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We present the formalism of a multiple-scattering technique for computing the bound energy
eigenstates in a thin film. The potential is of the muffin-tin variety within the film and is a function of
the normal coordinate in the exterior region. An application to a monolayer film of copper is
presented, and the results compared to previous calculations.

I. INTRODUCTION

The object of this paper is to present a formal-
ism for calculating the band structure of thin films.
We also present some preliminary results for a
monolayer film of copper. The motivation for our
work is to develop a method of calculating the sur-
face electronic structure of transition metals.
There is considerable evidence that the healing
length of the surface of a solid (the distance into the
bulk beyond which the potential effectively resem-
bles that of the infinite solid) is relatively short.
Jellium calculations seem to indicate that a self-
consistently calculated potential approaches the
bulk limit within a few angstroms, as would be ex-
pected on the basis of the short screening length of
metals. On the other hand, the local density of
states on the (100) face of nickel has been calculated
in a tight-binding approximation by Davenport using
a scheme which views the surface as being the actu-
al top layer of a semi-infinite system. The same
quantity has been calculated by Terakura who views
the surface as simply the top layer of a 13-layer
film. The results of these calculations for the sur-
face density of states is remarkably similar, a fact
which justifies our hope that the film geometry will
be adequate for dealing with surfaces of actual sol-
ids ~

Kleinman and co-workers have performed simi-
larly motivated calculations on films of aluminum
and lithium. Unfortunately, we cannot simply carry
over their formalism to the cases of interest to us,
since it is based on pseudopotential ideas and con-
sequently is applicable only to simple metals. Ap-
pelbaum and Hamann have carried out pseudopo-
tential-based calculations for the surfaces of semi-
infinite sodium and silicon. Again, the implicit
assumption of a weak ionic potential prevents their
formalism from being applied to transition metals.
Recently, Cooper and Kasowski have presented
calculational schemes that are, in principle, ap-
plicable to the case of transition-metal films.
These are discussed in Sec. IG of the paper, where
we compare some of their results to ours. For the

sake of completeness, we merely note at this point
that the formalism of Cooper would appear to be
rather oversimplified in that it does not take into
account the exterior of the film in a reasonable
manner. Kasowski's method and ours can be
viewed as differently cast versions of the same ba-
sic technique, although we feel that the formalism
presented here is rather more amenable to self-
consistent solution.

The only practical way of dealing with transition
metals is to approximate the potential by one of
muffin-tin form. In such a scheme the potential is
taken to be spherically symmetric within a sphere
of typical atomic size surrounding each nuclear po-
sition. The potential in the interstitial region be-
tween the spheres is taken to be a constant, which
can be chosen as zero with the appropriate choice
of energy origin. For an infinite system these are
the only regions that exist and nothing more need be
specified about the structure of the potential. For
a molecule or a film there is an additional region
in which the potential must be defined. Johnson's
scattered wave scheme for molecular calculations
surrounds the molecule with a large sphere outside
of which the potential is taken to be spherically
symmetric. The obvious generalization to a film
geometry is to take the potential outside of the
planar boundaries of the film to be a function of the
normal coordinate only. Three distinct regions of
space are thus defined, in each of which the form
of the potential is sufficiently simple that rapid so-
lution to the Schrodinger equation for the combined
system is practical.

Our calculational scheme is a direct generaliza-
tion of the Korringa-Kohn-Rostoker (KKR) formal-
ism for band calculations of infinite systems and of
Johnson's scattered-wave formalism for molecular
calculations. The Schrodinger equation is numeri-
cally integrated in regions I and III (which is an
easy procedure owing to the simple geometry and
one-dimensional nature of the potentials in those
regions) and the resulting solutions combined to
yield an eigenfunction for the system. The condi-
tions that the solution to the Schr'odinger equation
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in the interstitial region smoothly connect the solu-
tions in all regions I and III yields a secular equa-
tion of the usual multiple-scattering type. A film
is periodic in directions parallel to its surfaces,
which implies that k„, a two-dimensional wave vec-
tor parallel to the surface, is a good quantum num-
ber. Each eigenfunction is then characterized by
such a wave vector (the eigenfunctions are Bloch-
like in directions parallel to the film but are mo-
lecularlike in the third direction), and one must
solve the secular equation repeatedly for every wave
vector in the appropriate two-dimensional Brillouin
zone. Self-consistency in the potential is possibly
a very important part of any surface calculation.
The copper calculations reported here do not in-
clude it, and consequently we do not present at this
point the appropriate extensions of our formalism
to yield the correctly normalized eigenfunctions.

II. FORMALISM

The physical system is periodic in two dimen-
sions (referred to as the parallel directions) and
nonperiodic (molecularlike) in the third dimension.
The film may be divided into unit cells with the po-
sition of each cell being specified by a two-dimen-
sional vector R„. The gth type of atom within each
cell has the coordinate vector r (in general three
dimensional) with respect to the position. The ra.—

dius of the nth muffin-tin sphere is g, and the
sides of the film are at z=zg and z=z2, z2& zg.
Position with respect to the center of the sphere
at R„=R„+~ is measured by r„, i.e. , r„=r
—R„~.

In accord with the nature of the film geometry,
the crystalline potential is periodic in directions
parallel to the film surfaces. As was discussed in
the Introduction, we make the further approxima-
tions that (i) the potential is spherically symmetric
within each muffin-tin sphere; (ii) that it depends
only upon the normal (z) coordinate in the region of
space outside of the planes defining the film; and

(iii) that it is a constant (taken to be zero for con-
venience) in the interstitial region. It is thus com-
pletely defined by the relations

vector which may be restricted to lie within the
SBZ. Owing to the special nature of the muffin-tin
potential each eigenfunction has a particularly sim-
ple representation in those regions where the po-
tential is nonzero. Let g(r) be an energy eigenfunc-
tion of two-dimensional wave vector k and energy
E. Within the sphere centered at R„ it has the
representation

q( ) gek'+ g ~«l(r )y ( )

where I, denotes the quantum numbers (l, m), and
J', (y) is the radial solution for angular momentum
l in the central potential V„(x). In the region out-
side of the film the same eigenfunction has the rep-
resentation

where k = 1, 2 corresponds to z = z, z2, respective-
ly, and the tunction exp[i(k+ g ) ~ r uk (z) is a, solu-
tion to the Schr'odinger equation with the potential
V,(z). The function uk„(z) satisfies the one-dimen-
s ional Schr'odinger equation

(
82

~k+g ~'- k+V, (z)~M,„(z)=su, (z)ez ]

together with the boundary condition that it vanish
at infinity (since only bound states are being con-
sidered). The representation of the function in the
interstitial region is very complex. Fortunately,
it is not needed at all in solving the eigenvalue
problem, and at our present level of sophistication
it is not needed in the self-consistency procedure
either.

The secular equation is determined by finding the
relation between the amplitudes A ~, A~ which en-
sure that P is actually a solution to the complete
Schrodinger equation for the system. The starting
point is Green's theorem, which in the present con-
text states that if g is a bound solution to the Schr'o-

dinger equation with energy E, then it satisfi. es the
integral equation

= V, (z)

= v, (.)
=0

if z& zg

if z& z2

otherwise .
The structure of any energy eigenfunctions is

partially dictated by the periodic nature of the sys-
tem. The two-dimensional lattice defined by the
vectors (Rg has a reciprocal lattice with vectors

(g }, and a corresponding two-dimensional surface
Brillouin zone (SBZ). Any eigenfunction of the sys-
tem is characterized by a two-di. mensional wave

where the surface integral is taken over all sur-
faces bounding the region of constant (zero) poten-
tial. G(r, r ) is the free-electron Green's function
at energy E. (Since only bound states of the system
are being sought, one is at liberty to use the real,
i. e. , not complex, free-electron Green's function.
This is the form employed in the detailed calcula-
tions presented in the Appendix. ) The scattered-
wave secular equation is derived from (5) by re-
quiring that the function on the left-hand side re-
duces as one approaches the surfaces to the func-
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tion appearing under the integral on the right-hand
side of the expression.

It follows from Eq. (2) that on the surface of the
sphere centered at the function and its normal de-
rivative take the form

where y„ is the logarithmic derivative of M, (e) at
g = z~, and the minus or plus sign is taken as &=1
or 2, respectively.

The secular equation itself is derived by recog-
nizing that

g= e'" "" QA z, Yz, (r„),
L

2 4tAaz L(ma) ~8n L

where y, is the logarithmic derivative of J,(r)
evaluated at r = a . In the same way, on the planar
boundaries

&=+A,„exp[i(k+ g ) ~ r],

=++y~A, exp[i(k+6„) ~ r],
&n m

a', e'" '~A z= $(r)Yz, (r )dS

where the integral is taken over the surface of the
o.th sphere in the central unit cell, while

SOA~ = g(r) exp[-f(k+g ) ~ r]dS„,

where So is the unit cell area and the integral is
taken over a unit cell on the plane z = z~.

It is clear from the structure of Eq. (5) that upon
substitution of expressions (6)-(9) one will find a
set of linear relations among the amplitudes. For
example,

~I
z ~f f . ~ ~;ps

~

I SG(r~r) &I w/
a&e A z=~ ~e' "& ~dS„dS„& Yz(r ) I +yzz'G(r, r ) Yz'(rz„) Azz, '

BL
~/

+g dS dS~ Yz, (r ) ', ay~„G(r, r ) e '~""~' "A~„.

The evaluation of these integrals and their analogs
in the expressions for A.~ is straightforward, but
very tedious. We discuss it in the Appendix. The
result is a system of equation of the form

g~z~z Aw ~ +2&el. I~II~&A& 0, ——
SI.' Pm

(1 la)

&&fmIfiflPI'&Asz'+& &p~I~lp m&A ~ =O.
SL

(1 lb)
The condition for having an eigenvalue at energy

E and wave vector k is, of course, that the deter-
minant of the coefficients vanish. There are sev-
eral points to be made. The first is that this secu-
lar equation is of exceedingly high order, even when
allowance is made for the rapid convergence of the
sums. The order of the system is the number of
atoms per unit cell (at least the number of atomic
layers in the film) times the number of important
angular-momentum components (typically nine for
transition metals), plus the number of reciprocal-
lattice vectors needed to describe the wave function
outside of the film. The second point is that there
is no direct coupling between the A~ corresponding
to different reciprocal-lattice vectors. This fol-
lows from the translational invariance of the free-
electron Green's function. There is, of course, an
indirect coupling between the A~ for different m
arising from their individual couplings to the A ~.

Both of these observations suggest that the natural
way to proceed is to solve Eq. (lla) for A.,„and A2
in terms of the A I and then substitute the expres-
sions back into Eq. (lib). One finds in this way a
much smaller system of equations involving only
the amplitudes 3 z. In addition, it is found that all
formulas are considerably simplified if one intro-
duces quantities 8 ~, defined by the expression

B z, =a~(E z j, [a (E) z ] —y,j, [a (E) +]]A z, (12)

where j, is the usual spherical Bessel functions.
The result of these manipulations is the following

set of equations:

t(cd~~)B~ Qz+Szz Bgz. +p Tzz~Bqz, 0 (13)
8L' OL'

6, is the phase shift in the potential V, (r) for angu-
lar momentum l and energy E. As is shown in the
Appendix, the 8 matrix is a purely geometrical
quantity. It is essentially the matrix introduced by
Kambe, ' and may be described as either the two-
dimensional version of the KKR structure constants
or the periodic extension of the structure constants
used by Johnson' in the molecular scattered-wave
approach. Its evaluation is awkward, requiring
Ewald-type summations, and in fact forms the
most time-consuming element of the computations.
The matrix T represents an indirect interaction be-
tween two spheres via multiple scatterings from the
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F&G. 1. Schematic representation of a five-layer film
along y-z plane. (Note: the results presented in the paper
are for a single layer, although the formalism is for a
multilayer system. )

k (ALONG DIAGONAL OF BRILLOUIN ZONE}

FIG. 3. Band structure along diagonal of Brillouin zone
for a single-layer film (100) face. Dashed lines repre-
sent states odd under reflection onthe plane of the film.

In this part of the paper we present the result of
a non-self-consistent calculation of the electronic
spectrum of a monoatomic film of copper. The po-

—f.8 I
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DISTANCE FROM ION-CENTER(INa. u.)

FIG. 2. Potential for single-layer copper film: (a) atomic
potential, (b) spherically averaged potential inside muf-
fin-tin, (c) planar-averaged potential outside film bounda-
ries, (d) volume-averaged constant potential in the in-
terstitial region.

walls of the film. Its evaluation requires a very
rapidly converging reciprocal-lattice summation.
T may be shown to have whatever symmetry is
possessed by S. It has simple poles at the eigen-
values of the "empty film" in which all interior po-
tentials are set equal to zero.

IH. APPLICATION TO A COPPER MONOLAYER

tential for our calculation was constructed using a
generalization of the Mattheiss ' prescription for
generating approximate one-electron potentials for
infinite systems. One assumes that the total Cou-
lomb potential and charge density of the film can be
represented as a superposition of atomic potentials
and charge densities. The atomic quantities were
in our case derived from Herman-Skillman-type'
wave functions for atomic copper, which were cal-
culated with an exchange parameter (the o, of Xn
theory) of 0.707. The atomic charge densities and
Coulomb potentials were then overlapped and spher-
ically averaged within each muffin-tin sphere, vol-
ume averaged in the interstitial region between the
spheres, and planar averaged over a unit cell in the
exterior r egion. The exchange- correlation poten-
tial for the film was constructed from the over-
lapped-averaged charge density using statistical
exchange and the value of n employed in the atomic
calculations. A sketch of the potential employed in
the calculations is shown in Fig. 2. The discon-
tinuities at the boundaries of the various regions
are typical of what occurs in most muffin-tin con-
structions.

The calculations described here were carried out
for a, monolayer having the structure of the (100)
face of fcc copper. The two-dimensional Brillouin
zone is a square corresponding to the square net
structure of the (100) face. ln Fig. 3 we present
the result of our calculations for wave vectors
along the diagonal of the Brillouin zone. The band
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PIG. 4. Tight-binding band structure for d bands of a
single layer of copper |',100) face with bulk parameters of
Mueller. The dashed line represents a twofold degener-
ate band odd under reflection on. the plane of the film.

structure may be described as a tight-binding-type
complex of five predominantly d-type bands, hy-
bridizing if symmetry permits with a plane-wave-
type band of sp character. The ordering of j,evels,
especially at the I' point in the center of the surface
Brillouin zone looks rather odd when compax'ed to
the levels in bulk copper. The "ta -type" states
(which we label I', and I', following the notation of
Heine' ) lie above the "e,-type" levels, contrary to
what occurs in the bulk case. The point, of course,
is that the band structure we calculate is in fact
that of a monolayer film and not that of a bulk sys-
tem, and consequently there is no reason to expect
a similar ordering in the two cases. To convince
ourselves of the essential correctness of our re-
sults, we carried out an elementary tight-binding
calculation for a d-band complex in the film geom-
etry. The two-center integrals (ddt), (ddt), and
(dd5) were those derived by Mueller'4 by fitting to
the band structure calculated by Burdick' using the
augmented-plane-wave method. Our results are
presented in Fig. 4. It is clear that the band struc-
ture shown in Fig. 3 is exactly what would be ex-
pected on the basis of the tight-binding model cou-
pled with a, hybridizing plane wave threading through
the d-band complex. In the direction shown, the
plane wave would have symmetry Z& (the super-
script + referring to parity under the mirror oper-
ation) and would hybridize with only two of the tight-
binding d bands. The degeneracy of the Z, , Zz
states shown in Fig. 4 is a consequence of our hav-
ing included only nearest-neighbor tight-binding in-
teractions. The small splitting of these states
shown in Fig. 3 is indicative of the fact that sec-
ond-neighbor interactions are small, but not en-
tirely negligible. The splittings of the states are
not the same in the two calculations, as would be
expected since the LCAO parameters were derived

from a fit to a bulk band structure, whereas in, the
film that different d ox'bitals sample the vacuum
x'egion to vax'ying extents,

It is clear too, that our guess at the potential is
not very wrong, in that a reasonable filling of the
band would place the Fermi level at roughly the
correct place insofar as the work function of bulk
copper is concerned. One would expect that self-
consistency would make only qualitative changes in
the band structure.

It is possible to make contact with various other
calculations that have appeared recently. The re-
sults of Davenport and of Terakura for the local
density of states on the (100) surface of nickel sug-
gest the existence of a large peak in the density of
states near the center of the band. It is clear on
inspection of the band structure shown in Fig. 3
that this peak exists for the two-dimensional struc-
ture as mell. In a tight-binding scheme based on
nearest-neighbor hopping only and neglecting sd
hybridization the d-band complex shown in the figure
is completely degenerate half way out to the zone
corner. (There is some degeneracy in other direc-
tions as well. ) It i.s clear from our calculations
that the inclusion of gd hybridization. reduces but
does not destroy completely the near-degeneracy
and consequent large peak in the density of states.

Cooper has recently published a set of calcula-
tions on thin films of copper some of which should
be directly comparable to our work. The bound-
aries of the film in his case are planes upon which
the wave function is constrained to vanish. Al-
though the position of the plane can vary with ener-
gy (thereby simulating the varying amounts of leak-
age into the vacuum that wave functions of different
energy would experience), we believe that the prob-
lem Coopex' solves is in fact not the problem of a
thin film in vacuum. There appears to be too many
states in his result, and the concommitant lowering
of the Fermi level to cause a partial emptying of the
g-band complex would seem to be very unlikely.
Kasowski has reported some work on surface states
in copper which is based upon a thin-film calcula-
tion. One of the calculations he reports ls for a
monolayer film, although from the published work
it is difficult to understand exactly how the vacuum
interface is treated. We disagree with his results,
at least insofar as the ordering of the levels at I' is
concerned. At the moment we can offer no explana-
tion for this disagreement. The tight-binding-type
calculations discussed above were performed to
verify the level ordering predicted by us on the ba-
sis of the more nearly completely scattered wave
calculations.

APPEND~X

In this section of the paper we sketch out the der-
ivation of the matrix elements entering into both
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forms of the secular equations. The derivations
are only mea, nt to indicate the nature of the calcula-
tions, although complete expression. s for the Ina-
trix elements are presented.

All of the matrix elements entering into Eqs. (11)
are essentially various projections of the free-
electron Green's function. Since only bound states
are being sought, it is appropriate and convenient
to work with the real form of the Green's function,
although in fact if one used the complex (outgoing
wave) form then the additional parts of the resulting
expressions would vanish in any event. The
Green's function that me employ has the representa-
tion

G(r —r ') = (16)z') '
dq e"+[(E—q'+ j6) '

with

+(E-(I'- H) ']

R=r-r

G(r —r') =(2)z) ' dq„z"))'" ' 'g(z, z'Iq„). (A2)

if 9 =E-qz&0, then

g(z z'lq()}= (20) 'sin(qlz- z'I)

while if @3=@2)—E&0, then

g(z, z'lq(() =- (20 'exp(- @lz-z'I) .
Since

(Pm IMIP m) =8 '
~

dS dS ~ exp[iK ~ (r —r )]

(AS)

+@~„G(r—r ), ,BG(r —r )

(A5)
where the upper (lower) sign is taken for z=z, (zz),
and the integrals are over a unit cell, it is easy to
.show that

((«)M() «)=*( -y, )g(g, , g, , )K„)

with

(A6)

K =k+g
«0 IO

where the orthogonality of the functions e'"~' over
a single unit cell has been exploited. To present
our results, me employ the notation Q = 18—K~ I,
D= z, —zz, and y~„= y~„/Q„, and make the conven-
tion in mhat folloms that the upper or lower form is

There are various alternative representations which
are useful in calculating the matrix elements. If we
decompose the vector q appearing in (Al) according
to q =q„+q„where q„(q,) is parallel (perpendicu-
lar) to the plane of the film, then one can perform
the q, integration independently to yield the repre-
sentation

1

l(l-yz. )
' (A Va)

——,'[cos(Q„D)+yz sin(Q„D)]
1m M 2m)=, ", "

(AVb)z (1 y ) e-omz)

——,'[cos(q„D)-y, sin(g D)]
2m M lm =. . . (AVc)

). (1 ~ y ) e(-Q~z))

1

(2mIMI2m) =,'
r(1+ya )

' (A Vd)

Matrix elements of the form (pm[ Mi c(1) involve
surface integrals over the surface z=z~, as mell
as integrals over the surface of all e-type spheres
in the film. Owing to the Bloch character of the
mave functions, all integrals of the latter type dif-
fer by only a phase factor. Substitution of Eqs.
(6) and (V) into (5) and use of the relation 8/ezz
= —S/S(z which ls valid on the surface of the (z-type
sphere, leads to the expression

IMlaL, }=-—Pe'"
~

dS e """"''
So n «

&& IQQ„~ +y ) Qr-r 1'~ r„o,etc
(A8)

where QQ~o is an element of solid angle with re-
spect to R„. Use of representation (A2) for the
free-electron G:een's function allows (AB) to be
cast into the form

(pmlMI nI.)

lidQ +y z, e '" 'g(z, z'IZ„)Fz, (r ),
(AQ)

In deriving (AQ), we have used the fact that the sum
over all unit cells can be used to transform the re-
stricted surface integral into one over the entire
plane, whj, ch then picks out a single component of

g(z, z Iq„). Further reduction of this expression is
accomplished mith the aid of the conventional ex-
pansion

e'"' =Q 4)zi' I'z, (r) I'z (k)j,((?,r) (Alo}

the use of which alloms evaluation of the remaining
integrals in (AQ). One should note in this context
that (A10) is valid for complex as well as real k.
In the former case the spherical harmonic I'z(k) is
most easily interpreted as a polynomial in the com-
plex variables k„/0, k, /k and k,/k, where k = (0„
+k„+&,3)' ~. To shorten the forthcoming expres-
sions we introduce the notation Sz,(K„)= Y'z, (K
(E—E ) ) in which (E —K ) =+5(E —E)
X' &E.

applicable depending upon mhether E is greater than
or less than K . Our result is
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Our results for the plane-sphere matrix ele-
ments are as follows:

with

fe~ [iq.(z, —~.,)]—(-1)'
!x xexp[- ig (z, —r,)]],
exp[- Q.(zi —r..)],

=R' "j I. (E)"']-y. j [a.(R')"'] (All)

where (-1) =-(-1)'+~~~

Matrix elements of the form (2m IM I nL) are ob-
tained from expression (All) by replacing zq —r,
by r, —zz and multiplying by (- 1) .

Sphere-plane matrix elements of the form
(nLI M !pm) are evaluated in a very similar man-
ner. For the sake of brevity we omit details of the
derivation and merely present our results.

xj, (xr)j, (zr )n, (tcR)C(L, L, L ) ~

(A15)
In this expression C is the Gaunt coefficient
C(L, L, L ) =4a f Y~(Q)Y~ (Q)Yz,"(Q) dQ and the sum
is over all angular momenta for which these do not

vanish.
Representations (A14) and (A15) are valid for

positive energies only. For E less than zero, the
correct expansion are obtained by replacing x by iz
in the arguments of the Bessel functions, and re-
placing the Neumann functions n, by the Hankel
functi. on ~, = j, +gn, .

Evaluation of (A13) is quite straightforward with
the aid of the various expansions of G. We find the
result:

(nL!M!PL ) = t(a j,((ca )[6 t6ggIi, +Sr,g /tg],
(A16)

where

8
cT&~ —.

8 y&~ jg(Ka )Sa

(aL!M! lm) = - ~i'j,[a.(Z)'"] e'x "Z,'(K„)

!
$(-1)'(1+ir „)exp[i@„(z~-r, )]

~ ~x c + (1 —i y,„)exp [iQ„(v, —z,)]],
!

!

, (1+y, ) exp[- Q (z, —r, )] . (A12)

8 —y ) n, (ca
eao

The structure constants are given by

S' =Q ' ' ' C(L L I. )D t
L tt

(A17)

(A18)

Our results for the analogous matrix elements in-
volving plane 2, those of the form (aLIMI2m}, are
obtained from (A12) by replacing z, —r„, by r„,—zz,
and y& by y2 . For the case E&K„ it is also nec-
essary to change the sign in front of the logarithmic
derivative.

Matrix elements of the form (nLI M IPL) are
quite similar to those occurring in the molecular
scattered wave and KKR formalisms. From Eq.
(8) it is clear that the quantity to be evaluated is

(nL!M!PI ) = —5 t6~r, —e'" '~
I dQ

exy (r,)n, —y, .}cay
fO

x
II dQ& p '"'e""~G(r —r' —R„&) .

n (A13)
One needs to invoke the standard one- and two-cen-
ter expansions of the free-electron Green's func-
tion. In particular, we use the representation

G(r —r') =zg Yz(r)Yz(r') j(zr )&n(&a'r )), (A14)
L

where

D,'=+exp[i& (R„+~,—7 )]
n

xYs.(R.+~~ —~.)ni(~IR. +~~-r. I) (A19)

in which the term g = 0 is omitted for the site-diag-
onal case n = P. For the case of E less than zero
we find a similar formula. In particular, the ex-
pression for the structure constant is unchanged
except for the omission of the factor i' ' ' in (A18)
and the replacement n, (vR)- h, (izR) in (A19).

We indicated in the text that it is more convenient
to reduce the size of the secular equation by solv-
ing for the A~ and then reinserting the resulti. ng
expressions in the remainder of the secular equa-
tion. The result of this procedure is a secular
equation referring only to the amplitudes of the
wave function of the surface of the spheres. For
the sake of completeness we present at this point
our result for the matrix T appearing in (13):

.g»'i'-' ~ Yr. (Q.)Ys~(Q.)"™~~."~Ms~'(m)

where z = )E), and g& is the smaller and r& the
greater of ~ and x. To evaluate those terms in
(A13) with R„t40, we use the two-center expansion

G(r —r —R) =g Z i' ' ' Y~(r)Y~.(r )Y~ ~ (R)
Ltt

The quantity & is

(1+y,~ra~) sin(Q D)+(y,~ —ya~) cos(Q D)
b,

(1 —r& )(1+y, )- (1+x& )(1-y, )e-'

(A20)

(A21)



For E~&E,

~g»&(~) =(&+Pi.)(i -F~.)e ' 'bm[q. (~».-~..)]+(-i)'" emfq. (&., -&».)]}
(-~)'(i ~,.)(i ~,)e i [q.( ..",.)] (-i)'(i-7;.)(i-~,.)exu[-q. ( ..",.)],

whBe for X„&E, (i) with I.+I. odd:

~;( )=-(-i)'(~,. ~..)-.[q.(..- )] (-i)'u-~,.~..).. fq.(..-..)]
+f(y, —y, ) sin(q„a) —(i+yq„y,„)cos(q 8)] sinfq„(r«g. —v»,)];

(ii) with L+L even:

~If (~)= —(- &)'(ig + ia ) sin[q (& .+&»,)]—(- &)'(& —&i Fa ) «s[q (&««+&»,)]

+f(y,„-y,„)sin(q„D) —(i+@, y,„)cos(q 8)]cos[q„(v„,—r», )] .

(A22)
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