work
in the coordinate system

x = (I/W2) (x —y), y = (I/~6 (x+y —2z),
(A4}

z = (I/&3) (x+ y + z),
In this system the symmetrized plane waves are
[000]„,= svo,

[111]r (I/~8)(Ãg 18g %3 w4+ Kg BIg Ky 1D8)~

[111]r = (1/v 8)(sop —m2 —w3 184 81/+ Ã6+ 107+ Wa)g

[200]„,= (I/&6)(wi+ W~+ Ws —W4 —Ws —WB),

[200]r&@ = 2(wg —W~ —W4+ W,),
[111]r& = ~2(—Wg+ Wg —Ws+ ZD7),

[200]r*-,—2(wi —W2+ W4 —Ws), (AS)

[111]r& (I/O 24)(SBJg+ 1'+ wg+ K4+ SKg+ lv6

,+ K7+ KS},

[200]rg, = (1/ 6) (W~+ Wq+ Wa+ W4+ W5+ W6),

[111]r~ = 2(-~, +w, +w, —w, ),

[111]r~„=(I/& 24 }(Su,+ w, + w, +u,
—Sws its —mv ws).

Once the states at k = 0 are known, it is possible
using the full k ~ p representation to get the eigen-
values and eigenvectors at any point of the Bril-
louin zone. 34 In the [ill] direction the states which
correspond to one of the components of the doubly

l

degenerate ~3 valence band and to the nondegenerate
~& conduction band are

l&s&i =Airs h~&+Iilr (x)&+&lra ha& ~lrl2'&,

«6)
+&'Iran (~)&+~'Iran «)&+G'lr ( }&

The coefficients A, 8, . . . , A', 8', . . . , are given
in Ref. 34.

Let us compute now the effect of a I'». optical
phonon on the As valence band and the A', conduction
band.

1. A3 valence band

The effect of a I ». phonon, is similar to that of
a uniaxial stress along the [ill] direction, as shown
in Fig. 10:

(i) the equivalent (111)directions are split; this ef-
fect is represented by the deformationpotentialcP, 0.

(ii) the spin-orbit-split valence bands are
coupled; this is represented by the deformation

0»] [111][}it],.'

-~(4",l &IS",&„,

FIG. 10. Splitting pattern of the valence bands of sili-
con along the (111)direction.
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potential d,', ,
If one assumes that the atomic form factor is not

affected by the I'». phonon only the structure fac-
tor changes: 2z, the distance between the two
atoms in the primitive cell, becomes 27 ' = —,'&z(1+5,
1+5, 1+5) where 5 represents the magnitude of the
sublattice displacement. The energies are then

modified by the perturbating potential V= P«& za
—v, q ~ z. 5 sinq ~ v. (q is a reciprocal-lattice vector).
First-order perturbation theory enables us to cal-
culate the perturbed energies by calculating the
matrix elements: &iI&3IVI(3),» and &iI&3I VI(",)zzz.
Using the expressions (A3, A5, A6) and taking into
account the symmetry one finds

&es I VI e3&«z = (Ae- Cy)'& [»1]rx. I
V I[»1]rx,,&+B'&[»l],-*„

I
V I[»1],-;,)

+ [2Py(A —C )+ 2AC(P —y~)]&[111]rf,, I
V [200]rx, )+ 2BD& [ill]rx I

V I[200]z, &2,'),
where

( [ill]rr, I Vi[111]„x,& = (v, —v„)(w/2)5 &[ill]rx, I Vi[200] rx, & = (v, - vzz)(vv 2/4)5,

&[111],; IVI[111]„;&=(v» v, )-(v/2)5, &[»1]„& IVI[200]r &a,z&=(v, -v„)(vW~/2)5 .
One calculates in the same way &p3 [ VI g~)»z, noting that

(A7)

The definitions of the deformation potentials for
a uniaxial stress along a [111]direction3' give, for
a I"py phonon

dz. o(v») = (6g ~)(1/5)&tl I
V I &3&»z

Using the form factors of Ref. 33 and the values
of A, B, . . . , given in Ref. 34, Eqs. (Ag) yield
d', ,0(val) and ds, , along the [ill] direction. The re-
sults are shown in Fig. 2,

2. A'1 conduction band

and

d', , = (2 '/Wa)(~/5), (Ag)

In the ~~ conduction-band case the F~,. phonon
splits only the equivalent (111)directions and one
finds

where

&=2[-&&SIVI&3&117 3&&sl VI&3&111].

d'. o(cond) = (6/~~)(1/5)&|I'
I VI t'»»,

with

(A10)

(All)

&C& I
V

I t z) = (E'O- E'y)'& I» ll, ;,, I Vi [»1]r~,&+ I 2'(E" —E")+2E'E'(P'- y')]

~& I 111]r~ I Vi[200],~, &+ G "& [111]r*-
I
Vi[1111„.- &+2C'(~A'- i B')& [1111„,IVI[1111,.- &

+2G'(is'+»')&[200]r IV Ir»&+2(C'E'~P CE Uy ——D E HP+D E Hy)&[000]r IVI[lll]„~,&

+ 2(C E zjy+ C F zip —D E Hy —D F H p)& [000]r I
V

I [200]z ~, &

+2(C'E'H p- C'F'Hy+D'E'zfp D'E'&y)& I 1»] r-, I Vi[111]r~ &

+2(C'E'Hy+ C'E'8 p+D'E'ziy+D'E'zip)& [ill]r I Vi [200]r&,& .

where

( [111]r&
I
V

I
[111]r& ) = (vz~ —v4)zz5, & [ill]ri

I
V

I [200]z~,&
= (vzz —v, )(zzV 2/2)5,

&[ill]rg IVI [ill]„.- & = (v4 —vz2)zz5, ([ill]„, I VI [ill]rg ) = —(v4+ v&2)(z&W3/2)5,

&[200], , IVI[»11, )=-(v, +»zz)(v~&/4)5, &[000]r, IVI[»1]r~,)=-v, (zz~&/2)5,

&[000]r I Vi [200]P,& =-v,~~5, &[111]„I
Vi[111]rz &=(v, +v„)(mWS/2)5,

& [1»]r I
Vi[200]„z' ) = (vs+ 3vzz)(vv 6/4)5,

(A12)

The curve of Fig. 2 was obtained using Eqs. (A10)-(A12). One can also calculate the deformation poten-

tial d4, 0 along the [100]direction. Using the definition of Kane" one gets d4, 0= (8/5)&tfrI VI &)»zoo, where
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I q)„,=. w" Ir,'„(xg&+a" Ir„(x)&+c"Ir"„.(x)&

&el &le&ioo =(&"v- c"r)'&[»»rx, . I
T I[»».x,&+ 2[@(&'"- &'")+&"&"(a'- ~')]&[»&].X, I &I [»&)].x, &

+a'"&[iii],.- Ivl[iii]„*- &,

with

& [&»],X„ I &I [&&&],~, &
= (~4 —~,2)(~~/2), & [&&&]„X„I &I[2ool,x„&= (v, —~„)(v~2/4)&,

&[its]„~ lvl[sis], .- &=(~„-~,)(~s/2) .
The results B.re shown in Fig. 3.
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