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Dispersion spectra of the Brillouin scattering cross section are investigated in the range of photon
energy 2.0-2.4 eV at room temperature by making use of intense acoustic phonons amplified through
the acoustoelectric effect in CdS. We have found a deep and narrow minimum of the scattering cross
section at a photon energy of about 2.22 eV and a steep increase near the fundamental absorption
edge. These features are explained in terms of resonant enhancement and cancellation based on
Loudon’s theory. Theoretical calculation by taking into account the exciton effect shows an excellent
agreement with experimental data. Scattering of the virtual intermediate states associated with the p-like
A, B, and C valence bands was found to give rise to the resonant enhancement. The dominant
contribution comes from the scattering process of the exciton of the B state to the A4 state by the
deformation potential C¢ and the recombination of the 4 state to emit the scattered photons in the

present configuration.

I. INTRODUCTION

The resonant enhancement of the Brillouin (Ra-
man) scattering cross sections near the intrinsic
absorption edge in semiconductors has recently re-
ceived considerable attention both theoretically'™
and experimentally. 5= The resonant behavior for
the Brillouin scattering from thermal acoustic pho-
nons (LA phonons along the ¢ axis) was observed by
Pine® as the fundamental absorption edge of CdS
was thermally tuned through the incident radiation
at 5145 A. The result showed a weak resonant en-
_hancement, while such a resonant cancellation as
observed in the Raman scattering cross sectiong®!!
was not found. The intense phonon beams amplified
by acoustoelectric instabilities are very useful to
investigate the dispersion spectra of the resonant
enhancement near the fundamental absorption edge.
This advantage will be readily understood by the
following facts. An application of the drift velocity
greater than the sound velocity in piezoelectric
semiconductors results in selective acoustoelectric
amplification of phonon beams traveling in a narrow
frequency range near the frequency of maximum
gain. 12 The phonon beams usually form a domain
1 mm wide traveling from the cathode to the anode.

Amplified acoustic phonons have an intensity a
factor of the order of 10° above thermal equilibri-
um, which is easily achieved in the frequency range
0.2 to 4.0 GHz. The phonon frequency range is
most suitable for Brillouin scattering measure-
ments. ' The intense acoustic phonons provide
strong scattering signals and permit the use of a
continuous light source dispersed by a conventional
monochromator instead of a laser.

Such measurements were first made by Garrod
and Bray.  They found resonant enhancement and
cancellation of Brillouin scattering cross sections
near the fundamental absorption edge. Similar be-
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havior was observed in CdS by the present authors”
and independently by Gelbart and Many.® The main
features of our experimental results are the follow-
ing. A steep increase of the scattering cross sec-
tion close to the absorption edge is found. A deep
and narrow minimum in the cross section is ob-
served at photon energy about 2. 22 eV. At longer
wavelengths, the scattering cross section approaches
the nonresonant Brillouin scattering, namely,

the usual Brillouin scattering predicted from the
Pockels photoelastic effect.

A macroscopic interpretation6 is that the appro-
priate photoelastic constant passes through zero
while undergoing a reversal in sign (here we have
to note that the scattering cross section is propor-
tional to the square of the photoelastic constant).

In fact, the dispersion of the piezobirefringence,
which yields the photoelastic constants, shows a
reversal in sign. (See, for example, the piezobire-
fringence coefficients @,,-Q;, in Ref. 14, which are
related to the photoelastic constants P,;-P;,). The
piezobirefringence coefficient appropriate to the
present experiment is not obtained due to the large
natural birefringence in CdS.

A microscopic theory for resonant Brillouin scat-
tering has been given by Loudon. ! The theory is
based on a third-order time-dependent perturbation
in which the incident photon creates a virtual elec-
tron-hole pair, the electron or hole is then scat-
tered by a phonon, and finally, the electron and the
hole recombine to emit the scattered photon. In
order to explain the cancellation in the Raman scat-
tering, Ralston et al.'® proposed that the scattering
amplitude is given by a sum of the resonant and
nonresonant terms of opposite sign. The resonant
term is given by Loudon’s expression and the non-
resonant term is interpreted as the contribution of
all higher interband excitations of intermediate
states. Such analyses are successful in explaining
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FIG. 1. Schematic diagram of the experimental ap-

paratus. The specimen was mounted on a rotatable table
and the incident angle 6; and the scattered angle 64(= 6; +6,)
were set to detect light scattered by phonons with a
specific frequency.

the resonant Raman scattering in CdS. An analogous
treatment was performed to explain the dispersion
of the Brillouin scattering cross sections in CdS by
Gelbart and Many.® They found that a best fit was
obtained by a least-square method with the energy
gap E,=2.41 eV, which is smaller than the value
obtained by reflectance measurements (2. 53 eV).
Loudon’s theory assumes that the virtual inter-
mediate states are free-electron—hole pairs, and
disregards the Coulomb interaction between the
electrons and the holes. Modification was made to
incorporate the Coulomb interaction by taking into
account the virtual intermediate states of the ex-
citons.? The latter theory seems to explain the
small band gap obtained by Gelbart and Many.

In this paper we report a study of the dispersion
spectra of the Brillouin scattering cross section
obtained by making use of intense acoustic-phonon
beams. We compare the data with the theory of
Loudon and also with that of Ganguly and Birman?
which assumed that the virtual intermediate states
are the exciton states, including bound and con-
tinuum states. The latter theory gives an excellent
agreement with the experimental data. In addition
we discuss the interaction between the acoustic
shear waves and excited virtual electron-hole pairs
by using the orbital-strain Hamiltonian in wurtzite. **

II. EXPERIMENTAL PROCEDURES

The experimental arrangement used in the present
work is shown schematically in Fig. 1. A high in-
tensity light source of a continuous spectrum was
obtained from a xenon flash tube (Ushio Type 626
Xe flash lamp) and dispersed by a monochromator
(JASCO CT-50). The resolution was about 5-10 A
in the range of the present experiment. The output
beam from the monochromator was focussed onto
the CdS sample with incident angle 6, after passing
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a polarizer (Gran- Thompson prism) and lenses.
The size of the light spot was about 0. 5 mm in di-
ameter, High voltage pulses were synchronized
with the flash light so as to traverse the acousto-
electric domain at the illuminated part of the spec-
imen, and thus the light scattered in the direction
6,=0;+ 6, during the passage of the domain was de-
tected by the photomultiplier. An analyzer (pola-
roid) was mounted in front of the photomultiplier.
The incident angle 6; and scattered angle 6, for a
given frequency of acoustic phonons were calcu-
lated as a function of the incident light wavelength
by taking into account the birefringence of the re-
fractive indices. The dimensions of the CdS sample
(n=2x10"® cm™, w=285 cm?/Vsec) used in the ex-
periments were 0.92X0, 16X 0. 10 cm with its long
dimension perpendicular to the ¢ axis. The sur-
faces were polished mechanically and the electrodes
were soldered to the indium evaporated end sur-
face. The light beam was incident on a polished
surface parallel to the ¢ axis and the scattering
plane was perpendicular to the ¢ axis. The polar-
ization directions of the incident and scattered light
are parallel and perpendicular to the ¢ axis, re-
spectively. We found that the frequency of maxi-
mum intensity was around 2, 8 GHz in CdS at the
initial stage of the amplification and subsequently
the maximum acoustic intensities shifted down to
the lower frequencies through parametric down con-
version. We measured Brillouin scattering signals
for 2, 1, and 0.5 GHz in the present experiments.

III. DETERMINATION OF APPROPRIATE
PHOTOELASTIC CONSTANT

In this section we present a macroscopic treat-
ment of Brillouin scattering to deduce the photo-
elastic constants appropriate to the present experi-
ment, because the resonant enhancement and can-
cellation of the Brillouin scattering cross section
are explained phenomenologically in terms of the
wavelength dependence and sign reversal of the
photoelastic constant,

The Brillouin scattering cross sections in CdS
have been derived by Hope'® and by one of the au-
thors (C.H.). 13 n the analysis the indirect photo-
elastic effect due to the piezoelectricity®!"!® and
also the rotation effect!” !® are neglected. In this
paper we include the indirect effect because the
acoustic shear waves are piezoelectrically active
(hereafter denoted T'2-mode acoustic waves). We
can neglect the rotation effect because it is found
to be quite small in CdS.*® From the macroscopic
theory we obtain for the scattering cross section
per unit optical length per unit solid angle

Pl BT 1£41°

o cos®§,
BTN 2 pod

ny(ns - sin®g,

72 B, (3.1)

where
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for the scattering by the piezoelectrically active
shear waves traveling in the ¢-plane with the atomic
displacement parallel to the ¢ axis, *1%20 In Egs.
(3.1) and (8. 2), ny, 7, and n, are the refractive in-
dices of ordinary. extraordinary and scattered
waves, A is the incident light wavelength, v, and

S are the sound velocity and frequency of the acous-
tic waves, and B is the correction factor for the
boundary effect. ***® Wwe find in Eqs. (3.1) and

(3. 2) that the scattering cross section is propor-
tional to the square of the photoelastic constant [P,,
+ (P4g)mal, where P,, is the Pockels photoelastic
constant and (P4);,4 is the indirect photoelastic
constant due to the piezoelectricity which is given
by15y 19

(Pyg)ina= —€15751/ €11 (3.3)

where e;s. 75, and €;; are the piezoelectric con-
stant, Pockels electro-optic constant, and dielectric
constant, respectively. We find that (P )4 is about
18% of the Pockels photoelastic constant. This in-
direct photoelastic effect in macroscopic theory
corresponds to the scattering of the intermediate
state by the piezoelectric scattering in the micro-
scopic theory. The vector £* determines the polar-
ization vector of the scattered light, and we find
that the polarization of the light scattered by the
shear waves is rotated by 90° with respect to the
incident light polarization when the scattering plane
is perpendicular to the ¢ axis. Therefore, the
Brillouin scattering signal is easily distinguishable
from any background. The configuration of the in-
cident and scattered light polarization is essential
to the analysis based on the microscopic theory,
because we have to take into account the well known
selection rule in CdS. This analysis will be given
in Sec. IV.

We find in Eq. (3.1) that the scattering cross sec-
tion has small dependence of the incident wavelength
Ao. However, this macroscopic treatment cannot
explain our experimental dispersion curve of the
Brillouin scattering cross section near the absorp-
tion edge without assuming wavelength-dependent
photoelastic constants.

IV. RESULTS AND DISCUSSION
A. Scattering cross sections

The Brillouin scattering intensities were mea-~
sured as a function of the incident light wavelength.
The results for the piezoelectrically active shear
waves of frequencies 0.5, 1.0, and 2.0 GHz are
shown in Fig. 2, where the ratio of the scattered
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FIG. 2. Brillouin scattering signal in CdS. The ratios
of the Brillouin scattered light intensity I to the incident
light intensity I, are plotted as a function of incident wave-
length for 0.5-, 1.0-, and 2.0-GHz acoustic phonons.

intensity I, to the incident light intensity I, is used.
The general features are similar to the results of
n-GaAs (Ref. 6) if we take into account the strong
absorption of the incident and scattered light near
the fundamental absorption edge. The scattering
efficiency has a narrow and sharp minimum at about
5620 A. The decrease of the scattering efficiency
near the band edge is caused by the strong absorp-
tion of the incident and scattered light due to the
increase in the absorption coefficient., In order to
deduce the Brillouin scattering cross section from
the data of I /I,, we have to take into account not
only the absorption of the incident and scattered
light but also depletion of the light from the various
Brillouin components. This was made in GaAs by
Garrod and Bray,® making use of the normalization
of the scattering signal I by the transmitted light
intensity I;,. They found in an isotropic material
like GaAs

1, /1,=05b'dSy | (4.1)

where b’ is the light path length and dQ; is the solid
angle in which the light is scattered. Such a rela-
tion is not valid in the case of CdS.

The band structure of CdS at #=0 consists of a
I'; conduction band followed by, in order (the ener-
gy gap and then) a top I'y valence band and two lower
T'; valence bands. 2l The three valence bands com-
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FIG. 3. Dispersion curves of Brillouin scattering
cross section for 0.5~ and 1.0-GHz acoustic phonons (in
arbitrary units). Solid curves were calculated by taking
into account the exciton effects with optical band gap;
Eg;=2.494 eV for the incident light and optical band gap;
Egs=2.480 eV for the scattered light. Dotted and dashed-
dotted curves were estimated by Loudon’s theory with
optical energy gaps; E,;=2.40 eV, E,=2.38 eV, and
with Eg;=2.494 eV, E,;=2.480 eV, respectively.

pletely split. In the case of incident light polariza-
tion parallel to the ¢ axis, the dipole transitions
are forbidden between the conduction band and the
T’y valence band and allowed between the conduction
band and the I'; valence bands. On the other hand,
in the case of the polarization perpendicular to the
¢ axis, the transitions between the conduction band
and the three valence bands are all allowed. This
well known selection rule explains the difference in
-the optical absorption coefficients for the two dif-
ferent light polarizations observed by Dutton. Z As
shown in the Appendix, a simple analysis which
takes into account the difference in the absorption
coefficients gives the relation near the fundamental
absorption edge

I, 0pdQ <ol - o b
Iy oy - agng/n, p( cost)

X {1_ exp [- (a,— o Z—‘:) co’; 95} } 4.2)

where o; and @, are the absorption coefficients for
the incident and scattered light, respectively. and
b is the width of the sample in the scattering plane.
The refractive indices »n; and n, refer to the values
of the incident and scattered light, and the incident
angle 6] and the scattered angle 6} (= 6. - 6}) are
defined in Ref. 13. At longer wavelength far from
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the band edge the values of ¢; and @, are so small
that we can approximate Eq. (4.2) by (see the Ap-
pendix)

Q:Me (—Mb)dﬂs ’ (4_3)v

I, cos?bj cos 6}
where oy is the total scattering coefficient defined
inthe Appendix. ItisevidentthatEq. (4. 3) isequiv-
alent to Eq. (4.1). Note that Eq. (4.1) is derived
by assuming equal optical path lengths for the scat-
tered and unscattered light; b/cos 6}=b/cos 6;=0b".
Near the band edge, however, the condition (¢;

— ayn,/n;)b <1 is not satisfied and thus we have to
use the expression Eq. (4.2) in order to compute
the Brillouin scattering cross section from Fig. 2.
By making use of the absorption coefficient data of
Dutton® and the refractive index data of Bieniewski
and Czyzak® we calculated the dispersion of the
scattering cross section, which is shown in Fig. ‘3.
The magnitude of the scattering cross section is
proportional to the energy density of the amplified
phonons and thus depends on the applied electric
field. Therefore we plotted the results in arbitrary
units in Fig. 3. The general features of the dis-
persion for 0. 5-, 1,0-, and 2. 0-GHz phonons are
quite similar. We find that in the long-wavelength
region the scattering cross sections approach to
the nonresonant Brillouin scattering, namely, Bril-
louin scattering cross sections predicted from the
photoelastic effect of macroscopic theory.

The wavelength dependence )\64 is not found in the
present results because of the narrow wavelength
range of the incident photons. We find a deep and
narrow minimum at 2. 22 eV and a steep increase
in the higher photon energy region beyond the mini-
mum, These data indicate an existence of the res-
onant enhancement and cancellation near the funda-
mental absorption edge in CdS. Therefore, it
seems to be most reasonable to expect that the
photoelastic constant P,, in CdS actually crosses
over the zero line at a photon energy of 2. 22 eV.
The behavior of (P4);,q does not play an important
role in the above analysis because of the reason
discussed later. We discuss here the dispersion
spectra of the Brillouin scattering cross section by
using the microscopic theory. First we use Lou-
don’s theory without exciton effects and second we
extend their analysis to include the exciton effect.
The scattering cross section derived by Loudon has
the form

4 kT
%= (i ) 2ot o [Rul?

nmce pv§ w; (4.4)

where the most dominant term of R;; is given by

2 1

1
R;;== W= W+ W, .
SN rrwmry ey IEEUELY

(4.5)

Here 7w, and 7w, are the energies of the virtual
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states, w; and w, are the angular frequencies of the
incident and scattered photons, w, is the phonon
frequency of wave vector g appropriate to the scat-
tering, =g, is the matrix element of deformation
potential scattering, and Py, and P 4 are the ap-
propriate momentum matrix elements, where sub-
script 0 stands for the ground state and subscript
a and B for the pair states. The superscripts 1 and
2 of the momentum matrix elements indicate their
components in the polarization directions of incident
and scattered photons. Taking into account the dif-
ference in the optical band gaps for the two different
light polarizations in CdS, we obtain for the spheri-
cal and parablic bands®*
2 2u\s2 PLE, PL,
(211)2 ( ) Wyp= Weg + W,

Aw 1/2
X | (wgg— wy)2arc tan (———E—
Wep — W

— (W — w2 arctan(——"‘—Aw )1/2] , (4.6)
Weo — W;

where u is the reduced mass, which is assumed to
be equal for the @ and B pair states for simplicity,
fiw,, and %iw,g are the optical band gaps for the pair
states @ and B corresponding to the incident and
scattered light, respectively, and ZAw, (or ZAw,)
is the combined width of the conduction and valence
bands. Equations (4.5) and (4. 6) indicate that the
scattering cross sections increase as the incident
photon energy 7Zw; approaches the band gap 7w, or
7iwgg. This results in a resonant Brillouin scatter-
ing.

The cancellation is explained by assuming that
the resonant contribution (R;,) to the scattering ef-
ficiency is opposite in sign to the nonresonant con-
tribution (- R) arising from other, far-off critical
points in the band structure. In other words the
scattering cross section is given by

oc ,R{s—Rglz (4. 7)

Without the knowledge of the matrix elements Py,
Py, and Eg, we can fit experimental data with the
use of Eq. (4.7). Later we calculate the matrix
element Zg, by taking into account the three valence
bands. It will be shown in Sec. IV B that the domi-

|
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nant contribution to R;, is the transition between the
B and A valence bands through the deformation po-
tential matrix element Z,,. From the present ex-
perimental conditions we find that 7w, ,( 7iw,) is the
energy gap between the B (4) valence band and the
conduction band. Using Eqs. (4.6) and (4.7) we
calculated the total scattering cross section for the
T2 mode phonons. In our calculation we used values
of 7Aw, (or 7ZAwg) in the range of 0.1-10 eV and

we found that the results are weakly dependent on
the values. We adjusted the value R, and energy
gaps to fit the experimental curve. We found that
the calculated curve fitted the experimental data
when we used fiw, ,= 2. 40 eV and 7w, ,= 2. 38 eV.

The results are shown in Fig. 3 by the dotted curve.
Similar analysis was made by Gelbart and Many,®
who found that the best fit to the data was obtained
by using the energy gap 7w, ,=2.41 eV, which is in
good agreement with the present result. It should
be noted that they plotted I, /I, as a function of in-
cident photon energy and that such a plot does not
give correct values of oz near the band edge due to
the reason stated earlier. The energy gap obtained
in the above analysis is much smaller than the value
2. 53 eV deduced from reflectance measurements

by Cardona and Harbeke.?® The values of energy
gaps are also estimated from electroreflectance
data made by Cardona et al.,? who found peaks in
the electroreflectance spectra at 2.452, 2.466, and
2.525 eV. If we take into account the exciton ef-
fects by using the theory of Blossey” we have high-
er-energy gaps by exciton binding energy (28 meV)
than the peak values obtained by Cardona e!f al. 26
(See Fig. 8 of Ref. 7); therefore, we obtain Zw,,
=2.480 eV, 7iw,g=2.494 eV, and 7iw,c= 2,553 eV.
Absorption coefficients at 7w, = 2.4 eV and 7iw,,
=2, 38 eV are estimated from Dutton’s data to be
about 10?2 cm™. Such large values at photon ener-
gies lower than the band gaps can be explained by
the exciton effect. ‘

As we mentioned in Sec. I, the Coulomb interac-
tion is always present between the excited electrons
and holes, and thus it seems to be reasonable to
assume that the virtual intermediate states are the
exciton states. Loudon’s formulation has been
modified by Ganguly and Birman?® to include the ex-
citon effects. After simple manipulation  we find®!

2 o
Z_&Jg—'sapao

1
Wep— Wy +w<1m0 13 \(Wgq — R*/% = w,

n

x{[l-exp<

where a¥= €72/ pe? is the exciton Bohr radius and
7R*= pet/2 i%€? is the exciton rydberg constant. In

)(wgB

47r2R* >1/z] -1 [ ( 4 m2R* )1/2]-1 })
-|1-exp(-—T7 :
Weg— Wy

1 2\ 372
-R¥m?-w )> e (%) (4m°R*)
£ q

(4.8)

—

Eq. (4. 8) the first term corresponds to the discrete
levels and the second term corresponds to the con-
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tinuum electron-hole pair states. As it is well
known, the three valence bands labeled A, B, and
C in conjunction with the I'; conduction band gives
rise to A, B, and C series of exciton states, re-
spectively. The selection rule for the momentum
matrix element is the same as that of the band-to-
band transition. We take into account the A and B
exciton states for the virtual intermediate states
because the dominant contribution to the resonant
enhancement comes from the bands with the band
gap close to the incident or scattered photon ener-
gy. We present here a calculation of the total scat-
tering cross section by using an energy gap of 2. 480
eV for the A state and 2. 494 eV for the B state.

The exciton binding energy is reported to be 28 meV
in CdS and we used this value for both states. In
the calculation we used the values of oscillator
strengths reported by Thomas and Hopfield. ?® The
only adjustable parameter was Ry, which was chosen
to give a minimum scattering cross section at 2. 22
eV. The calculated result is shown by the solid
curve in Fig. 3, where we find a better and excel-
lent agreement with the experimental results in the
whole range of the present investigation.

It should be noted here that there exist a dc elec-
tric field (~5x10% V/cm) and an ac field (~10*
V/cm) associated with the piezoelectric potential
in the acoustoelectric domain. When the electric
fields are capable of ionizing the exciton, the anal-
ysis made here is not correct. However, we find
that the ionization field of the exciton in CdS is
about?” 1, 4% 10° V/cm which is much higher than
the dc or ac field associated with the acoustoelec-
tric domain. Thus we can conclude that the elec-
tric fields do not dominate the Coulomb potential
and that the present treatment is adequate.

B. Matrix element for the deformation-potential
scattering

In Sec. IVA, we assumed that piezoelectric scat-
tering of conduction electrons does not play an im-
portant role in the transition of the virtual states
and that the matrix element = 45 for the deformation-
potential scattering between the B and A states is
nonvanishing. We will discuss these assumptions
here. The orbital-strain Hamiltonian for the p-like
valence bands of wurtzite at =0 is given by*#?°

H,,=(C1+CgL%)e ,+ (Co+ CyLE)(eyy+e )
+Cs(L%e,+ LEe.)
+Co([L,Li]e+[L,L]e.,) , 4.9)

and for the electron in the conduction band by

Hyo=dye,,+dy(e+e (4.10)

w)

where the coefficients C; and d; are deformation
potentials, the e;;’s are components of the strain
tensor with e,=e,, ~e,, +2ie,, and e, =e,, +e,,, L,
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and L, are the standard orbital angular momentum
operators, and [L;L,]=3(L;L,;+L,L,;). We find
from Eq. (4.10) that deformation potential scatter-
ing of electrons in the conduction bands disappears
for the T2 mode acoustic phonons because the only
non-vanishing strain components for the T2 mode
are e¢,,. Piezoelectric potential scattering gives
rise to a nonvanishing matrix element for the 72
mode.?! However, Berkowicz and Price® reported
recently that nonpiezoelectric acoustic shear waves
propagating along the ¢ axis result in resonant en-
hancement and cancellation quite similar to the case
of the T2 mode phonons. The scattering cross sec-
tion for shear waves propagating along the ¢ axis is
given by Eq. (3.1) with

|£%] = Pyyl€ss/€11)(Pro)s (4.11)

with no contribution from the indirect photoelastic
effect. Therefore a macroscopic theory indicates
that the resonant enhancement and cancellation can
be interpreted in terms of the direct photoelastic
constant Py, only. From these results we conclude
that the piezoelectric scattering does not play an
important role in the scattering cross section.

In addition it is more important to emphasize that
such mechanisms based on the scattering of excited
electrons can not explain the difference in the ener-
gy gaps between the two light polarizations, I or-
der to explain the difference in the optical band
gaps, we have to take into account virtual states
in the valence bands. We used the wave functions
of the three split valence bands derived by Hop-
field, *#% and calculated the matrix elements of the
transitions of the virtual states associated with the
valence bands. We found the following result®:

4p=3acCg=0.359 eV (- 1,08 eV),
CB=_C6=_0'8 eV (2.4 eV) s
Eca=—3aCe==0,437 eV (1.31 V) ,

Il

Itl

(4.12)

—
)

BB“"‘AA::ECC= 0 ’

where the admixture coefficients az and a. can be
determined from the two parameters of the quasi-
cubic model; i.e, the spin-orbit and the trigonal
field parameters.'* The numerical values in Eq.
(4.12) were calculated by using C4= 0. 80 eV,? and
the values in parentheses were estimated from C,
=~2.4eV.%® The selection rules of both the mo-
mentum matrix elements and deformation potential
matrix elements are consistent with the experi-
mental condition of our work and with the existence
of the two band gaps for the two different light po-
larizations in CdS, as follows. The incident photons
are polarized along the ¢ axis and the excitation of
virtual B and C excitons (or excitation of holes in

B and C valence bands) are allowed. We can ignore
the contribution from the C band for the reason of

a large energy separation. Therefore-the excited

Il
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scattering of virtual B exciton by acoustic phonons,
where Eg, is the matrix element for the deformation po-
tential scattering from the o state to the g state and P,
is the momentum matrix elements. (Suffix 0 indicates
the ground state.) The polarization vectors for the in~
cident and the scattered light are indicated by i}'{ and Es,
respectively. The solid line indicates a dominant con-
tribution and the dotted line a weak contribution to the
resonant Brillouin scattering. Excitation of the C exciton
is not shown to avoid complexity,

holes in the B valence band are scattered by the
deformation potential Cq to the A valence band,
where the corresponding matrix element is = 45.
The holes in the A band recombine with the excited
electrons in the conduction band to emit photons of
polarization perpendicular to the ¢ axis. (This
transition is allowed.) A schematic diagram for
the present experimental condition is shown in Fig,
4, where the transitions indicated by solid lines
are dominant ones and those of dotted lines are
weak. In Fig. 4 we neglected excitations of virtual
C excitons because of the large energy separation.

V. CONCLUSION

We have investigated the dispersion spectrum of
the Brillouin scattering cross section by making
use of intense acoustic phonons of 0.5, 1.0, and
2.0 GHz amplified through acoustoelectric effect
in Cds.

We have found a deep and narrow minimum at the
incident photon energy 2. 22 eV and a steep increase
in the higher photon energy region beyond the mini-
mum, The dispersion spectrum is well explained
by taking into account the transition of the virtual
states associated with the p-like valence bands and
of the exciton effect. It has been shown that the
matrix elements for the transition of the virtual
states between the B and A valence bands are non-
vanishing and yield a dominant contribution to the
resonant enhancement. Our analysis shows that
the transitions of the excited electrons by both de-
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formation potential and piezoelectric potential do
not contribute to the resonant enhancement for the
shear acoustic waves investigated in the present
experiment, We conclude that the resonant en-
hancement of the Brillouin scattering in CdS re-
flects the selection rules for the momentum matrix
elements and deformation potential matrix ele-
ments.
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APPENDIX

We present here a derivation of the formula to
relate the scattering cross section oz with the mea-
sured values of I; and I,, where we properly take
into account the birefringence and the difference in
the optical absorption coefficients for the incident
and scattered light. 3 The light intensity I(x’) prop-
agating in the material is expressed by

I(x")=Iyexp| - (¢; +op)x’] , (A1)

where I, is the incident light intensity, ¢; is the
absorption coefficient of the incident light, and o,
is the total Brillouin scattering coefficient. 34,35

The total scattering coefficient o, is defined by the
relation I,=1I9 exp(- o;b’), where I? is the trans-
mitted light in the absence of any scattering, I, is
the light transmitted after depletion by scattering,
and b’ is the optical path length. The quantity o,
describes how much light is scattered out of the
incident beams by phonons of all possible wave vec-
tors that can contribute to the scattering. The dif-
ferential scattering intensity dI(x’) along the optical
path between x’ and x’ +dx’ in the material is given
by

dl(x")=Texp[ - (a;+07)x']ogdx'dQ , (A2)

where d is the solid angle determined by the cone
angle of the detector.

For the Brillouin scattering in a birefringent
material, the angles of incident and scattered light
(6% and 0}, respectively) with respect to the normal -
to the sample are different in general. When we
define a distance x by x’ cosé;, x is the effective
optical path length along the direction normal to the
surface, and Eq. (A2) reduces to
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_ = (0 +07)x\ ogdxdQy
AL (%)= exp( cos® cosb, ° (A3)
Light intensity scattered at the point x’, is also de-

creased by absorption and scattering during the
path length x”(=b’~-x'), where x” cosfj=b —x, and
b is the width of the sample in the scattering plane.
Therefore, the actual Brillouin scattered light in-
tensity is given by

dl(x,b)=dI (x)expl - (05+ 07)x"]
_7 o - a cosfj o _coseg
=4 exp _[( i~ Sagosey ) T OT cosb;

x _ (2+070)b)| 0pdxdQ,
cosb; cosby cosb}

) (A4)

where ¢, is the absorption coefficient of the scat-
tered light. Integrating Eq. (A4) over the sample
width, we obtain

I 0pdfY,

Iy (o= agng/ny)+ op(l=n4/n;)

(ag+07)b ( n..“)
cos6! >>< (1— exp{—| \a; - a‘ni

X exp (-

3883

i)

where n; and n,; are the refractive indices for the
incident and scattered light, respectively, and we
used a relation 7; coséf=n, cosb).

Noting that [n,/n; - 1] <1 and (o; — ayn, /n;)
> 0p(1 = n4 /n;) near the abgorption edge (a;> oy)
we find, from Eq. (A5),

I, 0pgdfd a;b
Iy~ a; - oyng/n; exp coseg)

X {1 - exp[— (ai -y %:) cobse‘l}} . (A6)

In the region far from the edge [(o; - a,n/n;)b/
cosb} «< 1], we obtain

Ls - (" (ﬁilo_T)_li ’

Iy~ 05dQ,b exp cos®’, cosb; (A7)
or

I1,/T%= 05dQb/cosb) (A8)

where I4 is the transmitted beam for the light polar-
ization in the same direction as the scattered light.
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