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The Si (100) surface: A theoretical study of the uurecoustructed surface

Joel A. Appelbaum, G. A, Baraff, and D. R. Hamann
Bel/ Laboratories, Murray Hi//, ¹wJersey 07974
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The potential, charge density, and energy spectrum of an ideal unreconstructed Si (100) surface is

obtained self-consistently. Two bands of surface states that arise from broken surface bonds are found

in the energy gap between the valence and conduction bands. One band (&1 eV wide) has its electron

density localized about a line through and normal to the surface atoms, with a node on the atoms; the

other band (-2.5 eV wide) has its charge located around a line through a row of surface atoms, again

having nodes on the surface atoms. The role these surface states play in surface reconstruction as well

as in understanding the surface-state spectrum of stepped Si (111)-surface bands is discussed. Additional

surface states within the valence band are found and their significance discussed.

I. INTRODUCTION

This is the first in a series of three papers that
will attempt to investigate theoretically the elec-
tronic properties of the Si (100) surface. The elec-
tronic and structural properties of this surface
have been studied experimentally over the last 15
years in some detail. ' The surface is known to
always occur in a reconstructed form; the so-called
2&&1 room-temperature form being the most com-
mon.

For our first theoretical investigation of the {100)
surface, we considered it prudent to begin with an
ideal (1x 1) unreconstructed and unrelaxed arrange-
ment of surface atoms. While it is our belief that
the electronic spectroscopy of the (2x 1) Si (100)
surface will differ significantly from that of the
hypothetical (1 x 1) structure, valuable insights into
the origins of the structural deformations that oc-
cur on this surface can be obtained from a study
of the "ideal surface geometry. " A study of sur-
face relaxation will be deferred to the second paper
in this series and surface reconstruction to a third

paper.
The (100) surface, aside from its intrinsic in-

terest, represents a way of studying defect struc-
tures on other semiconductor surfaces. For ex-
ample, the edges of the stepped terraces that oc-
cur in nonideal cleaves of the (111) surface are
ldentlcal to the rows of double broken bonds that
occur on the (100) surface, except for their degree
of isolation.

The theoretical methods used in this study closely
parallel those developed by Appelbaum and

Hamann. They employ a numerical integration of
Schrodinger's equation together with a model-po-
tential approach to the electronic potential in the
surface region to obtain a reabstic and self-con-
sistent description of the electronic spectrum,
charge density, and potential in this region. In

See. II we shall briefly review these methods. The

The theoretical approach used in this paper fol-
lows that of Appelbaum and Hamann' (AH) and we
briefly review it here for the convenience of the
reader. The surface region is shown in Fig. 1 in
profile. It contains the vacuum, two layers of
atoms, and a bulk-surface matching plane midway
between the second and third atom planes.

The potential seen by an electron in the surface
region is given by

v(x) = v.,(x)+ v„(x)+ v..„.(x).

The electrostatic potential V„ is produced by the
valence electrons and by the (+4e) core charge. It
is obtained by solving Poisson's equation

v'V„(x) = -4v Iq(x)+ p,{X)], (2. 2)

where q(x) is the valence charge density and where

pl(X), the Si-ion core charge density, is parame-

implementation of any self-consistent electronic-
structure calculation requires an efficient algorithm
for determining the charge density from a select
sample of occupied eigenstates. This topic as well
as related matters are discussed in Sec. III. The
electronic spectrum of the Si (100) surface is de-
scribed in Sec. IV with particular emphasis on two
bands of surface states that have energies in the

gap between the bulk conduction and valence bands.
In that section we make contact between the spec-
trum calculated here and the results of previous
theoretical investigations, none of which have been
self -consistent or have been concel ned with the
calculation of a surface potential or charge density.
This latter topic is the subject of Sec. V.

In our final section, VI, we explore some of the
implications of the present work for the origin and
nature of the (2m 1) reconstruction that occurs on

the physical (100) surface as well as implications
for the nature of surface states on stepped (111)
surfaces.

II. THEORETICAL METHOD S
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where k„ is the two-dimensional Bloch wave vector
and (G(() the set of two-dimensional reciprocal-lat-
tice vectors, Schrodinger's equation takes the form

1d' Ik„+G„I'g+('p(z)+ "~ " —E;,)Fl (z-)„

BULK ~ ! ~ VACUUM 6„~t) ) o,', ( )=o.
Il

(2. 9)
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FIG. 1. Position of the bulk-surface matching plane
relative to the four planes of atoms nearest the surface
is shown together with the coordinate system. The four
planes of atoms normal to the x axis are not all in the
same x = const plane.

trized for each ion as

p, (x) =4(c(/v)'"e '" . (2. 3)

f(x) = 7!"'(x), (2. 6)

where we have adopted atomic units (e = h = m, = 1).
The ion core potential V „is a model potential

having the form

The exchange and correlation potential is treated
in the local approximation using the Wigner inter-
polation formula:

Equation (2. 9) represents a set of coupled dif-
ferential equations which are integrated numerically
for 30 different Uo„(z)'s, most of which are handled

by an iterative Green' s-function technique. A
0

spacing of 0. 32 A is used in the numerical integra-
tion. The Schrodinger equation is solved for a num-
ber of k! s, from which, following the discussion in
Sec. III, a charge density is determined. A poten-
tial is calculated from this charge density and the
process is repeated until the input and output poten-
tials are equal to within 0. 002 hartree, rms. Eight
iterations were required to achieve this accuracy,
with the iterative loop begun by choosing a "best
guess" starting potential.

III. CHARGE-DENSITY SUMMATION SCHEME

A key step in the self-consistent calculation is
the determination of the surface charge density
from a sample of surface and continuum states cal-
culated at symmetry points in the surface Brillouin
zone (SBZ). As efficient a computational scheme
as possible is desirable because of the complexity
of the calculations being performed. The charge
density q(x) is given by

~(x)=g p p I
~k„', k (x) l.'e(" —~'"(k„f.))

n kll gz

v,...(x) = (.,+., lxl') e- * (2 6) (3.1)

n = 0. 61018, v&
——3.0417, vz—- —1.372.

These produce a state-of-the-art fit to the experi-
mentally known bulk-Si energy band gaps. Equa-
tions (2. 1)-(2.6) allow one to calculate V(x) given
a knowledge of q(x) and the surface-atom positions.
The latter have been fixed by fiat in this paper; the
former is calculated via Schrodinger's equation.

The Schrodinger equation is solved in the Laue
representation ~Expand. ing the potential V(x) and
wave function 0 as

V(x)= V6. (z)e' "
II

II

(2. 7)

(1('k (X) =e ' (( "()pU'- (z) e'o)('"((
II II

(2. 8)

We adopt here the same parameters used by Appel-
baum and Hamann, viz. , where 4'k~', "k is a band state with energy e '"(k„, k,)

and wave vector k!I in the SBZ, and k„ the bulk
wave vector normal to the surface, labels the in-
cident-wave part of the various band states for a
given band n and fixed k„. The surface states 4„-',".
have energy E-'", the Fermi energy is e~, and n is

k„
a band index.

The 0, summations in (3. 1) are performed in a
completely straightforward way by a uniform sam-
pling of 0„ typically using 10 to 16 points for each
(n, k„). Convergence studies have indicated this to
be quite adequate.

The k„ integrations are handled in a different
way. Following Baldereschi we expand p"(k„), the
partial charge density for band n, with momentum
k, in a Fourier series in real space:

p (k()) =Q p (3.2)
i~&
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where

(g/~2)(ix+j I) ~R, ~
— 0 (3.3)
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integration scheme (3. i) is clearly inadequate.
What must be done there is to calculate p(k„) and

6(k„) at I K and two additional points eT and el

shown in Fig. 2. This gives us the full expansion,
(3.4), and allows us to calculate p. We defer until
Sec. IV, where the electronic spectroscopy of the
(100) surface is presented, a discussion of how we

proceed in this more complex case.

IV. SPECTROSCOPY

O. l 1

0.09
C9
K
g 0.07
UJ

0.05

Si (IOO) UPPER GAP SURFACE STATE

The formation of an ideal Si (100) surface results
in the breaking of two bonds per surface atom.
Such severe distortions of the bonding arrangements
3t the surface are expected to manifest themselves
in the formation of one or more bands of surface
states. We find this to indeed be the case, with
two bands of surface states located in the bulk en-
ergy gap between valence and conduction states.

The energy dispersion of these two bands are
plotted in Pigs. 4 and 5 along principal symmetry
directions in the SBZ.

These curves were generated by fitting the inter-
polation formula

) = &oo+ 2 &so coskso+ 2eox coskzv

+ 4&i~ coskgp coskpp (4. 1)

Si (lool LONER GAP SURFACE STATE

0.07—

0.06

~ 0.05
Lit

0.04

at the four symmetry points I', J, J', and K. The
values of the E, &

so obtained are listed in Table I.
It is important to point out that the lower-gap sur-
face-state band (LGSS) ceases to exist as a bona
fide surface state at I', having merged into the
valence band there. Indeed, when we examine the
valence band of the appropriate symmetry at I',
we find a strong resonance close to the top of the
band; the position of this sharp resonance has been
used in determining e (k„). Notice, with particular
reference to Pig. 4, where we have plotted the bulk

'WAVE VECTOR

FIG. 5. Plot of the UGSS energy versus k„along the
principal symmetry axes in the SBZ.

valence-band energy continuum of appropriate sym-
metry versus k„, that the region of the SBZ where
the LOSS is a resonance is extremely narrow. Al-
though there is no way of showing it simply in Pig.
5, the upper band is nearly mid-gap (with respect
to bands of the same symmetry) throughout the
SBZ.

The dispersion of both bands of gap surface states
ls quasi-one -d3.menslonalq with the upper-gap sux'-
face state (UGSS) more nearly one-dimensional.
The directions of maximum dispersion for these
bands are at right angles to each other.

%(hat are the natures of these two states'P To
best answer that, we have plotted contours of con-
stant charge density pl, „(x), on select planes normal
to the (100) plane and passing through surface
atoms. Such contour plots, with the contour plane
passing through a row of broken surface bonds, are
shown in Figs. 6, 7, and 8 for the LOSS at k„=J,
J, and K, respectively. This band is clearly a
dangling-bond band, pointing into vacuum at right
angles to the surface and having a node just below
the surface atoms. It is similar to the dangling-
bond surface band on Si (111) in this respect, but
whereas the latter surface state was directed along
the broken-bond direction, the present state is not.
The degree of anisotropy about the surface normal
of this surface state is revealed by plotting the K
surface-state charge density in Fig. 9 on a plane
at right angles to that which was used in Fig. 8,

0.02

WAVE VECTOR

TABLE I. Values of E'&& in the expansion (4. 1) of the
lower-gap (LGSS) and upper-gap (UGSS) surface-state
band energy as a function of k„.

FIG. 4. Plot of the LGSS energy versus k„along the
principal symmetry axes in the SBZ. The continuum of
bulk energy levels corresponding to the top portion of the
valence band are shown as striped regions.

LGSS
UGSS

0.04531
0, 09299

0.01562
0. 000248

0.00482 0. 00242
0.05093 —0. 00698
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51{100)-SURFACE STATE- Sl(100}-SURFACE STATE
VACUU

FIG. 6. Contour plot of the LGSS charge density for
k„=J' on a plane normal to the surface and passing through
a row of broken bonds. In this and all subsequent charge
contour plots, charge densities are in 10 3 a. u. , and the
plotting region extends from the midpoint between the 4th
and 5th atom planes to the vacuum. Atom sites are indi-
cated by dots.

FIQ. 8. Contour plot of the LGSS charge density for
k„=K on a plane normal to the surface and passing through
a row of brok n bonds.

4t~„=pe'"~~ "~
q (x -R;) .

i.e. , a plane which passes through a row of corn-
pleted bonds between the first and second planes of
atoms. Notice that while the forward lobe is highly
symmetric, the back lobe has considerable anisot-
ropy.

Much of the nodal structure exhibited in these
contour plots has its explanation in the form that a
single orbital Bloch wave function assumes, viz, .

Some information about p(x) can be obtained by
fitting (3.4) to the charge density above a surface
atom for the various momentum states. Assuming
that only nearest-neighbor overlap contributes to
p~(x), one finds that y is not spherically symmetric
at near-neighbor distance, that y is 20 times larger
at the atom site than at the near-neighbor distance,
and that y changes sign there as well. The latter

Sl( I 00)-SURFACE STATE
VACUUM

FIQ. 7. Contour plot of the LQSS charge density for
k„=J' on. a plane normal to the surface and passing
through a row of broken bonds.

FIG. 9. Plot of the LGSS charge density for lj, =X on
a plane normal to the surface and passing through a row
of complete Jack} bonds between atom in. the first and

second planes.
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property is to be expected of Wannier functions.
Consider now the UGSS. States at K, I', and J

are plotted in Figs. 10, 11, and 12 on a contour
plane which passes through a row of broken bonds.
This band has a maximum charge-density accumu-
lation that is confined symmetrically about a line
passing through a row of surface atoms and in the
direction of the broken bonds. Once again the nodal
structure revealed in Figs. 10-12 can be understood
with reference to a single localized orbital expan-
sion of 4'f„, i.e. , (4. 2}.

Both bands of surface states have their origin in
the two broken bonds that are present on the (100)
surface. The broken bonds can be thought of as a
linear combination of S, P„and P„orbitals; viz. ,

SI( I 00)-SURFACE STATE
VACUUM

and

n,S+ n, P, —e„P„ (4. S)

n, S+ n, P, + a„P„. (4.4)

The symmetric combination gives an (n, S+ a,P,)-
type dangling-bond state, i.e. , the lower band,
while the antisymmetric combination yields a P„-
type band, the upper band.

Because of overlap among the P„-type orbitals,
the upper band is considerably wider than the lower
band; so much so that the upper and lower bands
overlap in energy. This, as we shall soon see,
complicates the populating of these bands and the
determination of a surface Fermi level in our self-
consistent calculation.

Before elaborating on this subject we shall com-
plete our discussion of the surface states found on
Si(100). In addition to the gap surface states iso-
lated pockets of surface states were found at K at

FIG. 11. Contour plot of the UGSS charge density for
k„= I' on a plane normal to the surface and passing
through a rom of broken bonds.

energies -0.2424 and -0.2197. These states
were weakly split from bulk bands that are them-
selves extremely narrow. The charge density in
these surface states is essentially identical to that
contributed by the bulk band. The phenomenom we
observe here results from the fact that the periodic
parts of the wave functions for the bulk energy
bands at k„=K are highly localized. A small shift
in the effective potential energy in the vicinity of
one of these localized orbitals takes it out of the
band from which it is derived, creating in a formal
sense a surface state, but causing almost no change

Sl{ I 00)-SURFACE STATE
VACUUM

Sl( I QO j-SURFACE STATE
VACUUM

FIG. 10. Contour plot of the UGSS charge density for
k„=X on a plane normal to the surface and passing through
a rom of broken bonds.

FIG. 12. Contour plot of the UGSS charge density for
k„=J on a plane normal to the surface and passing through
a rom of broken bonds.
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in the local spatial nature of the charge density.
Such states are also present on the Si(111)sur-

face~ and one can expect that their presence on al-
most all semiconductor surfaces is assured by the
rather remarkable abundance of lines in k space
along which &(k) has almost no variation. It is
highly unlikely that these states will have any sig-
nificant physical influence on surface electronic
prope rt1es.

We turn now to the difficult question of populating
the gay or broken-bond surface states. If the UGSS
were not so wide, we could ignore it entirely in fill-
ing our states with electrons. The lower-gap sur-
face state would then contain two electrons per sur-
face unit cell, and the surface could be described
as semiconducting. This is to be contrasted with

the situation on the ideal Si (111)surface, where
a single dangling-bond band exists, containing only
I electron per surface unit cell. In the calculations
reported by Appelbaum and Hamann on Si (111), oc-
cupancies for the dangling-bond state were quoted
as 0. 6 to 0.7 electrons, in violation of the at that
time unappreciated and unproved charge-quantization
sum rule. '~ Had the states been occupied to 1 full

electron, charge neutrality violation - 0.3 electron
would have occurred in the surface region. Sub-
sequent refinements in the procedures for normal-
izing surface states, replacing an approximate
scheme by an exact analytic one, and improvements
in the numerical solutions of Schrodinger's equa-
tion, both incorporated in the present calculation,
account for most of this discrepancy. The remain-
der is due to the placement of the matching plane;
had that plane been placed further into the bulk,

charge neutrality would be more nearly satisfied.
(See Sec. V. ) Subsequent work~~ on Si (111)with

the above refinements indicate little change in the
quantitative features of the spectrum, and no qualita-
tive changes.

The presence of the UQSS changes the character
of the surface from semiconducting to semimetallic.
Charge flows out of the LGSS into the UQSS. At

the same time, some charge Qows out of the con-
tinuum states near I' into the UGSS. The actual
amount of such charge from continuum states in the
surface region is very small, since the density of
states in the surface-state band is much higher
than in the continuum states. In addition, the
charge in the continuum states near a band extre-
mum is greatly reduced by the surface barrier.
(This statement is weakened somewhat if there ex-
ists a resonance in the continuum near that extre-
mum but since we would treat that resonance as if
it were part of the surface-state band, the spirit
of the argument here is unchanged. )

Depopulating continuum states, unl, ike surface
states, can produce a charge disturbance deep into

the bulk and long-range effects such as band bend-

ing. Our calculational scheme is not equipped to
handle such effects nor are we interested in them
per se. Toavoid having to deal with them, we can
postulate that the crystal has been doped p type, so
that the small amount of charge missing from the
bulk continuum bands is exactly neutralized by the
dopant.

If we ignore the continuum charge, the problem
of determining a surface Fermi level involves en-
suring that (i), the phase space for the hole states
created in the LGSS is the same as that for the
electron states in the UGSS, and (ii), the electron
and a hole Fermi levels are equal. The quasi-one-
dimensional nature of the surface states makes this
extremely simple. The flow of electrons from the
lower to the upper surface bands depopulates a
strip of LGSS states parallel to the ~ direction
(see Fig. 2), whose width 2k, =0.56, and populates
a strip of UQSS states parallel to the 4' direction
of equal width.

With the extent of populated and empty states
determined, the problem of sampling them in order
to calculate a charge density remains. We proceed
in two steps: First, we ignore the charge flow be-
tween the two broken-bond surface states. In that
case the summation scheme using I" and K to deter-
mine JG«presented in Sec. III is adequate. To
correct p(x) for the charge transfer we add to p(x)
the approximately —,

' an electron in the sheet about
4', using an average of I' and J' states as repre-
sentative of the charge in that sheet, and subtract
an equal number of electrons from the LGSS.

One would like to use an average of the E' and J
states for this subtraction, but because of the res-
onant nature of the 1" state, it was felt that using

only the J states was both simpler and avoided the

problem that I' may be unrepresentative of a major
portion of the hole sheet.

Before leaving the topic of surface spectroscopy
we shall compare the results of this section with

previous theoretical calculations on the Si (100)
surface. No self -consistent calculations exist for
this surface but a number of tight-binding calcula-
tions and a pseudopotential calculation using an

abrupt -potential-step model have been done. The

latter calculation, due to Jones, ~ finds two bands

of gap surface states. Both bands are wider than

we find, with the LQSS band over 2 eV wide. The

one-dimensional dispersion found in our calculation
is not present in Jones' s. We believe this is pri-
marily caused by his inadequate solution of Schro-
dinger' s equation.

The earliest tight-binding calculation of Si (100)
is due to Hirabayashi. The spectrum found in

Hirabayashi's calculation, which employed a near-
est-neighbor tight-binding formalism, consisted
of two bands, the upper band less than -0.1 eV wide

and split from the lower band by - 1 eV. This
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TABLE II. Comparison of the LGSS and UGSS energies at kH=&, K, and J'
obtained in this calculation (ABH) and by Pandey and Phillips (PP). The dagger
indicates a. resonance energy. The energies are quoted in hartrees, on a
scale where I'&'5, the top of the valence band, is 0. 06884, and in eV, where the
energies are quoted relative to I'&'&.

(hartree) (e V)~
K Jl

(hartree) (eV) ~ (hartree) (eV)~

LGSS
0. 0861 0.47
0. 0682 —0. 02t

0. 0383
0. 0273

—0. 83 0. 0453
—1.13 0. 0321

—0. 64 PP
—1.00 ABH

UGSS
'0, 1390
0. 1372

1.91
1.86

0. 0446 —0. 66 0. 1259
0. 0348 —0, 93 0. 150

1, 54 PP
2. 23 ABH

'The energies quoted in eV are referenced to the valence-band maximum.

lower band was -0.3 eV in width. There is essen-
tially total disagreement between this calculation
and ours.

This extreme narrowness in the surface-state
bands found by Hirabayashi is due to his use of only
nearest-neighbor interactions in his tight-binding
scheme. A similar situation occurred on the
Si (111}surface, where Hirabayashi found a, very
narrow surface state that was significantly broad-
ened when he introduced next nearest neighbors.

Very recently, empirical tight-binding methods
have been used by Pandey and Phillips to fit the
Si (111)calculations of AH. ' They have also cal-
culated the surface state spectrum of the Si (100}
surface with a 0.45-A relaxation inward of the
outer surface plane simulated by a Hiickel-type ad-
justment of the surface-atom parameters. While
this is not the structure calculated here, this cal-
culation and the one reported here are in reason-
able agreement. They find two bands of gap sur-
face states, one 0. 048 hartree wide, and one
0. 095 hartree. A comparison is made in Table II
between the calculated values at 1", J', and K. For
some reason they did not calculate J. (Note: they
referred to our J point as J. ) We consider this
to be quite reasonable agreement although it must
be emphasized that the two calculations are for dif-
ferent geometries.

to 0. 002 hartree, rms. Noticethe spherical nature
of the potential above the surface atoms and the
strong tetrahedrally directed backbond potential be-
tween the first and second layers. The ionization
potential is 5. 9 eV, higher than is the case for the
actual (100) (2x 1) surface. '9 It is our present
belief that this discrepancy has its origin in the
surface reconstruction on the (100) surface, which,
as we will discuss in Sec. VI, should lower the
surface dipole moment considerably.

The total surface charge density, calculated from
the surface spectrum as discussed in Secs. III and

IV, is plotted on planes identical to those used for
the potential in Figs. 15 and 16. Notice the total
breakdown of tetrahedral bonding in the plane of
the broken bonds. The charge in that plane is cen-

SI(100 )-POTENTIALS

VACUUM

V. SELF-CONSISTENT CHARGE DENSITY AND WORK
FUNCTION

The self-consistent potential, whose spectrum was
discussed in Sec. IV, is shown in Figs. 13 and 14.
As with the partial charge densities, we have plotted
the contours of constant potential on two planes
normal to the (100) surface and passing in one case
(Fig. 13) through a row of broken bonds and in the
other (Fig. 14) through a row of completed bonds
between the first and second atom planes.

The potential is shown only on the vacuum side
of the matching plane, where it is self-consistent

FIG. 13. Contour plot of the surface potential on a
plane normal to the surface passing through a row of
broken bonds. Only the region outside the matching plane
is shown here. The potential is in atomic units, and the
placement of the scale is such that the valence-band maxi-
mum falls at +0. 069. Atom sites are indicated by dots.
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tered about the atoms, with charge lobes above and
below the surface atoms which reflect the almost
complete occupation that we find of the dangling-
bond surface-state band.

The charge i.n the bonds between the first and
second planes, shown in Fig, 16, has returned to
its bulk value, indicating how rapid the screening
is of the disturbance set up by the surface potential
barrier. In spite of the rapid screening, complete
charge neutrality is not achieved to the right (vacuum
side) of the matchingplane. There is approximately
0.2 of an excess electron in this region. If we study
the charge disturbance behind the matching plane,
there is a deficit of charge. Between the matching
plane and a, plane a distance a/4 behind the match-
ing plane, that deficit is -0.07 electrons; going
back a distance 8/2, that deficit increases 'to 0. 11.
Assuming an exponential falloff in the charge dis-
turbance, one finds much of the excess to the
right of the matching planes is canceled by a deficit
to the left, with-0. 045 electrons in excess. We
consider this an excellent indication of the numeri-
cal accuracy of our Schrodinger-equation solution.

The presence of an excess charge in the surface
region mould lead to a finite field in vacuum if
nothing mere done to compensate for it. There are
a number of procedures one could use. First a
field could be introduced at the matching plane
equal and opposite to the excess. Another ap-
proach, one we adopt here, is to scale the surface
charge density to achieve neutrality.

We believe that achieving a zero-field vacuum
condition by introducing charge into the surface
region rather than through a field at the matching

sj(}oo)-oHAasE oENsiTv

FIG. 15. Contours of total charge density are plotted
on a plane normal to the surface and passing through a
row of broken bonds.

plane corresponds more nearly to what the crystal
in fact would do. The deficit charge we now find
behind the matching plane would be screened by the
crystal if we allowed the potential in that region to
adjust. This in turn would push charge into the
surface region. Studies by Appelbaum and Hamann '
have shown that for the case of H adsorbed on
Si(111), the above procedure yields results highly
insensitive to the position of the matching plane.

VI. RECON'. UCTION AND STEPeED SURFACE

» already emphasized, the actual Si (1,00) sur-
face is reconstructed into a 2 x 1 structure. The

si(i oo}-poTENTiaLs

VACUUM Sl( I OO)-CHARGE DENSITY
VACUUM

FlG, 14. Contour plot of the surface potential on a
plane normal to the surface passing through a row of
bonds between atoms in the first and second planes
nearest vacuum. Only the region outside the matching
plane is shown here.

Fj:G. 16. Contours of total charge density are plotted on
a plane normal to the surface and passing through a row
of back bonds between the first and second atom planes.



THE Si (100) SURFACE: A THEORETICAL. . .
nature of this reconstruction is at present a matter
of considerable speculation. Two very different
hypotheses have been advanced, each having a num-
ber of elaborations. The first hypothesis, sug-
gested by Schlier and Farmsworth, is a pairing
of rows of surface atoms in a chemically familiar
dimerization process. The second hypothesis
oxiginally due to Lander suggests that the structure
has 50Vo vacancies. We presently favor the former
hypothesis, where R simple pairing reconstruction
occurs. As emphasized by Levine, the pairing
of atoms on the (100) surface can be achieved with
no bond-length distortions and modest bond-angle
modifications. For example, the most severely
distorted angle from ideal tetrahedral is that be-
tween the pair bond parallel to the surface and the
backbonds, and that is - 93 .

Such a dimerization is easily rationa, lized in
terms of the spectrum we find for the ideal (100)
surface. The broad UGSS is in a unique position to
supply the energy that drives the transition. With

pairing, the surface band splits into two bands, one
having states whose density is on the pair bond.
This band, either completely or partially occupied,
will have a considerably lower energy than the band
it derived from. The dangling-bond band also
splits, but not nearly so much, and one expects
considerable charge transfer from this band of
states to the now lowered UQSS. This has the ef-
fect of moving electronic charge from a region
considerably above the surface atoms to a region
in the plane of the surface atoms, and should lower
the calculated ionization potential. It has been sug-
gested by Ibach and Howe 3 that because the adsorp-
tion of H on the Si (100) surface in monolayer cov-
erages does not reorder the suxface, the vacancy

model for this surface is more probable.
We see, however, from our discussion above,

thRt the bRnd of stRtes that paxtlclpates ln the pR11-
ing transformation is the UQSS and not the dangling-
bond states. Consequently, one can have H absorb-
ing by means of dangling-bond orbitals without dis-
turbing the pairing that occurs through the upper-
gap surface-state band. A more complete discus-
sion of the 2x 1 reconstruction will be postponed to
the thixd paper in this series.

A final topic we wish to briefly consider has to
do with stepped (111)surfaces. Stepped surfaces
are produced as a consequence of imperfect
cleaves —intentional or otherwise. On the (111)
surface a two-atom step exposes a rom of atoms
identical to the rows of atoms on the (100) surface.
Some of the spectroscopic information obtained for
the (100) surface should be applicable to a.discus-
sion of step-induced surface states.

We expect there to be two bands of one-dimen-
sional surface states. One band should be similar
to the UGSS, which itself is quasi-one-dimensional,
and has its direction of dispersion along the edge
direction. This band should be quite wide. The
second band is analogous to the LQSS. Since that
band disperses only about 0. 3 eV (0.012 hartree)
along the row of broken bonds, the second step band
should be extremely narrow; so narrow, in fact,
that the band picture may be inappropriate. One
would then have isolated levels which would be oc-
cupied by an electron. It is this electx'on, we be-
lieve, that could be responsible for the EPH signal
observed on the Si (ill) surface. 34 It has been ob-
served that a strong correlation exists between
the EPH signal and the step density on the
Si (111).

~An excell, ent review of the experimental literature is
contained in W. Monch, Adv. Solid State Phys. 13, 241
(1ev3).
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