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Exciton dispersion in degenerate bands
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The dispersion relations of band-gap excitons in covalent cubic crystals are investigated. For low
momentum a perturbation method is used following Baldereschi and Lipari. At very low momentum
the dispersion is strongly affected by a splitting of the fourfold X = 0 degeneracy for those materials
with nonspherical conduction-band energy surfaces. In silicon and germanium this splitting leads to
strong nonparabolic effects at energies in the 0.1-meV range. For large momentum a band decoupling
scheme which generalizes the center-of-mass transformation method is derived and the concept of
"light-mass" and "heavy-mass" excitons naturally results. Numerical values are given for germanium,
silicon, and gallium arsenide.

I. INTRODUCTION AND CONCLUSIONS

The problem of obtaining the E(K) (dispersion
relation) for excitons is very simple for the case
where the electron and hole both belong to nonde-
generate bands. A center-of- mass transf ormation
of classical form suffices to separate the transla-
tional motion from the relative motion. ' The
transformation is easily generalized to ellipsoidal
energy surfaces. If one of the particles is in a de-
generate band, however, the problem is not so
readily solved as has been recognized since the
work of Dresselhaus. ' Unfortunately, most of the
excitons in cubic covalent crystals are of the latter
type since the valence-band maximum is four-fold
degenerate at the I' point. Although very few de-
terminations of the exciton dispersion relation have
been made it enters into many different problems
and hence it is very desirable to have a more quan-
titative knowledge of its value than presently ex-
ists.

One of the most straightforward problems involv-
ing the exciton dispersion is the optical absorption,
which is proportional to the exciton density of
states weighted by an optical matrix element. Re-
cent experimental and theoretical work on this
problem in germanium was motivated by the pres-
ent paper. Here it was shown that strong nonpara-
bolic effects associated with the "mass-reversal"
effect to be described later can be very clearly
identified in the energy dependence of the absorp-
tion.

Any long- range low-f requency per turbation may
be discussed in terms of the dispersion relations.
Hopfield and Thomas have used a combined elec-
tric and magnetic field perturbation method to ob-
tain a direct measurement of the mass in CdS.
Since the material is hexagonal the present meth-
ods are not directly applicable. Another applica-
tion would be to the asymptotic decay rate e "" of

the wave function of a bound exciton, which should
be related to the exciton mass M* by 82m~/2M*

=E, where E is the binding energy.
In this paper we tackle this problem by two dif-

ferent methods whose range of validity depends on
the exciton momentum. At low momentum the
perturbation method is most applicable and here
we generalize the method of Baldereschi and Li-
pari to treat the dispersion. At high momentum
the hole bands are nearly decoupled into light- and
heavy-hole bands owing to their large kinetic-en-
ergy differences. We exploit this fact to obtain an
approximate decoupling of the excitons. Our meth-
od may be regarded as a generalization of the cen-
ter-of-mass transformation to degenerate bands
in that it achieves an "optimal" (though not exact)
separation of the problem into translational- and
relative-kinetic- energy terms.

Using the perturbation method we obtain general
expressions for the dispersion relations for the
case where the conduction band is an ellipsoid cen-
tered on a 00k, kkk, or 000, k point. The 000 el-
lipsoids are spherical and the K= 0 excitons have
the fourfold degeneracy of the hole states. The
nonspherical ellipsoids lead to a splitting of the
degeneracy at K= 0 into two Kramers doublets.
The splitting is a small fraction of the total exciton
binding and indeed is required to be so for the va-
lidity of the perturbation method. The presence of
the splitting leads to nonparabolicities in the dis-
persion relation for exciton kinetic energies of the
order of the splitting energy, Even for the spheri-
cal conduction band, nonparabolic dispersion rela-
tions result from the coupling between the degen-
erate bands on an energy scale equal to the exciton
binding energies. The magnitude of the effect may
be estimated by the use of the high-momentum
decoupling approximation. In this limit the exci-
tons separate into two sets of exciton bands corre-
sponding to the light and heavy holes. Each set has
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FIG. 1. Reciprocal masses and en.ergies versus K
for excitons in germanium with momentum in the fool]
direction. The solid curves are the energies and the
dashed curves are the reciprocal masses.

many excited bands corresponding to the excited
states of the internal degrees of freedom (ls, 2st
2P, etc. , in the hydrogenic notation, although this
notation is imprecise because the relative kinetic
energy is ellipsoidal rather than spherical). Each
excited band on the same set has the same transla-
tional mass in the decoupling approximation, as
expected from a center-of-mass transformation.
At some kinetic energy of the order of the exciton
binding the ground state of the light-mass exciton
band will intersect the 2p or Sd (or higher) excited
states of the heavy-mass exciton bands. This will
lead to a strong interaction between the overlapping
bands and will result in nonparabolic dispersion
relations. Neither of the methods presented here
is valid in this case.

Detailed numerical results are given for GaAs,
Si, and Ge. The perturbation method is inaccurate
for germanium as evidenced by nonphysical nega-
tive masses in the [111]direction. A variational
approach should be capable of improving on the
calculations when perturbation theory breaks down
but that method has not been tested here. A very
simple variational calculation for germanium has
been performed elsewhere' which, at least, avoids
the problem of negative longitudinal masses.

In silicon and germanium there are "light" and
"heavy" exciton bands roughly in accord with the
concept of adding electron and hole masses to ob-
tain the translational mass which has been justified
by the high-momentum band decoupling scheme.
At low K the hole contribution to the exciton mass
depends on the direction of K relative to the axis
of the electron ellipsoid. The lowest exciton state
is heavy-hole-like (light-hole-like) parallel (per-
pendicular) to the ellipsoidal axis, while the situa-

tion is reversed for the upper exciton. Perpendic-
ular to the ellipsoidal axis the exciton mass "re-
verses" between the lower and upper excitons as
K increases, which leads to strong nonparabolic
effects at energies of the order of the splitting en-
ergies, i. e, , a few tenths of a millivolt in silicon
and germanium. An example of this mass rever-
sal as a function of K is given in Fig. 1.

We have not included the "exchange" interaction
between the spin of the electron and that of the
hole. It appears that this effect is quite small for
indirect materials but may be more important in
direct materials. Further work on this problem
will be reported at a later date. . We also have
ignored linear k terms which exist in zinc-blende
materials but are usually quite small. '

II. OUTLINE OF PAPER

In Sec. III we discuss notation and introduce a
"Kramers basis" and a set of symmetry-adapted
operators in which we can conveniently describe
the exciton Hamiltonian. In substance these are
the well-known effective-mass Hamiltonians of
Kohn and Luttinger with modifications similar to
those introduced by Baldereschi and Lipari.

In Sec. IV we introduce the perturbation due to
the finite exciton momentum and treat it by the
perturbative methods of Lipari and Baldereschi. 4

General expressions for E(K) are obtained for con-
duction-band ellipsoids centered on 000, 00k, and
Akk points.

In Sec. V we present the large-momentum band
decoupling scheme which generalizes the center-
of-mass transformation method to degenerate
bands.

In Sec. VI we discuss the results obtained and
give detailed numerical computations for the case
of germanium, silicon, and gallium arsenide.

III. EXCITON HAMILTONIAN; NOTATION AND SYMMETRY
CONSIDERATIONS

We consider the problem of excitons where the
hole has the fourfold degeneracy characteristic of
the uppermost valence band in tetrahedrally bonded
semiconductors. We treat the problem in the ef-
fective-mass approximation and ignore the contri-
bution from the spin-orbit split-off band. We also
ignore the spin of the electron and hence do not
treat the small exchange splitting of the spin de-
generacy. 7 We follow the method of Lipari and
Baldereschi, 4 hereafter referred to as LB, where-
in the "d-like" part of the Hamiltonian is treated
by second-order perturbation theory. We extend
their results by calculating the momentum depen-
dence of the exciton energy (dispersion relation).

We consider the effective-mass Hamiltonian for
the exciton energy relative to the energy gap,

+eX ~e TIL+ +C ~ (1)
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T, and T„are the electron and hole kinetic ener-
gies, while B~ is their Coulomb interaction:

a, =- e'/. ~~, —~„~.

In momentum space we have

(2)

(3)

T'3=- &'r1 k3/2~2+ T~(k.; k./},
where k„ is the hole momentum and k, is the elec-
tron momentum relative to the conduction band
minimum:

(4)

P3/2 P1 2 /+43/2 +~1/2

A B 0 C

T„„ is a 4~4 matrix operator on the fourfold-de-
generate valence band in the Kohn-Luttinger rep-
resentation. T„was given first by Dresselhaus,
Kip, and Kittel, ' We prefer to utilize the sym-
metry of a Kramers basis defined by

g 3/2 = —-', W2 (x+ iy) 0,
q, /, -=W z t ——,

'
v 6 (x+ 3y) t,

K/3/2=---, W2(x-3y) 4,

K&1/2—= 3W6 (x 3y) 0+1/ z 4

K(, =-a( „,
where x, y, and z refer to the tetrahedral sym-
metry of the wave functions. All symmetry opera-
tions can be written as a tetrahedral operation g
or as 8 times (7~ J), where (rl J) (x, y, z) =(x, y, z)
and (7 (8) interchanges the two atoms in a unit
cell.

The notation x, y, z is really a shorthand for
x- (x+ a/8) f (r + 7/2) —(x —a/8) f (r —7 /2), i, e. ,
tight-binding p functions which are bonding between
the atomic sites + 7/2, 7( /a)4(1, 1, 1). f(r) is
invariant under cubic operations. Of course, we
are not making the tight-binding approximation
but we can use it to give a unique definition of the
symmetry properties of our basis functions.

In a Kramers basis such as that of Eq. (6) a
t~aceless Hamiltonian which we abbreviate as
X(A, 8, C) can be written in the form

Asxz a4a z

C=Aq, —tA33 .
(6)

The notation for A~I is group theoretical, with J
referring to the irreducible representation and e
to the partner. Wherever possible we will abbre-
viate X(A, B, C} still further by

x(A,.) =- x(A, B, C),

and all sums over Je will refer to sums over this
set. We also note the convenient fact that when

A, 8, C are numbers the eigenvalues E„, of
X(A, B, C) are

E„,=~(A'+ ~B(2+ ~C~2)'/2. (iia)
When the A~, are real numbers, Eq. (lla} can
also be written

E„,=+ PA, .
~Je )

(1lb)

With the use of this notation the Hamiltonian T~„
in Eq. (4) can be written

r„„(k„,. k„,) = x(r, 6,.(k„, k„,)) .
2m0

(i2)

The symmetry-adapted polynomials ez are de-
fined by

s„(k,k, ) =-(2k,'-k„'- k,'),
~I,„(k,k, ) -=v S(k„'- k,'),
@3„,(k1 k/) =2&3 k„k„, etc. , for xz, yz .

(is)

(i4)

The dimensionless inverse-mass parameters yz
refer to the Luttinger parameters' y, , y2, y3.

Similarly, the electron kinetic-energy operator
7, in Eq. (3) can be written in the manner of LB:

2 820

38 = —
2 rJH Q 1N JN(k81 ke/) ~

mp
(16)

where we have

with the arguments related by Eq. (6). In this pa-
per the "space" of Je will always consist of

f Jn )=$2a, 2b, sxy, syz, sxz] (io)

X(A, B, C) = B~ -A o . (7)
J= 2, c„=1; [001]ellipsoid

J= 3, c2,y
——ca,g ——c3„g --3 v 3; [111]ellipsoid.

C* 0

A, B, C can be further simplified by expressing
them in terms of irreducibly transforming ele-
ments Az~ according to

In Eq. (17) all quantities not explicitly defined are
zero.

The inverse-mass parameter yz, is given by

(is)
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y 1 2 1t=- —+--
Imo 3 m~ mo)

(19)

IV. PERTURBATION METHOD; LOW EXCITON
EXCITON MOMENTUM

In Sec. III we have simply rewritten the effec-
tive-mass Hamiltonian for excitons in terms of a
notation whose symmetry properties enable the re-
sults to be stated more simply. We now divide the
Hamiltonian in the manner of LB:

He„=H +H~,

-S~ h2
&1e &a+» &a+HC,

2mo ' ' 2mo

H„= T«(kork, r) —Too(k„) k„r) .

(ao)

(21)

(22)

We make a "center-of-mass" transformation to
express the Hamiltonian H, in terms of hydrogenic
wave functions and energies:

k, =o+P,K,

k„=o poK-,

p. =r/(r r },

(23)

(24)

(25)

8'z'
tte 2~

R$ = Ro/r~„e

Vlr»+»e &

-1 -1~0=&1 +&1e

(23)

(29)

(so)

(sl)

n is the usual hydrogenic quantum number, and the
envelope wave functions are the usual hydrogenic
functions of the relative momentum 0. Actually
n will be required to run over continuum states also
as detailed in LB. Rg is the "effective Rydberg"
of the hydrogenic problem.

The complete set of unperturbed wave functions
are then given by

= e'"' ~ o'oo o' p (r, —r„)u (r )a„* (r„),
(82)

where p„, are a complete set of hydrogenic func-
tions, g, is the periodic part of the electron wave

where by (28)-(25) we have conservation of exciton
center-of-mass momentum R,

k, -kq =K. (25)

Actually, in accord with Eq. (5), we have

K' = K+Ko, (av)

but we use R throughout the remainder of the paper
as the center-of-mass momentum and we wish to
calculate the energy of the excitonic states as a
function of R.

Using (23)-(25) the eigenstates of H, have hydro-
genic form with the energy spectrum

H«+Ho =dl+ X(ar„) =dI+X(a, b, c), (4o)

where I is the four-dimensional identity and X is
defined in Eqs. (V)-(9).

We introduce the operator P which projects onto
the set of states in Eq. (32) for which y„r (r, —r„)
= P&(r, —r„}. We then define perturbation-theory
Green's functions by

g =-(1-P)(E-H) '(1 —P), G =gI, (41-)

where I is the four-dimensional identity, We treat
H«+H~„ in Eq. (40) by degenerate second-order
perturbation theory obtaining the effective 4&4
Hamiltonian

H~, t -=P(H«+ H~ }Go(Ho + Ho ) P.
We note the commutative relations

&1s lagob I ls) = &ls
I bgoal ls &,

(42)

(4s)

with similar relations for all pairs of a, b, c, d.
With the use of these relations and the definition
of X(... , . . . , ...) in Eq. (V) we can evaluate
H„„ in Eq. (42) as

Hgg t ——I(1s
I dgod + ago& + bgob* + cgoc* I 1s )

+ 2X((ls ldgoa I ls&, &1s ldgob I ls),
(ls ldgoc I ls)) . (44)

Equation (44) can then be evaluated more explicitly
with the use of the relations

function at the band minimum, and u„„with p, =+ 2,
+ -', is one of the four hole state functions in Eq.
(5).

When the center-of-mass transformation equa-
tions (23)-(25) are substituted in H„ in Eq. (22) we
obtain three types of terms,

Hq=Hq, +H~ +H~, (33)

H„= T«(o-, o,) —To„(a,or), (34)

H~ -=Po T«(QKr) —Poo T~„(KK)), (85)

H,„=ap, T„-[o,K,]+ap„T„„[o,K,], (so)

[o~ Ky ]= ((Tg Kr + K) 0'g) /2, (3V)

In the spirit of LB we propose to treat the "@-
like" terms by perturbation theory. We define

k~
r~ [2Po 6r. (ogK, ) —S,.(c)tr, )],

(88)

rr, Q c~ [ap, 6r, ((r, Kr)+6~ (g, o,.)],
mp

where the cz are defined in Eq. (1V), and then
use equations analogous to (8) to define quantities
a, b, c:

a-=~, , b=- a3„» —z~», c—= a2, —z~».
Then we can write
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&is ~a,.g,(E)a,... ~
is&

=- r,r, [4P,'~'q, .,..(K') g.(E)

+gi(E)e~~.e, ], (4e)

From LB we have the values S,(0) = 0. 224e and

Ss(0) =~6. LB tabul. ate S„(x). We have tabulated
83(x) in Table I. Finally we express the complete
exciton Hamiltonian as

{1siaz go(E)diis)
O2Ka

Ht't =I B +
2M +Hy'rt+H

0
(ei)

—VJ' VJ'e ~J'e'

x [4p,p„a'q...,.,{z')g,(E) —g, (E)e„.e...j,
(4e)

(1s idg, (E)di1s)

H„, is then easily diagonalized using Eq. (lla).
After some algebra the resulting energies can be
expressed in the form

E„,(R) = S+ Z"',
where

+ J'e
J'0. ,J' fL'

(es)

x[4p'. ~' q,.,;;(K') g.(E) g( E) e„.e;1

The polynomials q~„,z.„have the property
q~„~. ~ = qz. ~,~„and are further defined by

(47)

g Qa

f~. =-E,', g, (E—)(2r,'+sr,'+r'„),

q,...= (4IC.'+ IC„'+K„')/e, q„,„=(IC„'+IC„')/2,

q,.„,= ( z„'+K,')/2W-s; q„, = —z„z, /Ws,

q,.„,=K„z./2~a, q... , =K, z, /2Ws, (4e)

45 sxg x t/ 1 q2b Q» y g/2y

q3fg ~Sjj( fz+Kj)/2y. qsfj3fjKfKf/2
The Quantities g, (E) and g~(E) are defined by

z a a er.(z«) p,'r~. sg. (z;K;)
8 YJ8 ~2 PPl 0

e~,(z K,).(ee)

(ev)

(@)
16R, (-Rf -Z) (49)

(eo)

i ~ = ieP. Are. rz gs(E),

&z = p~rz/~o,

1 e~, (K;K,.)
(M )s + &2 KR + ~ J'4 ega(z )

(e9)

(eo)

s, (x) S,(x)

TABLE I. Tabulation of the functions S&(x) and Ss(x)
used in Eqs. (49) and (50) and defined by Baldereschi
and Lipari in Ref. 4. The values of S1 for positive ar-
gument are included for convenience. They agree with
values already obtained by Baldereschi and Lipari.

4

+ By+4&2+ [~~+ 12(W~~ —W22) j K
(ei)

» the above formulas J= 2 for a[001]ellipsoid, and
&=S for a[111]ellipsoid. For a spherical conduc-
tion band the value of J is irrelevant since all
quantities involving J are zero by virtue of y~, = O.

0
1
2
3

5
6
8.

10
-0.1
-0.2
-0.3
—0.4
-0.5
-0.6
-0.7

0.2246
0.1587
0.1267
0.1069
0.0932
0.0829
0.0750
0.0632
0.0550
0.2359
0.2490
0.2645
0.2831
0.3066
0.3377
0.3834

0.1875
0.0974
0.0674
0.0519
0.0424
0.0359
0.0311
0.0247
0.0205
0.2086
0.2361
0.2736
0.3287
0.4200
0.6120
1.453

s,.(K, K,.) =-2{z„fC„+K„z.+K, K,),
c,.(IC') = 2K'„'- K„'K.'- K,'K.',
S„(z')-=IC„Z Z,'+K„IC ,' K,+KK ,K2

(es)

@2=-9 ~2 &S=-6 ~Sg 2 1 2

21 3 ~2+6 ~S& ~31 9 ~2t2 1 2 g 2

1 2 4 j.
22 =9 ~a- s ~a~a ~32=-12 ~s- ~ ~a&2- ~s&s

&24 =-1a ~s —2 ~2~'2+ 2 ~s&s=1 2 (e2)

~34= —
9 ~2+ 3~3+ 2 ~2&2 —2 ~s~s2 2

where

e,.(K,X,) = (2Z.'- K„'-K2.), -
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6 (K4) —K2K2+ K2K2 ~ K2K2

The forms of Eqs. (55), (56), (58) and (61) are
much simpler for the case of a spherical conduc-
tion band so they will be rewritten explicitly for
the sake of convenience:

E1,~(K) = R, +
1

a c

R, = —Ro —g1(E)(2 y 2+ 3 y,),

(64)

(65)

a p

2ph 2 2 2 sl(K )r 2+3(r 2- r 2) K4Mc m()

(6v)

Since Eqs. (52)-(67) are our principal results
we list the equations in which the symbols have
been defined. yJ, is the conduction-electron re-
ciprocal "anisotropy" mass defined in the manner
of LB in Eq. (18). P, and P„are center-of-mass
parameters defined by Eqs. (25) and (19). R$ and

Mo are defined in Eqs. (28)-(31). g, (E) and g2(E)
are defined in Eqs. (49) and (50). K is the total
exciton momentum apart from Ko in Eq. (27) which
represents the momentum separation of the band

edges.
Equation (52) is expected to be valid for exciton

energies small compared to the effective Rydberg
Ro in Eq, (29).

The exciton splitting at K=O is given by 2RJb as
defined in Eq. (57) in agreement with the result
obtained by LB. Equations (52)-(54) are clearly
nonparabolic owing to the splitting of the degener-
acy by RJ, . Simple parabolic limiting cases are
easily obtained for kinetic energies large or small
compared to RJ, : For small K,

The relative momentum of the electron and hole
about the center of mass is of the order 8/af,
where P = ao/y, „& is the effective Bohr radius.
When the exciton momentum AK is large compared
to 5/a~o it is possible to take a different approach
from that of Sec. IV. We make a transformation
similar to (23),

k, —o'p+K, kq —op, (v0)

which still satisfies Eq. (26). The idea is to treat
Op as a constant which will be the average value of
the hole momentum. The variable o will then be
expanded about op in obtaining the effective Hamil-
tonian for the exciton wave function.

We determine op by minimizing the total kinetic
energy of electron and hole. For simple bands

5 OoE« — (ao + K) + (vl)
me ming

The requirement &E«/Bo; = 0 yields

I m~ IK

m, + Im„I '

m, K
e-me+ Im„I '

&~K~

2(m, + lm„l '

(v2)

pling method discussed in Sec. V.
When the perturbation correction is small it is

sufficient to evaluate g, (E) and g~(E) in Eqs. (49)
and (50) at E = —Rf. For larger perturbations a
self-consistent value for E obtained by iteration is
more accurate. S,(E) has been tabulated by LB,
We tabulate S2(E) in Table I.

V. LARGE-EXCITON-MOMENTUM LIMIT

for intermediate K,

SK
a Jb

which is the same result as would be obtained by
making a center-of-mass transformation.

In the general case we substitute Eqs. (70) into
Eqs. (3) and (4) to obtain

E1,~(K) =R, + R~o
' + —+ . (69)MJ 52K 2

Jb ". a Jc

Of course, Eq. (69) is valid onlyIfor kinetic ener-
gies small compared to the exciton Rydberg. We
will derive formulas valid in the very-large-kinet-
ic-energy regime by a kinetic-energy band decou-

)

(roll+ K„o~+E~
KE 2

ygo' p+ ' —T42 (oo4a op)~'
mp

(73)

We diagonalize the expression for T~ using Eq.
(lib) and obtain

'r' +—[y'o'+3(y —y')(a' o +o' a' +a,o' )j
li II mp mo

I

(v4)

We first treat the simple case of valence-band isot-
ropy, y2-—yo. Then the conditions BE« /Ba4 ——0
give

K, I m„, I

Op~a =—
m, + Im„, I

K, Im„, I

m„+ Im„, l
' (v5)

1 ys 2y3
lm& I m, mp
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Substituting these values in Eq. (74) gives for the
total kinetic energy of the average electron and
hole momentum (83)

K„QJ
ll+ ~m~i mi+

(77)
&z =—+ —+ —(-1)yi y3

Imp mp

for K=K„;

+~ hf)«). &,I' —)«)9). )')&)
PREp

op is a unit vector in the direction of op. Unless
E„=O or E~=O the principal axes for HK~ as a
function of ao in Eq. (79) are not the parallel and

perpendicular directions. A transformation to
principal axes must be made, after which the ex-
citon binding energy can be estimated quite accu-
rately by use of the Kohn-Luttinger variational
form "

The general principal-axis transformation in

two dimensions is easily written:

ax~+ 2bxy+ cy' = &z,(2+ u )V~,

where (x, y) has been rotated into ($, )1) and

- &/2Q+C 0 —C 2

(80)

(81)

The substitution of (75) for &r, in Eq. (79) yields a
form like the left-hand side of (80) in ao;, and 5@~.

The principal masses are then determined with the
use of (81}.

We write the results schematically:

To this average kinetic-energy term we must add
the binding energy of the exciton calculated with
the appropriate effective masses. We obtain these
by writing

~=~p+~~, k, =~+K (78}

We must recognize that we are still dealing with a
four-band Hamiltonian as given by Eq. (7) with o;.

substituted in Eqs. (13). The diagonalization of
these bands is determined by ap but not by 5o. We
ignore interactions between bands involving 5o.
Because of the isotropy condition y2=y, we can take
any direction to be the "z direction" in Eqs. (13)
and (7). The simplest is to let s be o„a unit vec-
tor in the direction of gp. This is generally not
the direction of K unless m„= m~ or when K=K, or
K~. We can write an expression for the total ki-
netic-energy operator in the form

82 (5o;,)' (ao, )' (bo)'y,

o'„=—+ —+ ~ (-1),yg y
Ill ~p ~p

Kl m~ I

(m, „-+ I m„, I)
(85)

K
2 m, K+ 1m~I

(86)

The hole masses are those appropriate to the sym-
metry directions, namely,

for K=K~.
Since the valence band is isotropic. Eqs. (83)

and (84) probably represent extreme limits for n,
and 6 .

In summary we can say that for the case of the
isotropic valence band y2=y3 we get results, Eqs.
(V5)-(77), for the translational kinetic energy
which are exactly analogous to the case of simple
bands, Eq. (72), with the obvious generalizations.
For the reduced masses the multiband nature of
the valence band leads to the results given in Eqs.
(83) and (84), which are more complicated than the
reduced mass in the case of simple bands since
they depend on the direction of K.

Equation (V5) shows that oo is not in general
parallel to K. It is the direction of op that deter-
mines the orientation of the degenerate valence-
band wave functions. The heavy-mass excitons
[ minus sign in Eq. (76)] will correspond to val-
ence bands u&'&, ~&&) (r„), where the axis of quantiza-
tion is parallel to ap. The choice of direction for
ap would not have been obvious without use of the
energy-minimization principle except when K is
in a symmetry direction.

The general case y2 e y3 is complicated for an
arbitrary K direction even for a spherical conduc-
tion band. The symmetry directions K= (O, O, K),
(K/~3) (1, 1, 1), (K/+2) (1, 1, 0) and their cubic equiv-
alents are simple however. When these directions
are parallel or perpendicular to the principal axes
the results remain simple even for ellipsoidal agr-
faces. The results are easily shown to be

2

H ~ = E'„, +—[&r', (6o.)'+ &z'(bo )'], (82) Pl p = ri+2r2~
I niI„ I

K=(K, o, o) (87)

where n, are reciprocal masses. If K=X;, or K

=K~ the + directions are parallel and perpendicu-
lar, and we can write

APL p

I m~ 1

rf+ 2r3 ) K= (K, K, K) (88)
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TABLE II. Parameters used in: calculation arid K= 0 exciton binding energies by ordinary perturbation
theory. E and 6E are given in units of 30, while Bo is given in meV. Numbers in parentheses come from
Brillouin-Wigner perturbation theory.

'yi 'y2 B& /(meV) E~&~2

4.280 0.375 1.450 0.9163 0.1905 11.4

GaAs 7.65 2.41 3.28 0.067 0.067 12.5

Ge 13.38 4.24 5.69 1.588 0.08152 15.36

12.85

2.65

3.86

—l.081
(-1.079)
-1.158
(-l. 149)
—l.061

-1.103
(-1.100)-l.292
(-1.265)
—l.061

0.0226
(0.0211)
0.134

(0.u.5)
0

TABLE III. Reciprocal exciton masses in free-elec-
tron-mass units for principal K directions for low-,
intermediate-, and high-momentum values. Values in
parentheses are obtained from BriHouin-%'igner per-
turbation theory. At a given K the upper value refers
to the exciton band of highest energy. For germanium
[ill] the exciton bande cross. The silicon ellipsoid
is oriented in the [001]direction while the germanium
ellipsoid is oriented along fill].

substance M+"1 Io~ X M* 1 intX M*"1 high K

l.86
3.78

(2.16)
(4.00)

4. 54

l.10

[ill] —O. 86V (-0.426)
—O. 4O4 (-O. 255)

-0.404
-0.867

0.614
0.479

Ge 3.22
5.87

(3.46)
(6.12)

7.04
2.05

8.13
2.18

O. 495 (O. 867)
1.69 (1.87)

2.45
—0.272

2.77
5.17

(3.o2)
(5.41)

6.39
l. 55

si 0.681 (0.719)
O. 598 (O. 629)

O. 681
0.598

0.897
0.833

si l.87
2. 10

(1.89}
(2.12)

2. 22
l.75

2. 57
2.11

The conduction masses are the principal masses
in the direction of K. The formulas only apply for
principal directions, i.e. , silicon (0, 0, 1), (1,0, 0),
(1, 1, 0) and germanium (1, —1, 0), (1, 1, 1). In
less-symmetric directions the direction of Qp ls
not the direction of K even for R spherical conduc-

tion band.
In all these cases the translational masses have

the same form as in simple bands. %8 do not
evaluate the reduced masses, which we have seen
to be more complicated even in the case of valence-
band isotropy. That approximation can generally
be used to obtain a good estimate of the effect of
Coulomb binding. For directions of lower sym-
metry we will not have oo-K as in Eq. (86) and
the RlgebrR1c xelRtlons Rle much more complicated.
The symmetric results lead to extremal values
which should in many cases serve as bounds for
the more complicated directions.

In this kinetic-energy decoupling method we
have ignored the kinetic-energy terms in 50 coup-
ling different bands. In this way each "decoupled
exciton band" has its translational kinetic energy
plus a complete set of excited orbital states which,
however, are not hydrogenic because of the ellip-
soidal mass. The two sets of bands may be re-
ferred to as "light" and "heavy" excitons accord-
ing to the hole mass involved in Eg. (86). The
decoupling scheme improves for the heavy 1s ex-
citon band as its kinetic energy increases. For
the light exciton bands the approximation gets
worse initially because the light exciton ls band
will tend to intersect the heavy exciton excited-
state bands. For very high energies compared
to exciton binding enexgies the coupling will be-
come unimportant. The treatment of the light ex-
citons would be improved by retaining the coupling
terms to the heavy excitons. A perturbation meth-
od might still be used but we have not attempted
to carry this approach any further.

si

si

si

[001]

1.47
l.60

1.87
2.10

l. 28
l.35

5. 53
l. 32

6.29
o.556

g.lO] 6.12
0.726

2. 22
O. 858

2.77
1.20

1.78
0.841

6.80
2.38

7.30
1.02

7.19
l.35

VI. DISCUSSION

%'8 illustrate the results of Secs. IV and V by
calculating numerical values for the exciton mas-
ses in the principal symmetry directions [001],
[110], [ill] for the case of silicon, germanium,
and gallium arsenide. The mass parameters used
are given in Table II and the exciton reciprocal
masses are given in Table III. The three columns
labeled small K, intermediate E, and large K re-
fer to the approximations in Eq. (68), Eq. (69),
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and Eqs. (86)-(89), respectively.
The use of ordinary perturbation theory corre-

sponds to setting E= —80*in Eqs. (49) and (60).
For germanium the perturbation method is most
suspect. This is indicated by the magnitude of
the perturbation correction to the unperturbed
value —Ro in the starting approximation. (See
Table II. ) For the [111]direction the perturba-
tion method leads to negative masses, a most un-

likely result. An improvement can be obtained
by using Brillouin-Wigner perturbation theory,
namely, by treating E in Eqs-. (49) and (60) as
the exciton energy determined self- consistently
from the perturbation expressions. We have done
this using the value E(K= 0) but not attempting to
correct the finite K energies in this way. The
[111]masses are substantially reduced in absol-
ute value but remain negative. The lighter mas-
ses are least affected. In silicon the changes are
very small and in gallium arsenide should be even
smaller. Even for germanium the perturbation
results are good enough to be useful. For the

[111]direction the average of the two large-E
reciprocal masses gives an upper bound to the
average of the true reciprocal-mass values. The
actual reciprocal-mass values are smaller than
the values indicated owing to interband coupling
terms which have been left out.

In germanium more recent work has presented
a calculational alternative to the perturbation
method. The results are not expected to be
highly accurate but are preferable to negative
masses.

In Table III the upper most number of a given
E refers to the mass of the exciton band whose

energy is highest in that E regime. At high and

intermediate E there is a heavy- and light-mass
exciton band in accord with the simple idea of
adding electron and light- and heavy-hole masses
to get the translational mass. This result follows
from the fact that the axis of quantization of the
valence wave functions follows the direction of the

average hole momentum at high K. At low K the
direction of quantization is parallel to the axis of
the electron ellipsoid. (The direction of quantiza-
tion is determined by the minimization of the total
energy, which for high K is dominated by the trans-
lational kinetic energy and at low K by the exciton
binding energy. )

At low K the lower state is heavy-hole-like (light-
hole-like) for a K direction parallel (perpendicular)
to the electron ellipsoid. For the upper exciton
the situation is just the reverse. If one increases

the momentum from zero in the transverse direc-
tion the direction of quantization will rotate from
perpendicular to parallel to the K vector. This
leads to the "mass-reversal" effect which is quite
noticeable in Table III and in Fig. 1. For a K
direction parallel to the ellipsoid axis the direction
of quantization remains fixed and the bands are
parabolic. (This also follows from group theory
since the two excitons have different symmetry
for K in the parallel direction and will not mix).

In the [111]direction in germanium the exciton
bands cross according to Table III. This result
is not found in Ref. 2 and appears to be an artifact
of the perturbation calculation. The mass-re-
versal effect results in strongly nonparabolic ef-
fects in the dispersion and the density of states
which are described in more detail in Ref. 2.

The high-K and intermediate-K masses are not
too different in Table III. This indicates that the
dominant effect is the orientation of the axis of
quantization. The interband coupling is neglected
at high K but is included perturbatively at inter-
mediate E. These terms do not appear to be too
important, particularly for the lighter masses.

In gallium arsenide the results are simplest
since there is no splitting of the exciton degen-
eracy at K= 0 and hence no intermediate-K regime.
The large-K reciprocal masses are larger than
the low-K values owing to the neglect of inter-
band coupling terms. For the heavy-mass band
this result is in accord with the true physical
situation; the interband coupling is strongly re-
duced by the large energy denominators. For the
light-mass band at very high kinetic energy com-
pared to the exciton binding the result is also
true. However, in the regime where the light-
mass 1s band intersects the heavy-mass 2p, 3d,
etc. , bands strong interactions will occur and the
masses will be very inaccurate.

The difference between the masses in the dif-
ferent K regimes are substantial and have lead to
observable nonparabolic effects. Such effects
occur for energies of the order of the excitonbind-
ing in GaAs but in Ge and Si they occur for the
very much smaller energies associated with con-
duction-band-anisotropy-induced splitting of the
K= 0 exciton degeneracy. In Ge and Si these split-
tings are only a few tenths of a millivolt.
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