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The perturbation expansion for the electronic structure of a tight-binding model of a liquid metal is
studied by means of a diagram analysis. The previously developed effective-medium approximation is
shown to correspond to the summation of the same terms as occur in Soven’s coherent-potential
approximation for alloys, within the validity of a generalized Kirkwood superposition approximation for
ionic distribution functions. The terms omitted are shown to be of higher order in 1/%, withZ
an effective neighbor number. The results are extended to cover liquid alloys and solid alloys with
short-range order and off-diagonal disorder, the latter results agreeing with work of Blackman et al.
The conclusions apply also to a general model of a liquid metal.

I. INTRODUCTION

Recently we have developed an effective-medium
theory!' 2 (EMA) for the electronic structure of
liquid metals, based on multiple scattering theo-
ry.®~® We believe that the EMA is the appropriate
generalization of the coherent-potential approxi-
mation® 7 (CPA), which has been so useful for al-
loys, to the liquid-metal case. We have applied
this theory to a tight-binding model® ° which has
been previously studied by Beeby and Edwards,'
and Cyrot-Lackmann,'! and more recently by
Ishida and Yonezawa,'? whose work was based on
the work of Matsubara and Toyazawa!® for the ran-
dom case appropriate to impurity bands. We found
that within the Kirkwood superposition approxima-
tion for particle distribution functions, the first
and second moments of the spectral function,® °
giving the position and width of the quasiparticle
resonance, are given correctly by the EMA, and
furthermore that it reduces to the CPA in the al-
loy case.

The above work' ? indicated that the present the-
ory is an improvement over several previous at-
tempts® 12+ 1 to extend the CPA to correlated liquid
metals. For the random liquid metal this and the
other theories reduce to the result obtained by
Faulkner’® and Klauder!® for the general multiple
scattering case and by Matsubara and Toyazawa'®
for the tight-binding model. However, it seemed
desirable to study further the relationship of the
EMA to the CPA and to other theories.

In this paper we shall analyze the EMA for the
tight-binding model in greater detail. We shall
develop a diagramatic representation'’ for the lo-
cator expansion for the one-particle continuum
Green’s function. This will show clearly which
terms are included in the EMA and which are not.
In fact we shall find that the structure of the ex-
pansion is exactly the same to all orders as that

11

for the CPA. We can also use the diagrams to de-
termine which moments of the density of states
are conserved by the theory, and to compare with
other results.

The CPA was shown by Schwartz and Siggia'® to
correspond in some sense to an expansion in 1/z,
where z is the number of neighbors in a nearest-
neighbor tight-binding model. We shall define an
analogous quantity z for the liquid-metal case, and
shall show that such an expansion applies here al-
so. That is, for certain energies the omitted
terms in the self-energy are of order 1/Z2 while
those kept are of order 1 and 1/Z.

The present formulation and diagram expansion
can be used to generalize the CPA to include
short-range-order effects. We also formulate the
liquid-alloy problem including “off-diagonal dis-
order,” using the ideas of Blackman, Esterling,
and Beck'® and Movaghar, Miller, and Benne-
mann,?® and show that it reduces to the result of
Blackman et al. for the random-alloy case.

In Sec. II we develop the diagram expansion and
obtain the EMA. In Sec. III we study several prop-
erties of the result: moments, the identification
with the alloy case, and the 1/Z expansion. In
Sec. IV we discuss the generalization to include
short-range order and off-diagonal disorder in
solid and liquid alloys. Finally we discuss the im-
plications of our findings in Sec. V.

We have performed numerical calculations for
the EMA for several pair distribution functions.
These will be reported in a subsequent paper, in
which the EMA will be compared primarily with
the simpler Ishida-Yonazawa theory.

II. DIAGRAM APPROACH TO TIGHT-BINDING MODEL
We examine here the tight-binding model which
we have developed in previous work.® ° The

Green’s function G, is assumed to be expandable
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in terms of atomic orbitals, one for each site:

G:(F, )= o(F-R)G;;0(F -R)), (2.1)
ij
and G;; is assumed to obey the equation
(w = Hy)G;j = Z H/(ﬁil)Glj =0;;, (2.2)
1#i
where

H'(R;;)=H®;;) - wSR;;),

with H a transfer integral and S an overlap inte-
gral between the atomic functions. For most of
what follows we take H,=0 and, for i#j, S(R;;)=0;
i.e., we consider the case of orthogonal orbitals.
We have already discussed some effects of non-
orthogonality® and we shall examine it further in
a subsequent paper.

We consider now the continuum Green’s func-
tion:

6@, R = ( 3 pu®IGup ), (2.3)
ij

where p‘(ﬁ) = 5(_1§ —-ﬁi) is the density of the ¢th ion
at R, and the average is over all configurations of
the system. G has the expansion

G(R-R)= 5—(%_—§Q<t2m(ﬁ)>

v 25 (3 0B () 1 (- )
(T @, @pR))
ijl
xH@R-RMHR” =R)AR" ++- - .
(2.4)

Here the prime indicates that neighboring indices
are never equal,

For density correlation functions in which no
two particles are the same, we write

S i ®) o ®)) =R, ., By,
1 »
[PERREN (2.5)

where g is a p-particle distribution function. The
most familiar example is the pair distribution
function (PDF) g(R, R’)=g(R = R’). In this article
we shall make the assumption that the p-body dis-
tribution function can be decomposed into
p(p—-1)/2 PDF’s; i.e., we shall use a generalized
Kirkwood superposition approximation. This ap-
proximation has been discussed at length in terms
of the three-body distribution function.?' It has the
happy feature that hard-core exclusions are treat-
ed properly. We can represent the various terms
in Eq. (2.5), and in particular the various equali-
ties among indices, by diagrams which are essen-

tially those introduced by Cyrot-Lackmann'! and
Ishida and Yonezawa.'? They are illustrated in
Figs. 1(a) and 1(b). Each of p distinct ions is rep-
resented by a point, and each of m hopping inte-
grals by a directed line, which follows a continu-
ous sequence from the first point (R) to the last
point (ﬁ’). We can think of the sequence of hops
as being numbered. Some diagrams are closed—
these have a factor 6(R-R’). The point R is indi-
cated by an open circle in these graphs to avoid
confusion. Each diagram has a factor »n?/w™*!.
There are PDF’s connecting each pair of points
and we represent these by dashed lines. Some of
the PDF’s occur with a hopping integral. These
chain correlations are indicated by using a dashed
line along with a solid line to represent  (R)
=g(R)H (R) [Fig. 1(c)]. The remaining PDF’s rep-
resent out of chain correlations. The diagrams in
Fig. 1(a) represent the series

2
n .= =, ne = = =
- - —H(R -
S(R-R’)+ —H(R-R')

~

+ Lo®-R) f AR -R"H®” -R)dR"
3 —_ - - —_ ~ - - >
+ %g(R—R’)fH(R—R”)H(R"—R')dR”
n3 [ -~ -
+ oo —R’)fH(R—R”)H(R" ~-R")
% b (ﬁm —ﬁ)dﬁ"dﬁ’”.

(2.6)

Notice that in the third term we need only one
PDF, so we have one H and one H. We next de-
compose the out-of-chain correlation by letting
g(R)=1+n(R), with 2 represented by a dotted line.
This is illustrated in Figs. 1(d) and 1(e). The cor-
relation between a pair of points is neglected in
the first term on the right-hand side, and the &
line in the second term puts in the correlation.

a e —e=>=
b /:—:—:—\ 2B LN €
c e = £33

d S>> = =>——-——>a+.=—>;.n=~

FIG. 1. Diagrams in expansion of G(ﬁ, R’) (see text).
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Thus Fig. 1(d) represents
nd P N pre —
— JH(R —R”)H(R” _ Rl)dRII
w

3
o Ln R -F) [AR - R @ -R) R
The & line corresponds to the multiple-occupancy
corrections in the CPA. From now on we regard
this decomposition as having been made. How-
ever, sometimes we use dashed lines as a short-
hand way of drawing several diagrams at once.

We can now make several exact reductions of
the diagrams. Consider first the closed diagrams
such as appear in Fig. 2(a). Some of these dia-
grams fall into two or more parts upon removing
the point R. Let us call these unlinked, and those
which do not fall apart we shall call linked. Note
that the presence of an 2 line can make a diagram
linked. Then we call the sum of the linked parts
PPN

3, = %fﬁ(‘ﬁ-ﬁ'm(ﬁ'-‘ﬁ)dm- @)

We omit a factor (n/w?)5(R —R’), symbolized by
omitting the open circle. [Note, however, that
there can be internal locators associated with the
point ﬁ, as in the fourth diagram in Fig. 2(b).]
The whole series of closed diagrams can be gen-
erated by a geometric series in powers of Z,, as
indicated in Fig. 2(c). The diagonal part of

G(R, R’) is then nGy 5(R -R’), where

Ga=(w=2,)7". (2.8)

Consider now the nondiagonal part of G—the open
diagrams. Let us call a diagram reducible if
there are attached to a point in the diagram any
closed parts which are not connected to any other
part of the diagram, even by an 4 line. Otherwise

the diagram is irreducible. For example, the
first diagram of Fig. 1(e) is reducible and the sec-
ond irreducible. In reducible diagrams, the closed
parts attached at just one point can be factored
off. We can add up a series of diagrams with all
possible closed loops attached to, say, the begin-
ning of a diagram, and the sum is the same as the
sum of all closed diagrams. This just renormal-
izes the locator 1/w, i.e., replaces it by G,
=(w - 3,)"! [Fig. 2(a) or 2(c)]. Consider an irre-
ducible diagram. In addition to the initial 1/w
factor, it acquires a factor 1/w whenever a line
goes into an internal point, as in Fig. 2(d), or the
end point. Before the line leaves an internal point
for other parts, we can add in all closed parts and
renormalize this locator. If another line comes
into the same point it contributes another factor
1/w which can also be renormalized [see Fig. 2(e)].
Similarly, final locators can be renormalized, and
as indicated above, the initial one. Thus we re-
place the original perturbation sum by a sum over
only irreducible diagrams, and we renormalize
all locators. This is indicated by putting circles
around all points of an irreducible diagram. In
the same manner, in the summation for Z,;, we
include only irreducible £ parts, and we renor-
malize all internal locators [the last diagram in
Fig. 2(b) is reducible].

Looking again at the open diagrams, we define
a node as a point such that when it is removed the
diagram falls into two parts, and the sequence of
hoppings is broken only once. Thus on the right-
hand side of Fig. 1(d) the first diagram has a node
while the second does not. Figure 3(a) is ambigu-
ous unless we actually number the hopping se-
quence, in which case the first diagram has a
node and the second does not. We can then write
G in a geometric series in terms of a renormalized
interaction part M (ﬁ - ﬁ'), which has no nodes.

FIG. 2. Renormalization
of locators.
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This is indicated by a heavy line, and the series
for G is shown in Fig. 3(b). If we Fourier trans-
form G, we clearly have

=p(w=Zy=-nM3$) . (2.9)

The actual diagrams in M will be considered
shortly. First let us obtain an exact expression
for Z,; in terms of Gi and M. For after going
from site i to site j—the first point—the perturba-
tion sequence back to ¢ is exactly‘ the same as that
in the open diagrams of G. Therefore we have ex-
actly, upon Fourier-transforming the convolution
product,

Z,= f Hy Gy M di/87°. (2.10)

This is illustrated in Fig. 3(c).

What remains now is to examine M. Figure
3(e) gives the first two orders of contribution of
M7, The first-order term is simply

..

= | g @t R aR (2.11)
The second order is interesting in that it has a
similar structure to a contribution to ;. In fact
we can add a whole sequence of terms to this, as
shown in Fig. 3(f). Let us call this (1/2)Z3:

}Lzlpf h(k -k )M%, Gy.dk'/8n3. (2.12)

Z,% consists of all interaction diagrams with an
h line which when it is removed have at least one
node. The attachments here have essentially the
same structure of those for £, —the only differ-
ence being in counting because Z, is closed. The
remainder of Mt we designate Z,, /n, so that

~ 1 1
My =Hi + ;EI; + ;Zﬁ.

é@@@@

(2.13)

(l/n)Ezk corresponds to all My diagrams other
than Ay wh1ch have o nodes even on cutting an 2
line between R and R’. Figure 2(g) gives the con-
tributions to Z,% in third order, there being none
in the first and second orders. We see that the
first term involves repeating scatterings between
two sites, and the remainder are analogous but
with equality of sites being replaced by correla-
tions between ions. In Sec. III C we shall define an
effective number of neighbors Z, i.e., the number
of ions interacted with, and show that this type of
term is smaller than Hy by 1/Z2. At any rate, to
obtain the EMA we neglect ,. We then have the
set of equations

=n(w -y -nMyg)™!, (2.14)
My =nH; +2%, (2.15)
Ty= f HyGy My d /87 (2.162)

=(w=24)7! f nHy(Hy + M2 G,)dk/87°,

(2.16b)
1= fh(k -k )\M% Gpdk' /873 (2.17)

If we identify Z,; with =, this is exactly our pre-
vious result."? The second form of Eq. (2.16) is
illustrated in Fig. 3(g).

III. ANALYSIS OF EFFECTIVE-MEDIUM -APPROXIMATION
RESULT

A. Terms which are included in the EMA; moments

With the diagram construction we can now readily
expand the EMA Green’s function in powers of the
hopping integral and compare with the exact ex-

FIG. 3. Renormalization
of interactors and locators.

a
b = r O + O>@ + ——
c zd=©@=®+&+——
P s

e otz - AN - A P
fors, = & I v SN+

g 4 =C:})+ZS@
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pansion. As noted in our previous work, the coef-
ficient of w™™? is the nth moment w(f?) of the spec-
tral function (=1/7)ImGg, which for general k is a
quasiparticle resonance. The coefficients in the
1/w expansion for the diagonal matrix element G,
are the moments of the density of states per ion.
Thus

Gt __Z w(ﬂ) /wn+1 (3.1)
Zw‘"’ 1
Gy = J)n+1 = ;l— kl:rg Gt . (8.2)

This applies in particular to the case of orthogonal
orbitals. For nonorthogonal orbitals there is no
simple expression for the moments.

We summarize the first two orders in Hy in Fig.
4(a). As noted previously our theory is exact to
this order, to within the Kirkwood approximation.
The third-order terms which are kept are shown
in Fig. 4(b), while those which are not are given
in Fig. 4(c). The latter are just the first contribu-
tion to =, [Fig. 3(f)] and correspond to repeated
scatterings between two sites, or 2 lines which
cross, or, for the middle two, correlations be-
tween different parts of a diagram tied together at
a point. These processes are not single-site pro-
cesses and are not included. The terms which are
kept have a basic chain structure (or for diagonal
elements, ring structure) with renormalized points
and renormalized interaction lines.

In fourth order we have considered only the
closed diagrams corresponding to the moments
of the density of states. The first three moments
of the density of states are given exactly,

-1, (3.3)
WV =0, (3.4)
2) =nff1§dek/8173, (3.5)
W =n? [y dr/8n?, (3.6)

while approximations begin in the fourth moment,
in which the terms in Fig. 4(d) are kept and those
in 4(e) are omitted. Again we see a ring structure
with renormalized vertices and interaction lines,
and with 2 lines which do not cross. The last dia-
gram in Fig. 4(d) is unlinked and is a contribution
to 7. The omitted diagrams have a structure
similar to those omitted in the third-order open
diagrams—arising from the same four diagrams
of Z,, namely, diagrams with repeated scatter-
ings between two sites, correlations between parts
of a diagram tied together by a point and % lines
which cross.

Before discussing this further let us consider
the alloy and lattice liquid cases.

B. Relation to coherent-potential approximation for the alloy

In our previous article! we showed that the sin-
gle-site arguments leading to the effective-medi-
um approximation also give rise to the CPA when
applied to the alloy problem. The proof was actu-
ally for the T-matrix expansion. For the locator
case the proof is virtually identical and corre-
sponds to Shiba’s®® treatment of the CPA.

Here we will show that our equations go directly
over into the CPA for the lattice case and that the
diagram expansion is the same as the CPA. Let us
first examine the lattice liquid, in which we as-
sume that the ions occupy a fraction x of the sites
of a lattice. This corresponds to the split-band
limit” of the alloy problem and is a simple model
of an impurity band. We replace the continuous .
variable R by a discrete variable _ﬁ, and this
means that we restrict the # integral to one Bril-
louin zone. The density » becomes the fraction x
of occupied sites. The energy function is simply
the band energy for the pure solid,

Hf=ef = Z e‘k RH" (3.7)
R=o

where R goes over lattice sites, and, assuming
that the alloy is random, the pair distribution
function g;; =1 - 6;; merely excludes multiple oc-
cupancy of sites. The superposition approxima-
tion is actually exact for the lattice, so that the
diagram expansion applies exactly. We have in
the EMA

o

(o]

¥
{3
3
3
A

FIG. 4. Diagram expansion of G showing what is in~
cluded in EMA [@), (), and (d)].
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Gy =x(w=2,-xM7)™!, (3.8)

Te=N"'Y kGiMy, (3.9)
1

My =ep+2,/%, (3.10)

> 2

Z1 - ! 5 N

L=-N ZE:Mka. (3.11)

We have written the k integral as a sum, which is
the usual notation.

We notice that T, is a constant dor the lattice
liquid. X we sum Eq. (3.10) over k&, the ¢, term
cancels from Eq. (3.7), and combining this with

Eq. (3.11) we have

1
X}ZM];(I +M3Gt)=0. (3.12)
3
Substituting for M3 from Eq. (3.8) we find
X 1 _
"y -N;Gk—F. (3.13)

Thus the renormalized locator, weighted by the
fractional occupation of sites, is the diagonal ma-
trix element of G in a site representation.

To evaluate £,, we have from Egs. (3.9)-(3.11)

Z;l — A7—1 El Ve —

L +2,=N %: L MGt =0. (3.14)
The last equality results from Eqs. (3.8) and
(3.13), because MG =F~*(G} - F) is proportional
to the off-diagonal part of G in a site representa-
tion. Thus the Green’s function can be expressed
as

Gi=(F' =G +Z,)7", (3.15)

with £, determined self-consistently from Eq.
(8.13).

To make the result look more familiar we re-
place F"'+3,; by w —Z, and we have

Gp=(w~Z=-¢,)"", (3.16)
Z=-(1-x)/F, (3.17)

which is the split-band limit of the CPA.” For
x=1, ¥ vanishes—this is the pure-solid case.

To show that the result is also the CPA for the
random-alloy case, we now can take x =1, but we
must perform an average over components. We
restore the diagonal energies and replace Eq.
(3.13) by

X 1-x
+
W=€,4=2y W=€g=2Iy

F=(Gy)= (3.18)
assuming a fraction x of the sites to be occupied
by the A atoms and 1 -x by B atoms. Equation
(8.15) still holds for G;. The more usual form is
again obtained by replacing F™'+Z, by w ~ Z, in
which case

T=x€4+(1=x)eg— (€4~ Z)eg = Z)F, (8.19)

which is the CPA result.”

In diagrammatic derivations of the CPA, Yone-
zawa®® and Leath?® have emphasized the importance
of multiple-occupancy corrections. The present
diagram representation'” is actually a compact and
convenient one for the locator expansion in the al-
loy problem—or for that matter the entirely anal-
ogous T-matrix expansion. In the present scheme
the multiple-occupancy corrections are given by
the % lines in the diagrams and what we have
found is that these multiple-occupancy corrections
can be included by renormalizing the interaction
lines. There is a similarity between our approach
and that of Blackman, Esterling, and Beck,!° who
use a locator expansion and a functional technique
for summing the single-site terms.

The importance of the present section for the
liquid-metal case is that we have shown that to
all orders the terms in the perturbation expansion
included in the EMA are exactly the same as those
included for the alloy. Before going on to discuss
these results further, we would like to raise one
point in interpreting the diagram expansion of the
alloy case. We can, as stated earlier, use the
same diagram expansion for the alloy as the liquid
or lattice liquid. If we go beyond the single-site
approximation we have to notice that in 2, there
is a dependence on which type of site is at the be-
ginning and end, because internal locators can oc-
cur at those sites. We are not allowed to average
out this dependence. Z, therefore is really =3° ',
using the notation of Sec. IV; i.e., it is a 2X2 ma-~
trix for the binary alloy, solid or liquid. In Sec.
IV we include a species dependence of Hy and so
the machinery for including this dependence in Z,
is available.

C. 1/z argument

Schwartz and Siggia'® showed by means of their
diagram technique that the CPA represents in
some sense an expansion in 1/z, where z is the
number of nearest neighbors. We find it possible
to give a similar argument for the liquid metal in
the tight-binding model. Actually Matsubara and
Toyazawa'? give an argument to show that their
result is a high-density approximation.

We must first define a neighbor number zZ. We
wish to regard the system as though the hopping
integral were a constant 7, and the number of
neighbors were Z. If this were the case, then
summing H and H? over neighbors would give

Az-= j ng(®)H (B) dR, (3.20)

F2z-= fng(ﬁ)m(‘ﬁ)dﬁ. (3.21)
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While these relations are exact only for an actual
nearest-neighbor model, we can use the two equa-
tions to define an effective H and Z. HZ gives, in-
cidentally, an estimate of the bandwidth.

Consider now the perturbation expansion. We
can compare the 1/Z dependence of the terms in
G™% nH,, Z,, 1, and Z,. Let us do this for
small k. Then nH,.,=ZH by definition. The first
term in the expansion for Z, is

H?z

—fHZ(R)g(R)dR— (3.22)
It is unrealistic to discuss the expansion for arbi-
trarily small w (in fact, we can only hope that it
converges). We therefore assume w~ZH, i.e., of
the order of the bandwidth. Then this contribution
to =, is of order H. Similarly other contributions
with a ring structure will contain additional factors
of H/w, but as many additional integrals over R,
and hence they will be of the same order in 1/Z.
The leading term in Z,i is
2 > >

=TT @AR-RAR)IRAR . (3.29)
Here nk (R) is finite only near R=0, and its inte-
gral over R is of order 1. Therefore, the R inte-
gral contributes 1 rather than z. This is then of
the same order as ;. The same goes for terms
with a chain structure. Z,,, on the other hand,
has for the first term in Fig. 2(g)

Vil z H
~5 (3.24)

—fH(R)Hz(R)e

which is of order (1/Z)* with respect to nFIk , and
similarly for the other third-order contributions
to Z,, from the localization of nk (R).

If we made the Ansatz that these are the orders
in1/Z of £,, Z,, and Z,, then G,=1/(w - 3,) is of
order 1/HZ and nMy of order Hz—i.e., the renor-
malization does not change the leading order. Then
the order in 1/Z holds for all terms in the expan-
sion of Z, and Z, by virtue of their exact expres-
sions in terms of M and £;. Then the lack of
nodes in the expression of Z,, even upon cutting
an k line, means that all contributions to Z, are
of order (1/Z) or higher.

Then we see that for frequencies of the order of
the bandwidth, the EMA includes all terms of or-
der 1/Z in comparison with the bandwidth, and ne-
glects those of higher order. Thus it is a high-
density theory.

The same considerations apply to the lattice liq-
uid, and we should emphasize here that Z is not
the number of nearest neighbors z on the lattice
but is weighted by the fraction of occupied sites,
i.e., for the lattice the expansion parameter is
1/Z=1/xz. For the alloy, in general, Schwartz
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and Siggia'® gave evidence that the CPA has an ex-
pansion parameter 1/z. The above analysis offers
another derivation of this, but also implies that
for energies within an impurity band the CPA is
inaccurate for low densities of impurities.

An interesting point is that the 1/Z argument ap-
pears to hold even if we include deviations from
the Kirkwood approximation. For example, the
three-particle distribution function can be written
as

g& T, 8 =[1+nE )1+ (F )]
x[1+r@E, T +0F T, 77)],
(3.25)

where the three-particle correlation function %,
corrects for the use of the Kirkwood approxima-
tion. The factor &, however, restricts the range
of the three arguments, keeping them close to-
gether, and increasing the order in 1/z,

D. Comparisons with other approaches

We have already discussed'' 2 a comparison of
our results with the theories of Gyorffy, as modi-
fied by Korringa and Mills (GKM),* of Schwartz
and Ehrenreich [self-consistent approximation
(SCA)P® and of Ishida and Yonezawa (IY).}2 The
present representation, however, gives a greater
insight into the relationship among the several re-
sults. All of the results can be put in the form of
Eqgs. (2.14) and (2.15) with different expressions
for Z,=Z;+Z:

GKM

X _f[1+nh(1’<-if)]y§,c;,d§%;n3, (3.26)

B = f[1+nh(k k')]Hk,M*,Gk,dk/Sw

(3.27)

EW=J‘<nHI(Hk HE?)+ iker >d§ 83,
w=2

(3.28)

The SCA result shown here is equivalent to but
much simpler than our previous result.®°® In the
above equatlons the part depending explicitly on
h(k-k’) is =,, and the remainder is %,.

In the SCA, one of the M}’s in the EMA result
for Z, is replaced by Hy, a bare hopping integral.
Let us regard this as being the one on the right as
shown in Fig. 5(b). Schwartz and Ehrenreich® dis-
cuss the approximation to the three-body distribu-
tion function

gE, T, 1) =[1+hF )1 +h(F,T") +h(F', T7))

(3.29)
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In Fig. 5(a) is shown the off-diagonal terms in sec-
ond order using Eq. (3.27). We see that a term in
which two & lines go into the right point from the
left is missing (in counting % lines here we include
those along the chain). The generalization of Eq.
(3.29) to n-body distribution functions discussed
by Schwartz and Ehrenreich® corresponds to omit-
ting all diagrams with more than one % line going
into any point from the left. This clearly leads to
Fig. 5(b). Figure 5(c) for Z, is the same as the
first form of the EMA result, Eq. (2.16a).

Thus the SCA has the same structure as the
EMA, but with the generalized Kirkwood approxi-
mation replaced by the generalization of Eq. (3.29).
As pointed out earlier, the SCA goes over into the
CPA for the lattice liquid and also for the alloy.
This is consistent with the present result because
Eq. (3.29) is equivalent to the Kirkwood approxi-
mation for the lattice liquid or random alloy.

Thus we can regard the SCA as a coherent-poten-
tial approximation but with respect to the
Schwartz-Ehrenreich decomposition of the distri-
bution function rather than the Kirkwood. Actually
we found this decomposition unphysical for hard
spheres, because it changed sign and did not van-
ish within the excluded volume. As we remarked
earlier, the SCA omits some correlation along the
chain of scatterings' ? and so the result depends
on H(R) inside an excluded volume.

The GKM result omits more chain correlations
than the SCA, and seems to be a CPA with respect
to a decomposition of higher-order distribution
functions allowing only one % line going into a
point from either direction, which is clearly in-
adequate. The GKM result does not reduce to CPA
for the lattice.

The Ishida-Yonezawa theory on the other hand
was designed to include all the chain correlations.
Their theory is obtained from ours by omitting
%,, when 3, is expressed by Eq. (2.16b), which
explicitly includes the chain correlation. This
corresponds in the diagram expansion to omitting
all out-of-chain & lines, i.e., out-of-chain corre-
lations. In the alloy case this corresponds to omit-
ting the multiple-occupancy corrections, so that
the IY theory is not a CPA. This is a serious
omission in the alloy, but we shall find that in the
liquid-metal case the omission while important
does not lead to drastic errors, at not too high
densities. This will be discussed further in Sec.
V, and shown through numerical results in a sub-
sequent paper.

In regard to the moment expansion for the den-
sity of states, the GKM result has an error in
second order in H(ﬁ) while the SCA is correct
through second order, and has an error in the
third-order term. Both the EMA and IY theories
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are correct through third order, the EMA includ-
ing more terms in fourth order than does the IY
result.

IV. GENERALIZATIONS
A. Impurity band with short-range order

In discussing the lattice liquid we assumed that
gi; =1=108;;, l.e., that there is no correlation be-
tween occupation of neighboring sites. It is now
very easy to generalize this result to include
short-range order by means of a pair distribution
function gg=1+hyg. Equations (3.8) and (3.9) are
now replaced by

Mp=3 e Frz, (4.1)
k

My =Higr+x"'2:%, (4.2)

s apaf 1 TR 2

1T %= R<ﬁ2e RM§G§>. (4.3)

One immediate consequence of this analysis is
that the second moment of the density of states is
given correctly by

Ww®=x) grHE. (4.4)
T

Recently Schwartz®® has considered a lattice model
of a liquid with short-range order, and using an
analysis based on the T-matrix version of the the~
ory, showed that none of the previous results
[QCA (quasicrystalline approximation), GKM, or
SCA] gave this moment correctly. The present
theory does.

The lattice liquid with short-range order, in
fact, goes over into the liquid-metal tight-binding
model if we let the size of the unit cell go to zero,
while the range of the interaction and the ionic
correlation remain finite. Yonezawa and Watabe'”
show in detail how this correspondence comes
about. In the same limit the random-lattice liquid
goes into the random liquid.

B. Liquid alloys

We now discuss the generalization of our results
to the liquid-alloy case. We shall use the 2 X2~
matrix method developed by Blackman, Esterling
and Beck,!® and ideas of Movaghar, Miller, and
Bennemann.?°

a —3 o ->-e
b +2% =
c Zd =

FIG. 5. Diagrams for SCA.
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In an A-B alloy we expect that H;; = ¢; will be dif-
ferent for the two components. Also it appears to
be unrealistic to assume that the transfer integral
H;; is independent of species.

Consider the locator expansion for the Green’s
function:

Gi;j=0;; Ly +(1 = 8;;)L;H,; L,
+ 3 LiHy LiHy L+ -, (4.5)

1
where

Li=(w=-¢;)7". (4.6)

If we let s go over the species, which could actual-
ly be more than 2, we can write

Li= 2553 Ls. (4~7)
S
If we also let
Hy~H3 =H (R -R), (4.8)

then ¢ and ! refer only to the positions of atoms.
We can then write

Giy=2, G5, (4.9)

$s

where
ij = bij 513 6sex’Ls + (1 = éij)dis LsHﬁ ' Ls ! 613’
+ 3 Bi LaH 3 Sy LynH 3 ® Lyr6ygr4ene .
ls”
(4.10)

Then to form the continuum Green’s function we
introduce partial density functions

pi(R)=5,,6(R-R,) (4.11)
and we obtain the result
G R")=2_ G(R, RY), (4.12)
ss’

Gss'(ﬁ’ ﬁ')= <ZD:G?7193'>
ij
=5(ﬁ-§’)l‘s Gss’<2 Pf(§)>
i

+ 30 (3 Rop; RV LH,or (R = RIIL,:

ij
+fs};<Z'p?(R)p;”(R")p?'(R')>

ijl

X LgHygn (R =R”)Lgn

XHyn o (R" =R')LidR+++ .  (4.13)
We note that considered as a matrix H,,: (R - R’) is
independent of the species at R and R’. This is
what enabled Blackman et al.’® to obtain the CPA
for alloys with off-diagonal disorder.

We now examine the correlation functions

(4.14)

<'L":p§<ﬁ)> ~nx,,

<Z”p?(_ﬁ)pj'(ﬁ’)>=n2xsxs’gss'(§ —ﬁl),
ij
(4.15)

(o1 @03 ®pi" @)
it

=n3xs X1 Xsn8gs!sh (R: RI) R”), (4~16)
etc., where x; is the fractional concentration of
species and the double prime means no two in-
dices are equal. This gives a species-dependent
n-body distribution function. To obtain the EMA

in this case, we introduce a Kirkwood factorization
of the n-body distribution function for n>2:

8ss's” (—ﬁ; ﬁl; ﬁ”) =&ss’ (:E _ﬁ')gss " (ﬁ "_ﬁ”)
Xgsrs" (ﬁ' —ﬁ”).
(4.17)

Then we can follow virtually the same procedure
as before to obtain the generalization of Eqs.
(2.14)-(2.17):

o[ T ), a
Eg=x, (w—es—zis)”, (4.19)
zi= [ (HGTMp), dk/8r°

- f (B L(H; + MiGrM7)), dk/87°,  (4.20)
ﬁ%s'=sts,('ﬁ)gss,(ﬁ)e‘f'idﬁ, (4.21)
ME =AY +nY, (4.22)

n1zs = fh”'(i -k My Gy Myl R’ /873,

(4.23)

Here we have used matrix multiplication in Egs.
(4.20) and (4.23).

These equations include, in addition to diagonal
and off-diagonal disorder in the Hamiltonian ma-
trix elements, differences in pair distribution
functions for different species which have been
found to be important in considering conductivity
in liquid alloys.2®

C. Off-diagonal disorder in alloys

We wish to show now that these results reduce
to the Blackman et al.'® theory for the random-al-
loy case. Actually Egs. (4.18)-(4.23) apply direct-
ly to an alloy with short-range order, if we make
the k integral go over one Brillouin zone, let z=1,
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and change the \_ﬁ integral in Eq. (4.21) to a sum.
So, what we have is a generalization of the CPA
to include short-range order and off-diagonal dis-
order.

Specializing to the random-alloy case, we have
h* (k —k’)=-1, and by an argument analogous to
that leading to Egs. (3.13) and (3.14), we have

Ny 68 =6, L (4.24)
3
and
£3=-3%. (4.25)

We have thus a 2 X2 matrix Z, to determine, We
can write the inverse of G as

[GF'ser=L5105g - 23 = H', (4.26)
with
Ly=xs(w=€,+23)7" . (4.27)

Then the three independent components of Z, can
be determined from Eqs. (4.24), (4.26), and (4.27).
Finally Gy =Ess,fo' is the total Green’s function.
This is precisely the result of Blackman et al.,*®
which was shown by Bass and Leath®” to give the
correct low-density limit.

To recover the diagonally disordered alloy re-
sult, for which H%s' is independent of s and s/, we
assume that E‘TS' is also independent of s and s’.
Then we can show by summing Eq. (4.18) over s
and s’

o\ -1
G')EI:(ZLs) _Zl— %
s

which with Eq. (4.19) and £, =-Z, is the same as
Egs. (3.15) and (3.18).

(4.28)

V. DISCUSSION

In this article we have demonstrated a close
correspondence between the effective-medium ap-
proximation for the liquid metal and the coherent-
potential approximation for a lattice model of a
liquid, and also for the alloy. We have used a sim-
ilar technique to obtain formal results for liquid

alloys and for alloys with off-diagonal disorder
and short-range order.

It is important to emphasize that while the pres-
ent formalism was developed for the tight-binding
model the conclusions apply equally well to the
general multiple scattering version of the EMA
and other approximations.

We have found that the result of extending the
CPA to structurally disordered materials is in-
timately connected with how the higher-order dis-
tribution functions are approximated, so that dif-
ferent CPA extensions can be constructed corre-
sponding to different decompositions of the distri-
bution functions. The Kirkwood approximation ap-
pears to be reasonable for liquid metals. A ques-
tion arises as to whether a CPA-like theory can
be constructed which would include three-body
correlations, such as are important in tetrahedral-
ly coordinated systems. Our remarks at the end
of Sec. III C suggest that such correlations are of
higher order in 1/Z than CPA-like terms. How-
ever, in insisting upon keeping chain correlations
we are already including certain higher-order
terms in 1/Z. So the question as to whether such
a CPA-like theory can be derived, or whether
some kind of cluster approximation would be nec-
essary for such a system, seems to be an open
one at the moment.

In a subsequent paper of this work we shall de-
scribe calculations based on the present results
for several pair distribution functions and for the
most part compare our results with those of Ishida
and Yonezawa. Preliminary results have already
been published.? We find that for z not too large,
the two results are not drastically different. This
is encouraging in that calculations for more real-
istic systems are more feasible with the IY theory.
Further interesting properties and the analytic be-
havior of the solutions will be described in the
above-mentioned paper.
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