Derivation of a low-temperature expansion for the general-spin Ising model*

D. Saul[†]

Department of Physics, University of Illinois, Urbana, Illinois 61801

M. Ferer

Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (Received 15 July 1974)

The low-temperature finite-field free-energy expansion for the general-spin nearest-neighbor Ising model is derived. A method is presented which calculates the arbitrary spin polynomials directly from the spin-1/2 embeddings. These polynomials are tabulated for all of the common two- and three-dimensional lattices.

I. INTRODUCTION

The Hamiltonian for the spin-s nearest-neighbor Ising model may be written

$$\mathcal{W} = -J \sum_{(12)} S(1)S(2) - h \sum_{1} S(1) , \qquad (1.1)$$

where the spin at each site is normalized to unity, $S(1) = -1, -1 + 1/s, -1 + 2/s, \dots, 1 - 1/s, 1$. Numerical arguments label the sites of a regular lattice. The sum $\langle 12 \rangle$ is over nearest-neighbor pairs. The usual low-temperature high-field expansion for the free energy is

$$-\beta f = \frac{1}{N} \ln \operatorname{Tr} e^{-\beta \mathcal{X}} = \beta (h + \frac{1}{2} z J) + \sum_{n=1}^{\infty} L_n^{(s)}(u) \mu^n , \quad (1.2)$$

where $u \equiv e^{-\beta J/s^2}$ and $\mu \equiv e^{-\beta h/s}$. z is the coordination number of the lattice and N is the total number of lattice sites. The polynomials $L_n^{(s)}$ are explicitly dependent on both s and the lattice type. They contain integer powers of u, except when n, 2s, and z are all odd (in which case the powers of u that appear are half odd integer).

The techniques for calculating the low-temperature polynomials $L_n^{(1/2)}$ for the $s = \frac{1}{2}$ Ising model were pioneered by Domb¹ and Sykes² and have by now been refined to a high degree.³ Direct generalization of these techniques to spins $s > \frac{1}{2}$ involves graphs with multiple bonds and multiple occupations which become increasingly complicated as *s* grows. However, a number of polynomials $L_n^{(s)}$ have recently been calculated by these methods for s = 1 and $\frac{3}{2}$.⁴ A recent derivation⁵ of the expansion for $s = \frac{3}{2}$ outlines the general recipe for calculating the higher-spin polynomials, but does not make clear the simple structure of the expansion for general spin.

Our derivation shows that the high-field polynomials may be written,

$$(1/u)^{szn}L_n^{(s)}(u) = D_n^{(s)}(1/u) = \sum_{t=1}^{\min(n,2s)} D_{nt}(1/u) , \qquad (1.3)$$

where the polynomials $D_{nt}(1/u)$ are *independent* of

s and contain integer powers of 1/u. Only the polynomials D_{n1} are necessary for $s = \frac{1}{2}$. As s increases in the range $\frac{1}{2} < s < \frac{1}{2}n$, successively more polynomials enter. For $s > \frac{1}{2}n$, $D_n^{(s)}$ becomes independent of s, as shown in Table I. A variety of polynomials $D_{nt}(1/u)$ are presented in Appendix A for the more common lattices. Our method of calculation eliminates all multiple bonds and occupations. The topological information required is the ordinary $(s=\frac{1}{2})$ strong-embedding lattice constants.¹ Because of the structure of the expansion (1.3), the D_{n1} are already available from data for the $s = \frac{1}{2}$ Ising model.¹⁻³ Furthermore, the actual computation of the polynomials D_{nt} (*n* fixed, t > 1) becomes dramatically easier as t increases, and it is, in fact, quite easy to write down closed expressions for $D_{n,n}$, $D_{n,n-1}$ (n > 2), $D_{n,n-2}$ (n > 4), etc. (Appendix A). Rearrangement of the μ -grouped expansion (1.2) to give the *u*-grouped expansion in powers of u follows now-standard lines.²

II. DERIVATION

Consider a decomposition of the spin variable into 2s distinguishable particle occupation numbers,

$$S(1) = 1 - \frac{1}{s} \sum_{k=1}^{2s} k n_k(1) , \qquad (2.1)$$

with $\sum_{k=1}^{2s} n_k(1) = 0,1$, i.e., at most one particle per site. Substitution of (2.1) into (1.1) gives,

$$\mathcal{H} = -N(h + \frac{1}{2}zJ) + \frac{1}{s}(h + zJ)\sum_{1,k}kn_{k}(1) - \frac{J}{s^{2}}\sum_{\substack{\{12\}\\j,k}}jkn_{j}(1)n_{k}(2), \qquad (2.2)$$

 $Z = \mathrm{Tr}e^{-\beta \mathcal{K}}$

$$= Z_0 \sum_{\{n_k(1)\}} (u^{sz} \mu)^{\Sigma_{1,k} k n_k(1)} (1/u)^{\Sigma_{\{12\}} \Sigma_{j,k}^{[j]} j k n_k(1) n_k(2)},$$
(2.3)

where $Z_0 = e^{\beta N (h+zJ/2)}$. The sum $\sum_{\{n_k(1)\}}$ runs over

TABLE I. Contributing spin-independent free-energy polynomials for spin s to order μ^n : To calculate the low-temperature free energy for spin s to order μ^n requires all $D_{n't}$ such that $n' \leq n$ and $t \leq 2s$. The D_{n1} polynomials are simply calculated from the spin- $\frac{1}{2}$ free energy (column to the left of the heavy vertical line). The The $D_{n,n-1}$ $(l < \frac{1}{2}n)$ polynomials are easily calculated for general n (polynomials to the right of the heavy steplike line). Only the shaded D_{nt} must be calculated in detail.

all states of the system. For small T and large h(2,3) generates an expansion in powers of μ and $u^{1/2}$ about the perfectly ordered ground state [S(1) = +1 for all sites 1]. Each state $\{n_k(1)\}$ can be interpreted graphically: A type-k point denotes a site occupied by a type-k particle $[n_k(1)=1]$ and contributes a factor $(u^{s\,\varepsilon}\,\mu)^k$ [Fig. 1(a)]. Two occupied nearest-neighbor sites $n_j(1) = n_k(2) = 1$ are joined by a bond and contribute a factor $(1/u)^{jk}$ [Fig. 1(b)]. We denote by C the linear graph (with labeled vertices) or "point cluster" thus formed. The factors which each portion of the cluster contributes make up the weight of each state $\{n_k(1)\}$ in (2.3).

$$W[C] = (u^{sz} \mu)^{n[C]} (1/u)^{r[C]}, \qquad (2.4)$$

where

$$n[C] = \sum_{\text{vertices}} k \text{ and } r[C] = \sum_{\text{bonds}} jk$$
, (2.5)

i.e., n[C] is just the sum over C of the particletype number at each vertex and r[C] is the sum over all bonds of the product of the particle-type numbers at the bond endpoints. It is useful to index each graph $C_{pml\alpha}^n$, where n is given in (2.5). p and m are, respectively, the number of vertices and bonds in the graph C:

$$p = \sum_{1} \sum_{k=1}^{2s} n_{k}(1) ,$$

$$m = \sum_{i=2} \sum_{j=1}^{2s} \sum_{k=1}^{2s} n_{j}(1)n_{k}(2) .$$
(2.6)

l indexes the topologically distinct graphs (unlabeled vertices) corresponding to given p and m. Thus, p, m, l are a complete indexing of topologically distinct graphs with unlabeled vertices. The index α distinguishes between different particle-type designations at the vertices. Figure 2 gives some examples.

Many states $\{n_k(1)\}$ correspond to the same graph *C*, so each *C* appears in (2.3) with a multiplicity $\overline{\mathfrak{M}}[C]$ and

$$Z = Z_0 \sum_{C} \overset{(s)}{\overline{\mathfrak{M}}} [C] W[C] , \qquad (2.7)$$

where the sum ranges over all topologically distinct vertex-labeled graphs C (connected and disconnected) with particle types up to and including 2s. The multiplicity $\overline{\mathfrak{M}}[C]$ depends on lattice type and is an *i*th-order polynomial in N, where *i* is the number of disconnected parts of the cluster.⁶ $\overline{\mathfrak{M}}[C]$ may be written

$$\overline{\mathfrak{M}}[C] = E[C]/g[C]$$

or

 $\overline{\mathfrak{M}}_{pml\alpha} = E_{pml} / g_{pml\alpha} ,$

(2.8)

FIG. 2. Decomposition of various four-point topologically distinct clusters. The set of decorations shown contribute to D_{73} .

where E[C] is the number of strong embeddings of C in the lattice—i.e., the number of ways the C can be embedded on a given lattice such that no two points are nearest neighbors unless connected by a bond. E[C] is, therefore, lattice dependent but independent of the α index labeling the vertex decoration. g[C] is the symmetry factor of C—i.e., the number of distinct mappings of C onto itself. g[C] is lattice independent but decoration dependent.

The free energy is extensive, so the process of forming $\ln Z$ picks out the term in $\overline{\mathfrak{M}}[C]$ which is linear in N.¹ Thus

$$-\beta f = \frac{1}{N} \ln Z = \beta (h + \frac{1}{2} zJ) + \sum_{C} \int_{C} \Re[C] W[C] + O(1/N) ,$$
(2.9)

where⁷

$$\mathfrak{M}[C] = \frac{d}{dN} \overline{\mathfrak{M}}[C] \Big|_{N=0} \qquad (2.10)$$

In parallel with (2.8), we may also define

$$\mathfrak{M}[C] \equiv \mathcal{E}[C] / g[C]$$

and

$$\mathfrak{M}_{pml\alpha} = \mathcal{E}_{pml} / g_{pml\alpha} . \tag{2.11}$$

As with E[C], $\mathcal{E}[C]$ is independent of the vertex decoration and therefore the spin. It is therefore a point of some significance that the spin- $\frac{1}{2}$ embeddings can be used directly for the general-spin problem with no modifications.⁸

It is now an easy matter to derive Eqs. (1.2) and (1.3). Classification of the graphs C in (2.9) by n leads to

$$\mu^{n} L_{n}^{(s)}(u) = \sum_{\substack{C_{\alpha}^{n}(t \text{ ixed } n)}} \mathfrak{M} [C^{n}] W [C^{n}] . \qquad (2.12)$$

The spin dependence of (2.12) lies entirely in the restriction of the maximum particle-type number in C to 2s. Since every graph of type C^n carries a factor $(\mu u^{sz})^n$ from (2.5), the spin-independent polynomials can be readily identified:

$$(\mu u^{sz})^n D_{nt}(1/u) = \sum_{C^n, t} \mathfrak{M}[C^n] W[C^n] , \qquad (2.13)$$

where the sum now runs over all graphs C^n which have at least one type-t vertex but none of type number higher than t. Thus, the calculation of D_{nt} requires embeddings for graphs with up to (n - t + 1). vertices only. For example, the only graph to contribute to D_{nn} is the single n-point [Fig. 1(c)], so $D_{nn}(1/u) = 1$ for all lattices. Similarly, the only two graphs contributing to $D_{n,n-1}$ have $\mathscr{E}[C\{\text{Fig.} 1(c)\}] = -z - 1$ and $\mathscr{E}[C\{\text{Fig.} 1(c)\}] = z$ so

$$D_{n,n-1}(1/u) = -(z+1) + z(1/u)^{n-1}, \quad n > 2.$$

The calculation of $D_{n,n-2}$ and $D_{n,n-3}$ is given in Appendix A. In fact, as long as $q < \frac{1}{2}n$, the coefficients in $D_{n,n-q}$ (but not the powers of 1/u which they multiply) are *independent* of n. This is so, because, provided $q < \frac{1}{2}n$, the graphs contributing to $D_{n,n-q}$ have exactly one type-(n-q) vertex. As n increases (at fixed q), the type number of this vertex increases, but, otherwise, all graphs, embeddings, and symmetry factors are unchanged.

For purposes of calculation $D_{nt}(1/u)$ can be expressed in terms of the embeddings

$$D_{nt}(1/u) = \sum_{C^{n}, t} \frac{\mathcal{E}_{pm1}}{\mathcal{E}_{pm1\alpha}} (1/u)^{r_{pm1\alpha}} , \qquad (2.14)$$

where

$$\sum_{1}n_{t}(1)\geq 1$$

and

$$\sum_{1} n_{t'>t}(1) = 0$$

The 1-5 point $C_{pm1\alpha}^n$, \mathcal{S}_{pm1} , $g_{pm1\alpha}$, and $r_{pm1\alpha}$ are presented in Appendix B for all of the common twoand three-dimensional lattices. Through order μ^6 , the six-point clusters enter only in the $\alpha = 1$ state (all particles equivalent). Therefore all that is required for the spin-s free energy through order μ^6 are the five-point clusters and the $L_6^{(1/2)}$ polynomial. Since only the five-point clusters are available, the calculation of the spin-s free energy through order μ^7 requires the $L_7^{(1)}$ polynomial in addition to $L_7^{(1/2)}$.

III. CONSISTENCY

The high-temperature finite-field series provides certain constraints^{9,10} on the coefficients of the lowtemperature polynomials. For spin $\frac{1}{2}$, these constraints were used to calculate the coefficients. For the general-spin case, they may act as a check. In practice these constraints reduce to evaluating both the high- and low-temperature finite-field free energies in the limit of $h \rightarrow \infty$. In this limit (where both series are valid), we can compare the coefficients of $(J/T) \mu$.¹¹ Given our method of derivation, the coefficients of the low-temperature polynomials are completely uncorrelated, therefore agreement with the high-temperature series through order $(J/T)^{3}\mu^{7}$ is a strong check.

The low-temperature free-energy polynomials for S = 1, $\frac{3}{2}$ are also in agreement with Fox and Gaunt.⁴ Our series could be easily extended via extant,³ but unpublished, higher-order spin- $\frac{1}{2}$ lattice constants and clusters.

ACKNOWLEDGMENTS

We would like to thank Dr. E. Flowers and Dr. P. Visscher for an independent check on some of the embeddings and Professor Michael Wortis for many useful discussions.

APPENDIX A

Spin-independent polynomials $D_{nt}(1/u)$ required for the spin-s low-temperature free energy on all common two- and three-dimensional lattices through μ^7 .

(a) Honeycomb:

$$\begin{split} D_{nn}(1/u) &= 1 \,, \\ D_{n,n-1}(1/u) &= -4 + 3/u^{n-1}, \ n > 2 \\ D_{n,n-2}(1/u) &= 15 - 9/u - 18/u^{n-2} + 6/u^{n-1} + 6/u^{2n-4}, \ n > 4 \\ D_{n,n-2}(1/u) &= -64 + 102/u - 42/u^2 + 84/u^{n-3} - 87/u^{n-2} \\ &\quad + 21/u^{n-1} - 42/u^{2(n-3)} + 12/u^{2n-5} \\ &\quad + 6/u^{2(n-2)} + 10/u^{3(n-3)}, \ n > 6 \\ D_{21}(1/u) &= -2 + 1\frac{1}{2}/u \,, \\ D_{31}(1/u) &= 6\frac{1}{3} - 9/u + 3/u^2, \\ D_{41}(1/u) &= -24\frac{1}{2} + 51/u - 33\frac{3}{4}/u^2 + 7/u^3, \\ D_{51}(1/u) &= 106\frac{1}{5} - 291/u + 288/u^2 - 121/u^3 + 18/u^4 \\ D_{61}(1/u) &= -495\frac{1}{6} + 1681\frac{1}{2}/u - 2212\frac{1}{2}/u^2 + 1400\frac{1}{2}/u^3 \\ &\quad -421\frac{1}{2}/u^4 + 46\frac{1}{2}/u^5 + \frac{1}{2}/u^6 \,, \\ D_{71}(1/u) &= 2428\frac{1}{7} - 9831/u + 16128/u^2 - 13647/u^3 \\ &\quad + 6225/u^4 - 1422/u^5 + 116/u^6 + 3/u^7 \,, \\ D_{42}(1/u) &= 17 - 9/u - 18/u^2 + 6/u^3 + 4\frac{1}{2}/u^4 \\ D_{52}(1/u) &= -79 + 102/u + 60/u^2 - 87/u^3 - 15/u^4 \end{split}$$

$$\begin{split} &+12/u^{5}+7/u^{6},\\ D_{62}(1/u) &= 390\frac{1}{3}-822/u+69/u^{2}+716/u^{3}-240/u^{4}\\ &-139\frac{1}{2}/u^{5}-4/u^{6}+18/u^{7}+12/u^{8},\\ D_{63}(1/u) &= -62+102/u-42/u^{2}+84/u^{3}-87/u^{4}+21/u^{5}\\ &-42/u^{6}+12/u^{7}+6/u^{8}+8\frac{1}{2}/u^{9},\\ D_{72}(1/u) &= -2007+5853/u-3546/u^{2}-3874/u^{3}\\ &+4245/u^{4}+114/u^{5}-695/u^{6}-123/u^{7}\\ &-24/u^{8}+36/u^{9}+21/u^{10},\\ D_{73}(1/u) &= 275-771/u+651/u^{2}-514/u^{3}+753/u^{4}\\ &-480/u^{5}+282/u^{6}-198/u^{7}+6/u^{8}-55/u^{9}\\ &+27/u^{10}+12/u^{11}+12/u^{12}.\\ \end{split}$$

$$D_{n,n-1}(1/u) = -5 + 4/u^{n-1}, \quad n > 2$$

$$D_{n,n-2}(1/u) = 26 - 16/u - 32/u^{n-2} + 12/u^{n-1} + 10/u^{2n-4}, n > 4$$

$$D_{n,n-3}(1/u) = -152 + 236/u - 94/u^{2} + 204/u^{n-3} - 216/u^{n-2} + 52/u^{n-1} - 94/u^{2(n-3)} + 28/u^{2n-5} + 16/u^{2(n-2)} + 20/u^{3(n-3)}, \quad n > 6$$

$$\begin{split} D_{21}(1/u) &= -\frac{2}{2} + 2/u ,\\ D_{31}(1/u) &= 10\frac{1}{3} - 16/u + 6/u^2 ,\\ D_{41}(1/u) &= -52\frac{1}{4} + 118/u - 85/u^2 + 18/u^3 + 1/u^4 ,\\ D_{51}(1/u) &= 295\frac{1}{5} - 872/u + 926/u^2 - 400/u^3 + 43/u^4 \\ &+ 8/u^5 ,\\ D_{61}(1/u) &= -1789\frac{5}{6} + 6520/u - 9144/u^2 + 5992\frac{2}{3}/u^3 \\ &- 1651/u^4 + 30/u^5 + 40/u^6 + 2/u^7 ,\\ D_{71}(1/u) &= 11397\frac{1}{7} - 49328/u + 85954/u^2 - 75640/u^3 \\ &+ 33609/u^4 - 5664/u^5 - 486/u^6 \\ &+ 136/u^7 + 22/u^8 ,\\ D_{42}(1/u) &= 28\frac{1}{2} - 16/u - 32/u^2 + 12/u^3 + 8/u^4 ,\\ D_{52}(1/u) &= -178 + 236/u + 142/u^2 - 216/u^3 - 32/u^4 \\ &+ 28/u^5 + 20/u^6 ,\\ D_{62}(1/u) &= 1172\frac{5}{6} - 2498/u + 178/u^2 + 2304/u^3 - 794/u^4 \\ &- 420/u^5 - 62/u^6 + 72/u^7 + 43/u^8 + 4/u^9,\\ D_{51}(1/u) &= -1401 + 826/u - 24/u^2 - 824/u^3 - 816/u^4 + 4/u^4 - 420/u^4 - 806/u^4 - 806/u^4$$

$$D_{63}(1/u) = -149\frac{1}{2} + 236/u - 94/u^{2} + 204/u^{3} - 216/u^{4} + 52/u^{5} - 94/u^{6} + 28/u^{7} + 16/u^{8} + 18/u^{9},$$
$$D_{72}(1/u) = -7996 + 23464/u - 13928/u^{2} - 16708/u^{3}$$

$$+ 18067/u^{4} + 168/u^{5} - 2342/u^{6} - 852/u^{7}$$
$$- 133/u^{8} + 136/u^{9} + 104/u^{10} + 16/u^{11} + 4/u^{12}$$

 $D_{73}(1/u) = 911 - 2380/u + 1922/u^2 - 1656/u^3 + 2442/u^4$ $-1500/u^{5}+856/u^{6}-588/u^{7}-22/u^{8}$ $-136/u^{9}+76/u^{10}+36/u^{11}+39/u^{12}$. (c) Triangular: $D_{nn}(1/u)=1,$ $D_{n,n-1}(1/u) = -7 + 6/u^{n-1}, n > 2$ $D_{n,n-2}(1/u) = 51 - 30/u - 60/u^{n-2} + 18/u^{n-1} + 15/u^{2n-4}$ $+6/u^{2n-3}$, n>4 $D_{n,n-3}(1/u) = -410 + 576/u - 177/u^2 - 24/u^3 + 516/u^{n-3}$ $-480/u^{n-2}+78/u^{n-1}+12/u^n-177/u^{2(n-3)}$ $-18/u^{2n-5}+42/u^{2(n-2)}+6/u^{2n-3}+26/u^{3(n-3)}$ $+12/u^{3n-8}+18/u^{3n-7}$, n>6 $D_{21}(1/u) = -3\frac{1}{2} + 3/u$, $D_{31}(1/u) = 19\frac{1}{3} - 30/u + 9/u^2 + 2/u^3$, $D_{41}(1/u) = -129\frac{3}{4} + 288/u - 178\frac{1}{2}/u^2 + 5/u^3$ $+12/u^{4}+3/u^{5}$, $D_{51}(1/u) = 971\frac{1}{5} - 2796/u + 2637/u^2 - 680/u^3 - 177/u^4$ $+18/u^{5}+21/u^{6}+6/u^{7}$, $D_{61}(1/u) = -7796\frac{2}{3} + 27555/u - 34920/u^2 + 16807/u^3$ $-136\frac{1}{2}/u^4 - 1320/u^5 - 278/u^6 + 33/u^7$ $+42/u^{8}+14/u^{9}$, $D_{71}(1/u) = 65718\frac{1}{7} - 275184/u + 437997/u^2 - 307476/u^3$ $+63870/u^{4}+21168/u^{5}-3007/u^{6}-2682/u^{7}$ $-564/u^{8}+24/u^{9}+105/u^{10}+30/u^{11}+1/u^{12}$, $D_{42}(1/u) = 54\frac{1}{2} - 30/u - 60/u^2 + 18/u^3 + 12/u^4 + 6/u^5,$ $D_{52}(1/u) = -461 + 576/u + 399/u^2 - 504/u^3 - 78/u^4$ $-6/u^{5}+44/u^{6}+18/u^{7}+12/u^{8}$, $D_{62}(1/u) = 4096\frac{5}{6} - 8100/u - 516/u^2 + 7780/u^3$ $-1947/u^{4} - 936/u^{5} - 515/u^{6} - 18/u^{7}$ $+6/u^{8}+81/u^{9}+45/u^{10}+18/u^{11}+5/u^{12}$, $D_{63}(1/u) = -406\frac{1}{2} + 576/u - 177/u^2 + 492/u^3 - 480/u^4$ $+78/u^{5}-165/u^{6}-18/u^{7}+42/u^{8}+29/u^{9}$ $+12/u^{10}+18/u^{11}$, $D_{72}(1/u) = -37587 + 101832/u - 43227/u^2 - 86324/u^3$ $+67551/u^{4}+6492/u^{5}-2860/u^{6}-4404/u^{7}$ $-996/u^{8} - 732/u^{9} - 147/u^{10} + 126/u^{11}$ $+120/u^{12}+90/u^{13}+48/u^{14}+12/u^{15}+6/u^{16}$ $D_{73}(1/u) = 3415 - 7812/u + 5076/u^2 - 4694/u^3$ $+7413/u^{4} - 3672/u^{5} + 1605/u^{6} - 756/u^{7}$

 $-525/u^{8}-170/u^{9}-48/u^{10}-60/u^{11}$ $+99/u^{12}+48/u^{13}+45/u^{14}+24/u^{15}+12/u^{16}$. (d) Diamond: $D_{nn}(1/u)=1,$ $D_{n,n-1}(1/u) = -5 + 4/u^{n-1}, n > 2$ $D_{n,n-2}(1/u) = 26 - 16/u - 32/u^{n-2} + 12/u^{n-1}$ $+10/u^{2n-4}, n > 4$ $D_{n,n-3}(1/u) = -156 + 244/u - 98/u^2 + 212/u^{n-3}$ $-232/u^{n-2}+60/u^{n-1}-98/u^{2(n-3)}$ $+36/u^{2n-5}+12/u^{2(n-2)}+20/u^{3(n-3)}$, n>6 $D_{21}(1/u) = -2\frac{1}{2} + 2/u$, $D_{31}(1/u) = 10\frac{1}{3} - 16/u + 6/u^2$, $D_{41}(1/u) = -53\frac{1}{4} + 122/u - 91/u^2 + 22/u^3$, $D_{51}(1/u) = 311\frac{1}{5} - 944/u + 1054/u^2 - 512/u^3 + 91/u^4$, $D_{61}(1/u) = -1971\frac{5}{6} + 7442/u - 11058/u^2 + 8066\frac{2}{3}/u^3$ $-2877/u^{4}+396/u^{5}+2/u^{6}$, $D_{71}(1/u) = 13215\frac{1}{7} - 59640/u + 110586/u^2 - 107608/u^3$ $+57749/u^{4}-16072/u^{5}+1746/u^{6}+24/u^{7}$, $D_{42}(1/u) = 28\frac{1}{2} - 16/u - 32/u^2 + 12/u^3 + 8/u^4$, $D_{52}(1/u) = -182 + 244/u + 146/u^2 - 232/u^3 - 28/u^4$ $+36/u^{5}+16/u^{6}$, $D_{62}(1/u) = 1246\frac{5}{6} - 2710/u + 254/u^2 + 2576/u^3$ $-1014/u^4 - 508/u^5 + 46/u^6 + 72/u^7 + 37/u^8$, $D_{63}(1/u) = -153\frac{1}{2} + 244/u - 98/u^2 + 212/u^3 - 232/u^4$ $+60/u^{5} - 98/u^{6} + 36/u^{7} + 12/u^{8} + 18/u^{9}$ $D_{72}(1/u) = -8932 + 26936/u - 17236/u^2 - 18876/u^3$ $+22907/u^{4}-704/u^{5}-4042/u^{6}-364/u^{7}$ $+31/u^{8}+192/u^{9}+88/u^{10}$, $D_{73}(1/u) = 979 - 2588/u + 2142/u^2 - 1872/u^3$ $+2802/u^{4}-1820/u^{5}+1032/u^{6}-772/u^{7}$ $+102/u^{8} - 168/u^{9} + 96/u^{10} + 36/u^{11} + 31/u^{12}$. (e) Simple cubic: $D_{n,n}(1/u) = 1$, $D_{n,n-1}(1/u) = -7 + 6/u^{n-1}, n > 2$ $D_{n,n-2}(1/u) = 57 - 36/u - 72/u^{n-2} + 30/u^{n-1}$ +21/u, $^{2n-4}n > 4$ $D_{n,n-3}(1/u) = -530 + 810/u - 315/u^2 + 738/u^{n-3}$ $-828/u^{n-2}+216/u^{n-1}-315/u^{2(n-3)}$

$$+126/u^{2n-5} + 42/u^{2(n-2)} + 56/u^{3(n-3)} n > 6$$

$$\begin{split} D_{21}(1/u) &= -3\frac{1}{2} + 3/u , \\ D_{31}(1/u) &= 21\frac{1}{3} - 36/u + 15/u^2 , \\ D_{41}(1/u) &= -162\frac{3}{4} + 405/u - 328\frac{1}{2}/u^2 + 83/u^3 + 3/u^4 , \\ D_{51}(1/u) &= 1406\frac{1}{5} - 4608/u + 5532/u^2 - 2804/u^3 \\ &\quad + 426/u^4 + 48/u^5 , \\ D_{61}(1/u) &= -13150\frac{2}{3} + 53370/u - 84738/u^2 + 64574/u^3 \\ &\quad - 22144\frac{1}{2}/u^4 + 1575/u^5 + 496/u^6 + 18/u^7 , \\ D_{71}(1/u) &= 129919\frac{1}{7} - 628236/u + 1240035/u^2 \\ &\quad - 1261904/u^3 + 674652/u^4 - 157380/u^5 \\ &\quad - 1360/u^6 + 3888/u^7 + 378/u^8 + 8/u^9 , \\ D_{42}(1/u) &= 60\frac{1}{2} - 36/u - 72/u^2 + 30/u^3 + 18/u^4 , \\ D_{52}(1/u) &= -587 + 810/u + 495/u^2 - 828/u^3 - 78/u^4 \\ &\quad + 126/u^5 + 62/u^6 , \\ D_{62}(1/u) &= 6075\frac{5}{6} - 13419/u + 1149/u^2 + 13534/u^3 \\ &\quad - 5550/u^4 - 2544/u^5 + 61/u^6 + 474/u^7 \\ &\quad + 207/u^8 + 12/u^9 , \\ D_{63}(1/u) &= -526\frac{1}{2} + 810/u - 315/u^2 + 738/u^3 - 828/u^4 \\ &\quad + 216/u^5 - 315/u^6 + 126/u^7 + 42/u^8 + 53/u^9 , \\ D_{72}(1/u) &= -65493 + 199656/u - 126729/u^2 \\ &\quad - 150140/u^3 + 182112/u^4 - 8742/u^5 \\ &\quad - 27691/u^6 - 5916/u^7 + 429/u^8 + 1650/u^9 \\ &\quad + 756/u^{10} + 96/u^{11} + 12/u^{12} , \\ D_{73}(1/u) &= 5206 - 13014/u + 10365/u^2 - 9836/u^3 \\ &\quad + 14877/u^4 - 9414/u^5 + 5175/u^6 - 3870/u^7 \\ &\quad + 405/u^8 - 644/u^9 + 432/u^{10} + 174/u^{11} \\ &\quad + 144/u^{12} . \end{split}$$

(f) Body-centered cubic:

$$\begin{split} D_{nn}(1/u) &= 1 \,, \\ D_{n,n-1}(1/u) &= -9 + 8/u^{n-1}, \ n > 2 \\ D_{n,n-2}(1/u) &= 100 - 64/u - 128/u^{n-2} + 56/u^{n-1} \\ &\quad + 36/u^{2n-4}, \ n > 4 \\ D_{n,n-3}(1/u) &= -1256 + 1896/u - 724/u^2 + 1768/u^{n-3} \\ &\quad - 2000/u^{n-2} + 520/u^{n-1} - 724/u^{2(n-3)} \\ &\quad + 296/u^{2n-5} + 104/u^{2(n-2)} , \\ &\quad + 120/u^{3(n-3)} n > 6 \\ D_{21}(1/u) &= -4\frac{1}{2} + 4/u \,, \\ D_{31}(1/u) &= 36\frac{1}{3} - 64/u + 28/u^2 \,, \\ D_{41}(1/u) &= -366\frac{1}{4} + 948/u - 798/u^2 + 204/u^3 + 12/u^4 \,, \\ D_{51}(1/u) &= 4174\frac{1}{5} - 14184/u + 17592/u^2 - 9072/u^3 \end{split}$$

$$\begin{aligned} &+1262/u^{4}+216/u^{5}+12/u^{6},\\ D_{61}(1/u) = -51444\frac{1}{2}+216036/u - 353640/u^{2}\\ &+275021\frac{1}{3}/u^{3} - 92992/u^{4}+4312/u^{5}\\ &+2368/u^{6}+312/u^{7}+27/u^{8},\\ D_{71}(1/u) = 669438\frac{1}{7} - 3344712/u + 6798900/u^{2}\\ &-7072736/u^{3}+3795726/u^{4} - 833064/u^{5}\\ &-36348/u^{6}+17616/u^{7}+4404/u^{8}+704/u^{9}\\ &+72/u^{10},\\ D_{42}(1/u) = 104\frac{1}{2} - 64/u - 128/u^{2} + 56/u^{3} + 32/u^{4},\\ D_{52}(1/u) = -1356 + 1896/u + 1172/u^{2} - 2000/u^{3}\\ &-168/u^{4}+296/u^{5} + 160/u^{6},\\ D_{62}(1/u) = 18709\frac{5}{6} - 41604/u + 3324/u^{2} + 43136/u^{3}\\ &-17964/u^{4} - 7816/u^{5} - 164/u^{6} + 1616/u^{7}\\ &+690/u^{8}+72/u^{9},\\ D_{63}(1/u) = -1251\frac{1}{2} + 1896/u - 724/u^{2} + 1768/u^{3}\\ &-2000/u^{4} + 520/u^{5} - 724/u^{6} + 296/u^{7}\\ &+104/u^{8} + 116/u^{9},\\ D_{72}(1/u) = -268390 + 821592/u - 517704/u^{2}\\ &-639592/u^{3} + 773372/u^{4} - 44040/u^{5}\\ &-107360/u^{6} - 30440/u^{7} + 1652/u^{8}\\ &+6672/u^{9} + 3476/u^{10} + 624/u^{11} + 138/u^{12},\\ D_{73}(1/u) = 16694 - 40656/u + 31692/u^{2} - 31320/u^{3}\\ &+47600/u^{4} - 29664/u^{5} + 16076/u^{6}\\ &-11960/u^{7} + 1036/u^{8} - 1728/u^{9} + 1276/u^{10}\\ &+512/u^{11} + 442/u^{12}.\\ (g) Face-centered cubic:\\ D_{m}(1/u) = 1,\\ D_{n,n-1}(1/u) = -13 + 12/u^{n-1}, n > 2\\ D_{n,n-2}(1/u) = 198 - 120/u - 240/u^{n-2} + 84/u^{n-1} \end{aligned}$$

$$\begin{split} &+54/u^{2n-4}+24/u^{2n-3}, \ n>4\\ D_{n,n-3}(1/u) &= -3368+4644/u - 1362/u^2 - 200/u^3\\ &+4404/u^{n-3} - 4368/u^{n-2} + 780/u^{n-1}\\ &+120/u^n - 1362/u^{2(n-3)} - 36/u^{2n-5}\\ &+336/u^{2(n-2)} + 48/u^{2n-3} + 140/u^{3(n-3)}\\ &+120/u^{3n-8} + 96/u^{3n-7} + 8/u^{3(n-2)}, \ n>6\\ D_{21}(1/u) &= -6\frac{1}{2} + 6/u,\\ D_{31}(1/u) &= 70\frac{1}{3} - 120/u + 42/u^2 + 8/u^3,\\ D_{41}(1/u) &= -944\frac{1}{4} + 2322/u - 1653/u^2 + 126/u^3 \end{split}$$

$$(1/u) = 70\frac{1}{3} - 120/u + 42/u^{2} + 8/u^{3},$$

$$(1/u) = -944\frac{1}{4} + 2322/u - 1653/u^{2} + 126/u^{4} + 123/u^{4} + 24/u^{5} + 2/u^{6},$$

APPENDIX B

Clusters $C_{pml\alpha}^n$, symmetries $g_{nml\alpha}$, powers $r_{nml\alpha}$, and embeddings \mathcal{E}_{pml} for the spin-independent polynomials through μ^5 . The addition clusters allowing us to extend the series through μ^7 , given the spin- $\frac{1}{2}$ and -1 low-temperature polynomials, are also presented.

 $Key: \bullet = 0, \quad \bullet = 3, \quad \bullet = 3, \quad \circ = n, \quad \Delta = n-1, \quad \Box = n-2, \quad \diamond = n-3$

	\mathbf{D} (1/m)										
	$\frac{D_{p1}(1/d)}{2}$				•	•	•	•	•		
	c ^p pmil	•	••	• •	$-\Delta$		•••	• •			
	g _{pml1}	1	2	2	6	2	2	6	24	4	8
	rpmll	0	1	0	3	2	1	0	6	5	4
	Honeycomb	1	3	-4	0	6	-18	38	0	0	0
	Simple Quadratic	1	4	-5	0	12	-32	62	0	0	8
	Triangle	1	6	-7	12	18	-60	116	0	12	0
enn!	Diamond	1	4	-5	0	12	- 32	62	0	0	0
-	Simple Cubic	1	6	-7	0	30	-72	128	0	0	24
	Body Centered Cubic	1	8	-9	0	56	-128	218	0	0.	96
	Face Centered Cubic	1	12	-13	48	84	-240	422	48	96	24
	C ^p pmll	N		4	5	•-•	••	••	•••		
	g ^m l1	2	2	6	6	8	2	4	24	8	4
	r pmll	4	3	3	3	2	2	1	0	8	8
	Honeycomb	0	12	6	0	-78	-48	204	-588	0	. 0
	Simple Quadratic	0	28	24	0	-184	-124	472	-1254	0	0
	Triangle	24	54	12	-144	-492	-234	1152	-3114	0	0
epml.	Diamond	0	36	24	0	-200	-132	488	-1278	0	0
• •	Simple Cubic	0	126	120	0	-684	-486	1620	-3906	0	0.
	Body Centered Cubic	0	296	336	0	-1616	-1192	3792	-8790	0	0
	Face Centered Cubic	240	564	264	-1200	-4248	-2244	9288	-22662	48	96

	C ^p pml 1				X •				1-1	1 •	N •
	g _{pml1}	2	6	12	24	2	2	2	8	2	2
	rpm@l	7	7	6	6	6	6	6	6	5	5
	Honeycomb	0	0	0	0	0	0	0	0	0	0
	Simple	0	0	0	0	0	0	0	0	16	0
	Triangle	12	0	0	0	0	12	24	24	0	72
e	Diamond	0	0	0	0	0	0	0	0	0	0
piaz	Simple Cubic	0	0	0	0	0	0	0	0	96	0
	Body Centered Cubic	0	0	144	0	0	0	0	0	432	0
	Face Centered Cubic	144	144	0	-1344	48	336	480	576	96	584
	c ^p pmil	17.	14	11•	11.				5	×	<u>.</u>
	g _{pml1}	2	4	4	8	12	2	2	2	24	12
	rpmll	5	5	5	4	4	4	4	4	4	3
	Honeycomb	0	0	0	0	0	0	24	12	0	0
	Simple	0	0	0	-96	0	0	68	40	24	0
	Triangle	48	0	-168	0	-1152	-360	162	36	0	3024
e {	Diamond	0	0	0	0	0	0	108	72	24	0
Purt	Simple Cubic	0	0	0	-480	0	0	534	408	360	0
	Body Centered Cubic	0	0	0	-2400	0	0	1640	1344	1680	0
l	Face Centered Cubic	1152	384	-2880	-720	-20736	-7584	3804	1656	216	51936
	C ^p pml1	N•		•••	••••••	•••	•••				
	g _{pml1}	6	2	4	8	4	12	120			
	rpmll	. 3	3	3	2	2	1	0			
	Honeycomb	-60	-120	-204	1032	636	-3492	12744			
	Simple	-288	-360	-688	3216	2096	-10464	35424			
	Triangle	-192	-864	-1872	10800	5148	-33552	116544			
en,	Diamond	-336	-504	-816	3632	2400	-11328	37344			
խուջ	Simple Cubic	-2352	-2580	-4488	18552	12852	-55296	168744			
	Body Centered Cubic	-8496	-8016	-14592	58272	41232	-170208	500904			
	Face Centered Cubic	-8688	-18888	-38928	192048	101136	-549504	1716384			

$D_{nn}(1/u)$		$D_{n,n-1}^{(1/2)}$	$D_{n,n-1}(1/u), n \ge 2$			
c ⁿ pmla	o	c ⁿ pmla	∆●	$\Delta \bullet$		
^g nmla	1	g _{nmla}	1	1		
r _{nmla}	0	r _{nmla}	n-l	0		

D _{n,n-2} (1	L/u), n>4									
c ⁿ pmla	□▲		\checkmark	₽.	$\mathbf{\Lambda}$	□ ●●	● ⊡●	••		
^g nmla	1	1	2	2	1	2	1	2		
rnmla	2n-4	0	2n-3	2n-4	n-1	1	n-2	0		
D _{n,n-3} (1/u),n > 6		<u>^</u>	^	•	•	^		•	
C ⁿ pmla	◇─■	◇ ■	Δ		\sim	\sim	• -	⊷	▲ →	• •
^g nmla	1	1	1	1	1	1	1	1	1	1
r _{nmla}	3(n-3)	0	3n-7	3(n-3)	2(n-2)	n-1	2	n-3	2(n-3)	0
C ⁿ pmℓα	囟				N		N		.	%
g _{nmla}	6	2	2	2	2	1	2	1	1	6
r _{nmla}	3(n-2)	2n-3	3n-7	2(n-2)	n	2(n-2)	3n-8	n-1	2n-5	3(n-3)

c ⁿ pmlα	2	2	N° *	• •	•	•	>	● ● ◇ →●	♦●	
g _{nmla}	2	2	6	2	1 2	2	2	2	6	
rnmla	n-1	2n-5	3 n	-2 r	1-2 2(n-	3) 2	1	n-3	0	
D ₄₂ (1/u)					_					
c_{pmla}^n	▲▲		\mathbf{A}	Λ	$\mathbf{\Lambda}$	•-•	•	•••		
g_{nmla}	2	2	2	2	1	2	1	2		
r_{nmla}	4	0	5	4	3	1	2	0		
$\frac{D_{52}(1/u)}{2}$	•	•	•	•	•	-	• •		~ ^	
c ⁿ pmla	Δ	\sim	~ ` ``	A - A	•••		X	N	N	
^g nmla	2	2	1	2	1	2	6	2	2	2
rnmla	8	4	6	4	2	0	9	8	7	6
c" pmla	N	N	N	11	11	4			1	A-0
g _{nmla}	2	l	2	1	1	6	2	2	6	2
rnmla	5	6	7	4	5	6	4	5	3	3
o ⁿ	▲ •	•	•	A •	• •	A •				
^g pmlα	● ●	A -•	•••	•••	A -•	••				
r _{nmla}	3	4	2	1	2	0				
D ₆₂ (1/u)										
c ⁿ pmla	\mathbf{A}	$\mathbf{\Lambda}$					M		* *	
$g_{nml\alpha}$	6	2	2	6	4	1	4	4	2	4
r _{nmlα}	12	8	4	0	13	11	12	9	9	8
c ⁿ pmla	11	N	N	N	11	11	11		14	
^g nmla	1	1	2	2	2	1	2	1	2	· 2
r _{nmla}	7	10	9	9	5	7	8	6	8	5
cn	* •	▲ ▲	▲-▲	▲-●	A ² •	▲ ▲	4 •	• •		A •
ັpmlα α	▲ →●	∳ ->•	•-•	A-0	A -•	.		▲ ●	●●	▲-●
^r nmla2 r	2	2	4	2	1	- 3	2	2	4	1
	-	Ū	Ū		Ū	·				
$c_{pml\alpha}^n$	••	A A • •	X						M	M
g_{nmla}	4	4	8	2	2	2	4	1	2	1
rnmla	4	0	12	11	11	12	10	9	11	10
c ⁿ pmla				I	M	X •	⊠ ▲			
^g nmla	2	6	6	6	4	6	24	1	1	2
rnmla	10	8	11 /	9	8	9	6	8	9	8

c ⁿ pmla	*				M •		N •	M •		M
g _{nmla}	1	2	2	2	1	2	2	2	2	8
rnmla	8	10	7	9	9	7	8	9	8	10
cn		• •	••	•••					AA	• 🔊
q	00	• -•	.	A - 9	● → ●	• * *	• •	● • =	ĕ - ∳ [−]	<i>K</i> -• •
^r nmla	1	2	2	2	1	2	2	2	1	1
	·	Ŭ		,	,	5	,	0	Ŭ	0
c ⁿ	• •			• •	A6	6-6	66	A	AA	
pmla	4		Ъ.		¥•	4 •	₩ ▲			
^g nmla	2	2	4	2	2	2	4	2	8	4
nmla	7	7	9	6	7	8	5	6	4	6
n	• •			• •	• •		• •	• •		• •
omla		$\mathbf{N} \bullet$	• 14	₽•	▶ ▲					\mathcal{N}_{\bullet}
^g nmla	6	1	2	2	2	1	1	2	1	2
rnmla	5	6	7	5	4	5	6	6	5	7
c ⁿ pmla			\mathbf{X}	X	•		N •		1 •	1 •
g _{nmla}	2	2	6	24	4	6	6	6	2	1
r _{nmla}	6	5	5	8	5	3	6	3	4	4
c ⁿ	• • •	• • •	4 •	• •	•	A-0	•••	• •	* • _	••
g	A -•	•-• -	•-• •	* • •	•••	•••	•••	•••	•••	A -• •
rnmla	5	2	2	4	2	2	8	2	2	4
						Ū	-	-	5	1
c ⁿ pmla		• • • • •	•••							
^g nmla	4	6	24							
rnmla	1	2	0							
D ₆₃ (1/u)										
cnnea	88	8 8	٨	⋏	A	.∧	•	▲		
g.m.la	2	2	•	A •	.		₽ ▲	•	• A	•
r _{nmla}	9	0	11	. 9	8	5	6	3	2	0
n	H 9	₩●	•••	• - #				• •	• •	• •
c _{pmlα}	↓ X↓	↓ ↓		↓ ↓	\mathbf{b}	↓ ∖		• -•		4
^g nmla	6	2	2	2	2	1	2	1	1	6
rnmla	12	11	9	8	6	8	10	5	7	9

c ⁿ pmla	4	5		₩0 ₩0	∎ • ••	•••	• •	₩ • ••	• • 8-•	E • • •
^g nmla	2	2	6	2	1	2	2	2	2	6
r _{nmla}	5	7	3	4	4	6	2	1	3	0
D ₇₃ (1/u)										
C ⁿ pmla				$\mathbf{\Lambda}$			9 1993	92 012		▲ ▲—∎
g_{nmla}	2	2	2	1	2	1	2	1	2	1
r _{nmla}	15	16	6	12	12	10	9	3	4	6
cn	٠		¶ ≿†	₽∖₽	₽\ ₽		₽ .¶	₩-♠	₽ - ₽	₹ . •
gunda		A A	€ _€ 2	••• 1	• *	▲ ••	• *	•-•	• •	▲ >●
rnmla	0	0	17	15	16	11	14	12	10	12
					A B		- 4			
C ^{II} pmla	N	N	N	N	\mathbf{N}	N	I.I	II.	I.J	
^g nmla	1	1	2	1	2	1	1	1	1	1
rnmla	13	9	13	14	11	8	6	7	9	8
c ⁿ pmla	11	1 1	•		V		N		B0	B-A
g _{nmla}	1	1	2	1	2	2	2	1	1	•• 2
r _{nmla}	11	10	12	6	10	5	7	11	5	7
c ⁿ pmla				• •	••		1.			••
g _{nmla}	1	1	1	2	1	1	2	2	i	2
•r _{nmla}	4	5	8	6	9	3	4	1	.2	6
c ⁿ pmla	A •			M	X >	X >		M	Þſ	M
g _{nmla}	1	2	8	2	2	2	4	1	1	2
r _{nmla}	3	0	16	14	14	16	12	11	13	15
c ⁿ pmla				Ţ₌₹	₽ <u></u> ₽₽		₩ .	₽₽	₽ -₽.s	₽ - ₽ -∎
g _{nmla}	2	6	6 → 6	4	₫ ~•• 6	6 €	24	1		2
rnmla	13	15	9	10	12	12	6	10	12	10
c ⁿ	₽₳	•♣_	₽ ₩~-	•*	₩	R. R	• • •	•	R_9	•.•
pmla.	₩	₩	¥4 *				₩,•	₽Å.∎		
r	1	12	14	2 8	1 12	10	12	2 8	10	8
nmaa										

c ⁿ pmla	** •		**		N •		N •		4.	4.
gnmla	1	2	2	2	1	2	2	2	1	1
r _{nmla}	9	9	11	7	9	11	9	7	7	11
C ⁿ pmla	1	K	×	X	Z •	Z •	Z •	:: •	=	N ••
^g nmla	2	2	4	2	2	2	4	2	8	4
r _{nmla}	9	9	13	7	11	9	5	8	4	8
c ⁿ pmla	N .	N•	Ν.	N •	N •.	1 .	•••	•••	N •	N •
^g nmla	6	1	2	2	2	1	1	2	l	2
rnmla	6	8	6	10	4	6	8	8	6	8
c ⁿ pmlα	.	N •	X	X	۰2	۰2	7.	N•	N •	
^g nmla	2	2	6	24	4	6	2	6	6	1
rnmla	10	6	6	12	7	3	5	9	3	5
c ⁿ pmla	•••	• ••			•••	•	•-• •-•	•••	5 6 6 6	•••
^g nmla	l	2	4	2	2	2	8	2	2	4
rnmla	7	3	7	5	5	4	2	2	4	6
c ⁿ pmla	•••	•••	••• ••							
g _{nmla}	4	6	24							
rnmla	l	3	0							

- *Research supported in part by the NSF Grant No. GP 16886.
- [†]Present address: Rack Engineering Corp., Connellsville, Pa. 15425.
- ¹C. Domb, Adv. Phys. 9, 149 (1960).
- ²M. F. Sykes, J. W. Essam, and D. S. Gaunt, J. Math. Phys. <u>6</u>, 283 (1965).
- ³M. F. Sykes *et al.*, J. Math. Phys. <u>14</u>, 1060 (1973).
- ⁴P. F. Fox and D. S. Gaunt, J. Phys. C <u>5</u>, 3085 (1972); P. F. Fox and A. J. Guttmann, *ibid.* <u>6</u>, 913 (1973).
- ⁵M. F. Sykes and D. S. Gaunt, J. Phys. A <u>6</u>, 643 (1973).
- ⁶The constants $\overline{\mathfrak{m}}[C]$ evaluated at N=1 are the lattice constants of Domb tabulated in Ref. 1.
- ⁷The constants $\mathfrak{M}[C]$ are the lattice constants of Sykes tabulated in Ref. 2.
- ⁸In practice the $\mathcal{E}[C]$ are calculated from the spin- $\frac{1}{2} \mathfrak{M}[C]$ (when available) by multiplying by the spin- $\frac{1}{2}$ symmetry factor (i.e., all particles identical): $\mathcal{E}_{pml} = \mathfrak{M}_{pml} \mathcal{E}_{pml}$. In cases where only the $\overline{\mathfrak{M}}[C](N=1)$ are available one can calculate $\mathfrak{M}[C]$ by diagrammatically taking the log of of Z for the disconnected clusters, e.g.,

$$\mathfrak{M}[C{\text{Fig. 1(f)}}] = \overline{\mathfrak{M}}[C{\text{Fig. 1(f)}}](N=1)$$

 $-\frac{1}{2}(\overline{\mathfrak{m}}[C{\text{Fig. 1(g)}}](N=1)\overline{\mathfrak{m}}[C{\text{Fig. 1(h)}}](N=1)$

+ $\overline{\mathfrak{m}} [C{\text{Fig. 1}(i)}] (N = 1) | \overline{\mathfrak{m}} [C{\text{Fig. 1}(j)}] (N = 1))$

 $+\frac{1}{3}\overline{\mathfrak{m}}[C{\text{Fig. 1 (j)}}]^2(N=1)\overline{\mathfrak{m}}[C{\text{Fig. 1 (h)}}](N=1).$

For the connected clusters $\mathfrak{m}[C] = \overline{\mathfrak{m}}[C] (N = 1)$. Finally if only the polynomials are available, each coefficient must be decomposed graphically into the contributions from the various clusters:

$$D_{nm}^{(1/2)} = \sum_{l} \mathfrak{M}[C_{nml1}^{n}],$$

where

$$L_n^{(1/2)}(u) = \sum_{m=0}^{n(n-1)/2} D_{nm}^{(1/2)} u^{nzs-m}$$

(n points and m lines fixed).

- ⁹C. Domb, Proc. Roy. Soc. A <u>199</u>, 199 (1949).
- ¹⁰M. Ferer, Phys. Rev. B 2, 4616 (1970).
- ¹¹D. M. Saul, Ph.D. thesis (University of Illinois, 1974) (unpublished).