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Numerical evaluations of the critical properties of the two-dimensional Ising modeP
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Scaling transformations are used in numerical calculations of the properties of the two4imensional
Ising model near its critical point. When compared with the exact Onsager solution, the best

approximation is seen to lead to 1 part in 10 accuracy for the two largest scaling indices. This rather
accurate calculation is obtained by utilizing a scaling transformation which depends upon a parameter.
The parameter is set by demanding that two different evaluations of the magnetic eigenvalue agree with
one another. One evaluation is found via the standard eigenvalue method; the other comes from a
consistency condition for the spin-spin correlation function. This condition may also be used to
distinguish scaling eigenvalues from other eigenvalues.

I. CONCEPTUAL BASIS OF THE CALCULATION

A. Setting up the problem

Here the transformation matrix T is limited by the
condition that the partition function be invariant un-
der the scaling transform, i.e. , that

z=gz{ )= ~z'{p).
(ty) (~)

(1.2)

Condition (1.2) will be satisfied automatically if T
obeys

(1.3)

This. condition, in turn, will be satisfied if T is a
product over all sites of the p, lattice of the form

Recently, several different groups' 4 have per-
formed numerical calculations of the critical prop-
erties of spins on lattices by the direct calculation
of approximate scaling transformations. In this
application of the renormalization-group method, ' '
one starts from a functional of all the spins in the
system Z{o). One defines a transformation of this
partition functional to a new set of spin variables p;
on a lattice with a lattice constant larger by a factor
of l. This transf ormation is of the form

Here the S; are extensive functions of the 0's. In
general they may be represented as a sum over
lattice sites of the form

S;=ps;(r) .

This fixed point is identified with the critical point.
In numerical applications, an approximate form

of ff;(K) is found, and the fixed point located. Then
the properties of small deviations from the fixed
point

K,. =K,*. +A, , h, «1,
are investigated by evaluating the matrix b, &

de-
fined by

b,' =K'; —K,*. =Q b;;b; .

The eigenvalues and eigenstates of b,.~ are found.
We indicate these by the notation

(1.10)

For example, s, might be a„or s2 might be a prod-
uct of neighboring spins, etc.

In these terms, the transformation (1.1) can be
considered to be a transformation upon the K, 's of
the form

K,
' = Z, (K)

The fixed point is identified as a special set of K's
called K*, for which the transformation leaves K;
invar iant,

K,*= R; (K*) . (1.8)

In using the transformation method, one parame-
trizes Z(o) by writing it as a function of a group of
coupling constants Ki. These coupling constants
include a magnetic field term, nearest-neighbor
interacti. ons, next-neighbor, , four-spin terms, etc.
They appear in Z/o) in the form

Z(o) =exp+ K;S,{o).

Qb;,u, =u;b',
j

V 5 =Vi ij i

(1.11)

B. Interpretation of eigenstates and eigenvalues

The eigenstates and eigenvalues defined by Eqs.
(l. 11) have a very direct physical interpretation.
The eigenvalues, when written in the form
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(1.12) t„, =tanhg(o, +o2+o'2+o'4), (1.19)

give the scaling indices directly. For example, the
largest relevant odd- and even-spin eigenvalues can
be directly interpreted in terms of the standard
critical indices as

(even-spin),

y =if- P/v (odd-spin),
(1.13)

with d being the dimensionality. Notice that the re-
sults (l. 13) are supposed to be independent of the
choice of scaling transformation.

Furthermore, the eigenstates can also be given
a direct interpretation. From the right eigenstate,
we can form the eigenoperator

s „(r)= Q u; s; (r) .

The correlation function for these eigenoperators
then has the simple scaling properties

s;(r) =Q v;s„(r), (1.16)

(s (r)s, (0))R gs =A,2(r/r)/r'" '

for large y. The concept of conformal invariance
indicates that A,

&
should be diagonal. Thus, this

equation simplifies to the form

(1.15)

In general A will be nonvanishing for the relevant
operators of the theory, but will vanish for the so-
called "scaling" operators.

Equations (l. 14) and (1.15) enable us to write a,n

asymptotic form for the correlation function
(s;(r)s,.(0)). Equation (1.14) may be inverted to give

where the four 0's are those immediately surround-
ing the block.

(iii) Second block transformation. The ii's are
further spaced out, as shown in Fig. 3. Now l
equals 2. We choose t„, once again to have the
form (1.19). This transformation can be consid-
ered to be simply the composition of the previous
two.

D. Dependence upon K

According to the theory, y should not depend on
Let us jump ahead and look at the results of our

approximate recursion calculation to see whether
this independence is indeed realized. Figure 4
plots the values of 1/v and P determined from Eq.
(1.13) and our most successful transformation, the
second block transformation. The details of the
approximation method will be developed in Secs. II
and III. For now, the important point is to note
that the calculated eigenvalues do appear to be
roughly constant over a whole range of K, but that
some g dependence is indeed present. It would be
helpful to be able to choose some particular value
of E as "better" than the others. In some sense,
this could be the value of E for which the approxi-
mations for R,. (K) were more a.ccurate than for
other values.

For this reason, we seek another equation to de-
termine p/v. If we can obtain an independent eval-
uation of this quantity, we can then compare this
result with the eigenvalue. Presumably the "best"
value of K would be the one for which these quanti-
ties were most nearly equal.

E. Correlation-function determination ofy

so that

i( )si( ))K+ g ( i ) r2(d-y~)
(re1 ev

ant�)

(1.17)

To develop this second equation for y, we cal-
culate the p. - p, correlation function as

for y'

C. Examples of scaling transformations

In this paper, we shall discuss three specific ex-
amples of scaling transformations:

(i) Decimation. The new lattice r' is chosen to
include half the sites on the old lattice, as indicated
in Fig. 1. Then /=W2. On the new lattice, the new
spins p,„, are chosen to be exactly equal to 0~. The
remaining 0's are summed over. Thus

From the definitions (l. 1)-(1.4) of the transforma, —

tion, it immediately follows that this correlation
function can also be expressed as

t„'fo'f= o„, .

(ii) Block transformation. As shown in Fig. 2,
each p,„' appears in the midst of a block of four
spins. Once again the increase in lattice constant
E is v 2. We choose

FIG. 1. Decimation transformation. $ =v2; x=0„,, e
=p„, and g„..
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$.005

X .995

FIG. 2. Block transformation. E =&2; x = p,„.; ~ =0'„. .99

&t(, vo& ~ =«'( }to%& ' (1.20)
.14—

now, t„, and p,„, can be written in terms of the basic
objects s;(r) L.et us define s, (r) to be just the spin
variable

Py

.12

u, = s, (r') .

Then for decimation transformation

t„,(v}= a„, = s,(r'),
while for the block transformations

t„,(~}= tanhg(o, + v, +~, +~4)
1=
4 w~(((( + (Xa + (73+0'4)

+ 4 w (0'( + 0'2 + (Ts + o'4)(7 g(72(T g(T4 ~

1

with

w, = 2(tanh4g+ 2tanh 2g) .

(1.21)

(1.22)

(1.28a)

.09
. 75 .85

I I

.95
I

i.25

FIG. 4. Even-spin. eigenvalue 1/v and odd-spin eigen-
value p/v as obtained from the second block transforma-
tion, plotted as a function of the parameter E. The curve
labeled "check" gives the value of p/v obtained from Eq.
(1.26); the curves intersect at a, value of K=O. 9783, at
which point P/v = 0.12447.

t„.f(x}=w.s, (r')+w s,(r') . (1.24)

Then, both transforms may be represented by
(1.24) if we define

n), =1, zo =0 (1.28b)

for decimation.
Now apply Eq. (1.20) at the fixed point. From

(1.20) and (l. 24) it follows that

(s,(r')s, (0)&((d,

The o's lie at the points immediately surrounding
the tj, . If we define s2(r) to be a product of three
neighboring o's, e.g. , o,o,a3, we can write the re-
sult for the block transformation

&'' = w, +(va/v, )w . (1.27)

Equation (1.27) is our second equation for the ei-
genvalue y . It holds for all relevant eigenvalues,
but not for the scaling eigenvalues.

= ([w,s, (/ r') + w s2(f r')] [w,s, (0) + w sa(0)]&((g .
(1.25)

Next, go to the limit of large z and apply Eq.
(1.17). Equation (1.25) becomes

'4I
( ~)a ~ +~(v( 3'+ v2 y-~ (1.26)(r/f)2(d y~) 1 -~ P(d-y~&

with r = r'l. For all relevant eigenvalues, A 40.
If there is no degeneracy, y Iy~, then we can con-
sider (l. 26) to be true term by term in z. This
can be true if and only if

~ 0 ~ ~

X X

FIG. 3. Second block transformation. i=2; x=p„, , e

F. Results for eigenvalues

I,et us look at the results of our calculations once
more. Equation (1.27) may be used to obtain an
additional determination of the odd- spin eigenvalue.
Our pair of determinations was plotted in Fig. 4
and the difference curve is given in Fig. 5. The ei-
genvalues are identical at /=0. 9783 and have the
value

P/v = 0. 12447 (1.28a)
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li
.08 approximation than the second block transforma-

tion. The indices are more dependent upon g, i.e. ,
the approximation method, and the two evaluations
of P/v never intersect. However, we can choose
the best value of K as the one which minimizes the
difference between these evaluations. At this value
we get

1/& =1.03,
P/v=0. 10 from eigenvalues,

= 0. 15 from correlation function .
(1.29)

—.05

As we expected from the figure, these values are
far less accurate than values obtained from the
other approximation. It would appear that our ap-
proximation method simply converges better in the
case of the second block transformation.

G. Remainder of this paper

anh 2K

FIG. 5. Difference curve. CP/vs~heck /v)/(p/vicheck
plotted as a function of tanh2K. The two determinations
of P/v are identical at K=0.9783.

Sections II and III have the nature of technical
appendices. They detail the approximations used
for constructing the recursion relation. Since the
decimation transformation is simplest, we describe
it in Sec. II. However, it is not used alone, only in
conjunction with the block transformation to form
the second block approach. The block transforma-
tion is described in Sec. DI.

at this point. Here 1/v from Fig. 4 has the value

1/R = 0. 999 964 . (1.28b)
1.05—

These should be compared with the exact (Onsager-
solution) values 0. 125 and 1.0. The comparison is
obviously more than satisfactory.

We conclude that the trick of adjusting A im-
proves immensely the accuracy of our calculational
method.

All results so far have been taken from the sec-
ond block transformation, which is essentially the
composition of the first block transformation and a
decimation.

Notice that Eq. (1.27) gives nonsense for the dec-
imation transformation. Since ~, and zv are, re-
spectively, 1 and 0 for this case, we find

1
iv

.90

FIRST BLOCK

or perhaps

pq =0.
In either case, we cannot make much sense of our
procedure. We therefore drop the pure decimation
transformation as having at best a complex rela-
tionship with the physics of the two-dimensional
Ising model.

Qn the other hand, the first block transformation
does make sense. The results of this transforma-
tion are plotted in Fig. 6. Clearly this i.s a worse

.92
l I

.94 .96 .97

FIG. 6. 1/P and p/v as obtained from the first block
transformation. In this case the two indices are quite
dependent on K and the two evaluations of P/v never inter-
sect.
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II. DECIMATION TRANSFORMATION

A. Setting up the calculation

To begin, write the partition functionals in terms
of coupling constants in the form

1nZ/1r)=g K,S,. = 6:{o).

Then, the recursion relation becomes

NUMBER OF COUPLING DIAGRAM
SP I NS rI CO N STA NT

Ki

K3 I

K3I P

K3I P

Kpy

NUMBER OF
DIAGRAMS
OVER NUMBER
OF SITES = U

P '( p,)= 1n~ Q e i 'i
~

({fy~) ) &„=I „3
(2 1) K51

The actual coupling terms which we use in our
calculation are shown in Figs. 7 and 8. We use for
K; the notation E„,, where n is the number of spins
contained in the corresponding s;.

The calculation of the sum in Eq. (2. 1) is consid-
erably facilitated by the fact that we can perform
the sum exactly when there are only nearest-
neighbor couplings present. Our basic procedure
then is to perform the sum for the nearest-neighbor
case and then handle all other terms in perturbation
theory.

When there are only nearest-neighbor and con-
stant terms in P, the sum in (2. 1) takes the form
of a product of terms like

z = p exp[2Ko 1+O'K3 1(lt11+ F13+ i13+ i14)]

= 2 coshK3, (i1, + p3+ p3+ p4) exp2Ko, . (2. 2)

Here the p, 's are the new spin variables immediate-
ly surrounding the spin o. (See Fig. 1. ) In per-
forming the perturbation calculation it is also im-
portant to know the average of 0 derived from the
partial partition function (2. 2). This average is

FIG. 8. Odd-spin diagrams.

(+ )g tanhK3, 1(i 1+ i 3+ P3+ P'4) (2. 3)

With these results in hand, one can rewrite Eq.
(2. 1) in the form

(2. 4)

Z
summation

sites

6",1ljrj = ln(e~rem&'i)

(2. 6)

(2. 6)

(Ko, r)o =2Ko, r+ ~o ~ (K3,1)o = 2~3 ~

(K3,2)o = ~3 (K4, 1)o = ~4

with

(2 'f)

In Eq. (2. 6) 6'„means 6'(o) less the constant and
nearest-neighbor terms. The average is defined
by E11. (2. 3), so that the average of each summation
variable depends upon the four p, 's immediately
surrounding it.

Fo(i1} may be evaluated exactly. It contains the
coupling constants

NUMBER OF COUPLING DIAGRAM NUMBER OF
SPINS =n CONSTANT DIAGRA IVIS

DIVIDED BY
NUMBER OF
LATTICE SITES = U

KP I

Kg 1

Uo = ln2 + —,'ln cosh4K3 ~ + —,'ln cosh2K&, »
Ug = slncosh4K& &,

U4 = —,'ln cosh4Kz I
——,'ln cosh2K2 ~ .

(2. 6)

Kp p

KP 3I

Kg

Kg p

K~ p

Kg

K4, 6

FIG. 7. Even-spin diagrams.

The remainder of the problem li.es in the evalua-
tion of the average (2. 6). Some terms in 6'„are
trivial —those which do not involve summation vari-
ables. The first five terms in the left-hand column
of Fig. 9 are the trivial ones; the remaining terms
in the figure are the nontrivial terms included in.

our analyses. The trivial terms simply give rise
to a contribution to F,'fp] of the form

(K;)1„,=Q R;„K; . (2. 9)

Here the following components of g, , are equal to
unity:

R31 33, R33.33, R41 43 p R11.11 p R31..33 . (2. 10)
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COUPLING
CONSTANT

S IMPL E R
DIAGRAM

MORE COMPLEX
DIAGRAM

&&(&s,s,.&, —&s, &„&s,, &„)+ ~ (2. 13)

Kp p

Kp p

Kg p

Kp p

K24

Kg g

KS, i

Kp p

Hie

Ra«X ~Ii4 3

I o ' «P«

X ~ X

X
X ~ X

X

X

X ~ X

Thus the remaining contributions to E,'. may be
expanded in a power series in tanhgt of the form

U,.(K,'. ),=p C,, (tanhK, . )U,.

+ g D,.»(tanhK&)(tanhK, )U; U~ . (2. 14)

Here U', is the number of diagrams of a given type
as defined in Fig. 7. In conclusion, E' is the sum
of Ko [Eq. (2. 7)], K'„,„[Eq. (2. 9)] and (K')z.

B. Evaluation of nontrivial diagrams

Each nontrivial diagram involves (a'&„. From Eq.
(2. 3), this may be written

K3g

K5 g

&e&„=-,'s, (~.+x s,),
with

(2. iS)

FIG. 9. Terms actually included in the analysis of the
decimation recursion relation. The trivial terms are the
first five in the left-hand column. In all cases, save for
K2 2, the terms in the right-hand column are not included
in the analysis. Instead, we approximate them by dou-
bling the size of the terms in the left-hand column. The
diagrams K4 2 are not included in this figure because our
approximation for the block transformation does not
generate K4 2.

All the remaining contributions from the diagrams
under consideration vanish.

To complete the calculation, we need the contri-
bution of the nontrivial couplings indicated in Fig.
9. Each term represented here may be written as
a term in the sum

V„, =+K,s,
t

ol as a product

e "m=)[,[ coshK, (1+tanhK, s, ) (2. 11)

since each st has values +1. Therefore the entire
set of remaining terms in the analysis can be ex-
pressed as

p&( p}=P ln coshK, + (s,&, tanhK,

+— tanh&t tanhKt.
1

tt'

P4(p}= ln .liI coshK, (1+s, tanhK, ) . (2. 12)
t

In a cumulant expansion of the average Eq. (2. 12)
reduces to

Sy = Pg + P,2+ P,3+ P.4 q

$4 = JXj P.2'(, SP.4 P

g, = —,'tanh4K2, , + tanh2K2,

(2. 16)

1
C45.24

—C42.24
—

2 X

1
C44;24 ~46;24 4+- '

(2. 17)

The terms C .22, D .22.22, and C .4» which
are only slightly more complex, are treated in an
exactly analogous fashion. Even one type of con-
tribution C .42 (the term shown in the right-hand
column of Fig. 9) can also be handled in this way.
However, there are other terms, one involves 512
terms when written out as a product that are too
complicated to handle directly.

C. Simplification from symmetry

But, why should the left- and right-hand columns
of Fig. 9 give different contributions? They are
physically identical terms in the original a lattice.
They only become distinguishable because of the
symmetry breaking produced by the summation
technique.

In lowest order, the difference between these
diagrams should not contribute to any physical ei-
genvalue or eigenstate —only to redefinitions of ir-
relevant eigenvalues and eigenstates. Hence for
all linear analyses we can replace the right-hand-

A typical lowest-order contribution to (2. 13) is
produced by the fourth-neighbor interaction shown
in the sixth line of Fig. 9.

For this case, the resulting expectation value is

s4 =
4 QQ(pl+ V2+'+3+ p4)(++ +x S4)

A count of terms shows that the contributions to the
C,&

are
1

C24.24
= C2(.24

= C22.24
= C23.24

—
~ X, ,
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TABLE I. Odd-spin portion. of the recursion relation,
ICt' =2Z~MeEC~. The values of M&& are listed in the table
with the notation x = x, + x . The blanks represent zeroes.

TABLE II. Configurations of four spins and associated
values of functions of these spins. 8'z represents the
number of similar configurations.

K value

Kg (

K3 (

K3 2

Ks' 3

K3 4

K5 i

K„ K„

2X

K32 K33

2X

2X

1
4x+ x

K34 K5(

$1 = fr[ -r tT2 + Q'q + fri

S~ = ai(72 + fr2(r3

+ 03fr& + fr&&&

S = 0&cr3+ fr2a.
&

S3 =-S1S4

Sq = 0'1 fr2fJ30'g

Configuration
+ — + + +

+ + + + + — +

0

4 —2

1 —1

column diagrams by the simpler diagrams in the
left-hand column. We make this replacement in all
cases save that of E~ ~, which we take to second
order. In this way, we are left with seven non-
trivial diagrams to evaluate. Once again we re-
place contributions to coupling constants which are
not on our list by lumping them into the highest-
order coupli. ng constant &„',. with the same n value.
In this way we obtain our approximation for the
decimation recursion relation. The odd-spin por-
tion of this approximation is summarized in
Table I.

III. THE BLOCK TRANSFORMATION

A. Setting up the calculation

In calculating the results of the decimation trans-
formation, we extracted the exact effects of the
lowest-order interaction and took all the higher-
order interactions into account as perturbations.
We can apply a rather similar method for the block
transformation. We start by calculating the prop-
erties of the basic block shown in Fig. 10(a). Then,
we move on to calculate the interaction between two

blocks as shown in Fig. 10(b). When these two
terms are calculated, we use the results as a
starting point for a perturbation theory in which we
expand in (a) the correlati. ons among more than two
blocks and (b) the interaction terms which cannot
be included in the blocks.

The basic block is organized so that it contains
the couplings produced by E as well as the interac-
tion terms listed in the first four rows of Fig. 9.
Then, the zeroth-order result for the transformed
free-energy function is obtained by calculating the
partition function for the basic block. This is sim-
ply a sum over the o variables of

e~P = —,
' (1 + tanhKit S,)

&&exp(Kp t+Ks tS +Ka aS +K4 tS4) (3, 1)

where St, S„„, . . . are defined by Fig. 10(a) and
Table Q. The partition function for the basic block
is then given by

efp(e) gg. (3. 2)

X- where the ~ are the configurations listed in Table II.
In summing over all the basic blocks, we essen-

tially sum over all cr variables twice, since each
one falls into two blocks. To represent this fact,
we introduce two variables v„„ for each 0„. These
v„„variables are taken to be at sites halfway be-
tween the o„sites and the p. „' sites —as indicated in
Fig. 11.

Each pair of v.„„variables surround a O„vari-
able. We define these new variables by the state-
ment that they are equal to the a„variable and to
each other, i.e. ,

(b) (7„=2(1 +r )~ 1 = f=o„' (3. 3)

FIG. 10. (a) Basic block. {b) Two blocks together.
To represent this equality, a factor —,'(1+Tv') is in-
troduced into the sum defi. ning 7' at each o„posi-
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= 0 0 =

0 0
X

0 0

0
=0 0=

X

0 0
X

0 0

&))) ll ) ( & 2)li Lnn & ( 1ra))) L))nn )

(r i'r2r3)g = Ls& ) (rirars'r4), = L4 )
(3.9)

where nn and nnn stand for nearest- and next-
neare st- neighbor terms.

One can also directly ca.lculate (V„)o as

(V„)„=2 cosh%»(1 + L, i),p').
x [1+AtanhÃ& )2(l), + p. ')],

with

which lie on a single block. We define these aver-
ages as

FIG. 11. Distribution of the auxiliary sites relative to
the basic 0 and p, sites. x=p, , ~ =0. &=7. X = 2L)/(1+LE) ) (3.11)

tion. Then, the basic equation for 7' can be written

6 )(~] ln +f0(T] T2& Ts T4 ))L& )

where p and p' are the (nearest-neighbor) new spin
variables immediately adjacent to r. For our later
work, we shall also need to know the quantity

( )1 (Vr )')))
(V)'

x )QV„~e " (o„]- (3. 4) X(p+ g'/2) +tanhK, ,
1+ A(lL+ p, '/2)tanhK, ,

' (3. 12)

Here, V„ is defined by

V ), {1+&&)) Ey, y)' (3. 5)

where 7 and v' are the two new summation variables
surrounding the point z. The E, , term takes into
account the one-spin term in F. The remaining
interactions in 6' are included in P„(o]., with each
of the cr's replaced by a pair of r's in accordance
with Eq. (3.3).

Equation (3.4) permits a very convenient rewrit-
ing of 7'. Define ( )0 to mean an average of some
function of the v's with a weight factor

Equation (3. 8) defines the lowest-order approxi-
mation for 5', i.e. , 7' contains constant, nearest-
neighbor, and one-spin terms. In the case of small
K» these have coupling constants

(Zo &)0 =in'+ —,'ln(1 —L4),

(3. 13)

The remainder of the calculation is the estimation
of F~ as defined by Eq. (3.9).

C. Corrections from Prem

With this weight factor, r's which fall into different
blocks are uncorrelated, while v's in the same
block have only a weak correlation. In fact, E is
chosen to make the intrablock correlations as weak
as possible. In any case, with this definition of
( )0, Eq. (3.4) can be written

The general structure of the terms lumped into
is a product of terms af the form exp', o„,a„

~ ~ ~ o„, where each o is represented by a —2(r +T').
In a first-order expansion such a term produces a
contribution to F' of the form

(3. 14)

v,')v)=In
l ll ', e"' ")( V,

(3. 6)

(3.7)

(3. 6)

where the second product is over all z's not in the
diagram. In lowest order, we approximate such a
contribution by neglecting the correlations among
different V„'s.

Then we find

Equation (3.6) represents our starting point for the
calculation of 7'.

B. Lowest-order calculation

The zeroth-order partition function z is easily
calculated from Eq. (3.1). This equation also per-
mits the direct calculation of averages of the v's

66",(p,j= ff; ],I (o„,),',
i=1

where ( )' is defined by Eq. (3.12).
For example, a E, 4 term like that defined in Fig.

9 will produce a contribution to the right-hand side
of (3. 15) which looks like
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X(p, + pz/2) +tanhK, ,
~'4 I +A(p, + pz/2)tanhK& &

X(ius+ g4/2) + tanhKi
I + x(ii, ,+ ii,,/2)tanhK, ,

' (3.16)

The next step is to convert (3. 16) into a statement
about coupling constants. Start with K, , = 0. Then
the right-hand side of (3. 16) takes the form

K3 4X (/pe 3+ /JQ+4 + pips + pip4), for odd n and even
m, which includes, respectively, a nearest-neigh-
bor term, a next-nearest-neighbor term, and a E~ 3
and a K3 4 term. The new lattice contains, respec-
tively, U,.~' of these terms, i. e. , 2N', 2N', 2N',
and 4N', where N' is the number of p,„, sites. On
the other hand, there are 4N or 8N' terms like
(3.16). Hence a direct count gives a contribution
to Kp gap 3 ~,

6K~, =6K~ ~=6K~ 3=6K~ 4=4K~ 4X 8N'/2N . (3. 17)

In a similar way, we can assess the effects of all
terms in P„(a). The general structure we see is
that the terms independent of K, , are

1 2
6K' n

= g P ~j,n;i, n+am, u
J m e Z ZZZ=

n+Sm

Kz, n+am ~z, n+3m, ~ ~

(o)

FIG 12 Correlation correctIons

The values of the matrix C are set forth in Table
III. In Eq. (3. 13), the index oi distinguishes be-
tween different types of diagrams which may have
the same coupling constant. V; is just the num-
ber of such diagrams divided by the number of lat-
tice sites.

The first-order term in K~ ~ produces effects a
little more complex than those listed in Eq. (3. 13).
As can be seen by taking the first-order correction
in K» to Eq. (3.16), which is

TABLE III. Values of C„, ~~~ for even n.

+8,4K1, 1(2 (P1+ I 2 + 0'844) '4~ ( + All p)(P3+'P4)

—4X'(I+ iLi3y4)(p, + p, )],
these terms have the structure

2 m-1

i n
= Z K 1K',m, a I i, m n

g p ZZ Z Qf 78

x M,'.„,„,1-———m,'„, (3. 19)

Values of the matrices M and M are easily deter-
mined by a direct count.

D. Correlation corrections

1
2
3

5
6

Other

3 4

1 1
2 1

1
1 1

4 4
2 3

2 1 1

5 4
3
1 2
1

1 2

1

1 4
1 2
1

Figure 12(a.) shows four vertex functions arrayed
about a single block. This arrangement leads to an
important correction to 7'„namely, a term of the
form

~i~a ~3~4—ln

0

&«xp[K3, &op'&oso4(a, +a, +o'3+(T4)] . (3.20)

Note that we have included a, K3 i term (type o, = 1)
in 6P, The eva. luation of (3. 20) is not materially
impeded by this inclusion, and the inclusion of K3
here gives a more accurate evaluation of its effect
than the calculation outlined in Sec. III C. Conse-
quently, we handle the K~i i" terms in Eq. (3.20)
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(OK11$1+K31$3)0
0

(eK11$1+K31$31S )0, = e 4)~,
( K11$1+K31$31S )0nn= e 4 nng

(3.22)

In Eq. (3. 22) the S's are once again of the form de-
fined by Table Q, but now they are functions of the
four v's which appear in the basic block.

The contributions to the coupling constants may
now be evaluated by a process of projection applied

and do not include them in the sums in Eqs. (3. 13)
and (3. 14). The major interblock correlation ef-
fects upon the response to K3, are thus taken into
account.

Because of the highly symmetrical structure of
Fig. 12(a), the average in (3.20) is easily computed
and its effects upon K' assessed. An evaluation of
the averages gives

55'1 = ln(L0+ pS1L1+S L + S L +SSL3p + S4L4)

—41n coshK, , —(2 + —,
'

pS, )ln(1 + L', )

x (1+pX tanhK, 1) —(2 ——,
' pS1)ln(1 —I.,) . (3.21)

Here $, and $„„are the variables defined in Table LI,
except that they are functions of p, , p,~, p, 3, and p, 4

instead of 0's. The functions L0, L', , . . . are de-
fined as averages on the basic block, with

to Eq. (3.21). For example

X= K3 3 (O~Ob + Ob(TS) + 0'~O bO'bO'4

x[K4, -bK3, (o, +ob+o, +o4)1 . (3. 24)

Once again the numerical calculation of the sum is
relatively easy. Using (3.23), we can completely
drop Ks» K4» and E~ ~ from the perturbation
theoretic calculations of the previous section —and
instead have a more accurate result in which a
vari. ety of correlation effects upon the results of
these terms are included.

OK4 3= Q Q&, (n)S3(04)S&', (04, V)p,
af

where the sum over z is a sum over the configura-
tions of the four variables p, » p» p, „and p,4.

Another set of blocks whose correlations can be
evaluated is shown in Fig. 12(b). However, all
three-block correlation effects are already included
in expression (3.15). Thus, the correlations in
Fig. 12(b) have, in the main, already been taken
into account. We use this diagram to get a more
accurate assessment of the a=2 effects of K~ ~,
K4, , and K3, by calculating these effects from

5%1= (V, Vb Vb V,XX)~/(V, Vb V, V,)~, (3.23)

with
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