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Green's-function method for crystal films and surfaces*
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The Green's-function method is adapted to the problem of an electron moving in a crystal film. The

potential is taken as spherical in the atomic spheres and as dependent only on the coordinate normal

to the film in the regions just outside the bounding atom planes. The appropriate new structure

constants are defined. With the aid of the necessary logarithmic derivatives a rather small set of
simultaneous linear equations is obtained from which eigenvalues and eigenfunctions can be calculated.

In conjunction with the density functional formalism this procedure provides a convenient method for

self-consistently calculating the electronic structure of films and surfaces. Comparison with earlier work

by Pharisean, Scherer, Cooper, and Beeby is made.

In solid-state physics Green's-function methods
were originally used for the solution of the one-
particle Schrodinger equation in periodic lattices. ~'

More recently, similar methods have been devel-
oped, under the name of "scattered-wave method"
for calculating one-particle orbitals for molecules
of moderate size and clusters of up to about 20
atoms. 3'4 Such calculations can also be made self-
consistently by using the density-functional theory
in which the effective one-particle potential is a
functional of the electron density. ' '

There have also been a substantial number of
papers dealing with the application of the Green's-
function method to the geometries of crystal films
and surfaces. ' In the present paper we present
a direct adaptation of the Kohn-Rostoker approach
to films and surfaces (thick films) which is con-
ceptually very simple, has variational accuracy,
and avoids shortcomings in earlier work which we
shall discuss briefly at the end of this paper. We

believe that the present approach offers a useful
alternative to other methods which have been used
to deal with such systems. ' ' ~

In a film geometry, periodicity parallel to the
surfaces is preserved; a twofold symmetry is
present; and the wave functions are accurately de-
scribable in terms of bulk wave functions, except
in the outermost 2 or 3 layers. Therefore we shall
find in this formulation that film and surface prob-
lems of simple crystals are comparable in com-
plexity to an infinite-lattice problem with up to
about 3 or 4 atoms per unit cell. '

Consider a film of a simple monatomic lattice
with 2N layers parallel to the x-y plane (see Fig.
1). The potential energy has two-dimensional
translational symmetry

V(F+ o ) = V(r), m = 1, 2

where the translation vectors 0' have the form

om = (+md i ~my t 0) ~

We address here the problem of finding the solu-

tions of the Schrodinger equation

[-v'+ V(r)-S]y(r)=0,
subject to the boundary conditions

lim g(u z)=0,
g~+ a

u=-(x, y, 0),
and to the periodicity conditions

g(r+o )=e"'my(r)

where q is a two-dimensional wave vector

q = (0„,0„,0) .

(4)

(6)

(7)

We also define (nonuniquely) a unit cell ~ which

contains the origin and one atom from each layer,
and which extends to +~ in the z direction (see Fig.
1}. This unit cell and its translated counterparts
fill the entire space. We denote the origin and the
corresponding points in the other unit cells by

u, =- (x„y„0)and the cross-sectional area in the
x-y plane of the unit cell by a. The periodicity
condition (6) may now be replaced by boundary con-
ditions on the surface of the unit cell ~. Let r and

r, be conjugate points on this surface, such that

rc = ~+0'm ~

Then

p(r, )= e""m P(r} ~

(6)

s y(r '),.;.; s q(r)
Bn

=-" "
an

where n and n' denote outward normals at r and r,.
We now follow a Green's-function procedure

similar to that of Kohn and Rostoker. However,
whereas in that paper the Green's function satisfied
all boundary conditions on the surface of the unit

cell, it will here satisfy only the periodicity con-
dition (6), with the condition (4} at z = + ~ being im-
posed on all approximate solutions g(r) which are
considered. This results in a useful simplification
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GREEN'S-FUNCTION METHOD FOR CRVSTAL FILMS &NO. . .
i.e. , V(r)=v(x), Izl ~b.

Region 111: The remaining space, in which V(r)
is taken to be a constant, Vo, which is set equal to
zero,

The new feature is region II, which is the analog
of the "exterior sphere" in the work of Johnson. 4

This region, and the assumed behavior of V(r) in
it, appear to be the appropriate choices for dealing
with the geometry of a film.

Within each sphere of region I, say the one sur-
rounding r&, we expand g(r) in terms of the angu-
lar-momentum solutions of the Schrodinger equa-
tion (3),

FIG. 1. Crystal film. v is the unit cell, extending
from g =- to + and having cross-sectional area g.
Regions I (atomic spheres), II () g I &b), and III (inter-
stices) are shown. 8&, 8+, and 8- are the bounding sur-
faces. r& is a nuclear position vector.

of the formalism.
For our Green's function we choose the function

(10)

4(r) =Q ~~&( I"r,(e),

where J stands for the usual quantum nuIQbers l
and m, FJ, is a normalized spherical harmonic of
the argument '0=—(8, y), and E, is the regular radial
solution which is taken to be unity on the surface
of the sphere.

We now turn to region II and denote the two strips
x&band s& —5 by g=+, respectively. Then, in
each strip ( we again expand P(r) in terms of eigen-
functions of the SchrMinger equation the following
form.

=+i( —E)~, E(0,
Evidently C has the fon.owing properties in the unit
cell 7 and on its boundary:

y{P) P G4yf(&) e$(()+0))) ))

Here u =- (x, y, 0); the Q~ are the two-dimensional
reciprocal-lattice vectors

( —VB-E)G(r, r')= -5(r P'), -
G(r', r') = e"'"G(r, I"),

8G(r', f') „..; &G(r, r')

(i2) Q„=(q„„,q,„,o),

Q)) Pr = 2vx(integer);

and the function f (s), satisfies the following equa-
tions:

G(r', r) = G*{r,r') .
In view of these properties the Schrodinger equa-
tion (3) and boundary conditions (9) can be re-
placed by the integral equation

('(&) =J &(&, ~ ') )'(F') l(~') e~ (15)

with the boundary condition (4) remaining imposed
on g(r).

We now divide the unit cell 7. into three regions
in which we assume suitable forms fox the poten-
tial V(r) (see Fig. 1).

Region I: Nonoverlapping spheres of radius p
surrounding each nuclear site r&, in which V(P} is
taken to be spherically symmetric.

Region II: Two surface strips (not overlapping
these spheres) in which V(r) depends only on s,

f'(+ )=o.
f'(I) =1.

(19)!
(2o)

(21)

Gr, x' V r —V Qg, r l'
(22)

where ds' is the outward surface element vector
and Q and S„are the surfaces bounding regions I

with exactly analogous equations for f (g}.
Let r be a point in regions I+II. Then since in

regions I+II f(r) satisfies the Schrodinger equation
(3}and G('F, P') the inhomogeneous equation (12), the
integral equation (15) can, by an integration by
parts, be transformed as follows:
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Green's function expansions. The Green's function G(r, r ) is defined in Eq. (10). r is located Just inside
regions I+II, near the surfaces indicated; r just on or outside regions I+II, near the surfaces indicated. p&, 8& denote
radial and angular coordinates relative to the nucleus r&. u= (x, y, 0). K =E' [see Eq. (11)]. Qh are two-dimensional
reciprocal-lattice vectors [see Eq. (18)]. &h= [E—(Qh+q) ] . The structure constants A are given. in the Appendix.

S]

[AIL'Jl(itpt )jt' ~Kpt )
L,L'

+ &dLL'jt ( pt)ttt ( pt ))Yz(et), Yk (' t')

S

E Azgjt 0(pt) Yz(et)
L,h'

&& exp [—i (q+Qh. )u'+i &h. (z ' —b)]

S

Z At, )2 j t (xpt) Yt, (o"t)
L,h'

x exp[- i(q+ Qh. )u'- iwh(z '+ b)]

g A /sr f t (KPt )f t r (KP t' )
L,Ls

x Ys (St ) Ytt, (0't)

Same as above with i j Same as above with i j

h L +hi exp[~(q+@h)u

+~~h(z —O)]q„(KP, )~L, (8~)

g At,l, exp[i(q+t2)t, )u
h, L'

i s(s+b))tt ~ (vpt)Y) (8

+As" exp[i(q+Qt) (u- u')
h

+i~h(z —z')]

+As" exp[i(q+(0)), )(u- u')

+S~h(z -z-2b)]

pA))' exp[i(q+(0))))(u —u')
h

+i~h( -z -~S)]

gA-„-exp[i(q+Q„)(u u )
h

+iraq (z'-z)]

and II, respectively.
From this equation we want to extract a set of

homogeneous linear equations for the expansion co-
efficients Cz, and C„, Eqs. (16) and (1V). This re-
quires expansions of the Green's function G(r, i ')

for r just inside and r' on or just outside any one
of the bounding surfaces of region I and II: S, ,
spheres surrounding nucleus i; and S„ the planes
z= +b. We give the result in Table I.

We now choose r to lie just inside the ith atomic
sphere, multiply (22) by Y*(Ot), use the Green's-
function expansions of Table I and integrate r over
S; and r' over the entire surface Sz+Szz, This re-
sults in the set of equations

d 'Z , d 'Z
(26)

Z w d

a P AhL ~ g, ~ L, -g, ~ CL+ @Ah +Lh+SVh C„
gsL '

Next we choose r to lie just above the plane sur-
face S, (s = b), multiply (22) by exp[ —i(q+Q„) uI,
use the Green's-function expansions of Table I, and
integrate r over the unit cell boundary on the plane
z= b (of area a) and r over the entire surface S,
+Szz. This results in the following equation:

P 1t g P [Acr'(jt'L'i' j, t')j Ci '
+0L„"'(—L —(2,)C')=0'„ (26)

+ g p'IAc'i (jt Lt -jt )jCi
L', gQ

+ Q a[Ar, 't)'( —L„'.+is„.)C„'.
h'

Similarly, taking r just below the planar surface
S (s-=—b), gives

tt p Q Ad, .(jt ~ L, ~ —jt'.)Ci ~ +aA„' (L„+ittp, )C„

+L' (L„+ &„.) ]() =00, i=i, 2, . . . 2iL
( )

+0L„"(—L„'+(2 )C„')=0 . (29)

where

c

GP cc =p

c
nt = nt (xp), n, = ,-nt (ttp)-

dp P =P

dB) r ] dR', r

(24)

(26)

Equations (23), (28), and (29) represent a set of
homogeneous linear equations for the coefficients
CL, Ch', C„. By introducing a total of M such co-
efficients, one is led to an M&M determinantal
consistency equation. This gives a relationship
between the energy E and the two-dimensional wave
vector q, which allows the determination of the
eigenvalue s:

E(E, q) = O- E.(q).
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8ubstitution of these into Eqs. (23}, (28), and (29)
yields the expansion coefficients CL, C„', C„of the
solutions to within a constant factor.

Of course, one should take advantage of the two-
fold symmetry of the film, which assures in ad-
vance that certain pairs of the above coefficients
are equal or otherwise simply related to each
other. In practice, since surface effects extend
appreciably only two or three layers into the in-
terior, it is sufficient to study films of four to six
layers. For four layers one has the following in-
dependent coefficients: CL', CL', C„'. The prob-
lem is therefore comparable to a bulk problem with
three atoms per unit cell, although of course some-
what more complex.

We believe that this formalism, combined with
a self-consistency scheme based on the density-
functional theory, will be useful for solving prob-
lems of the electronic structure of films and sur-
faces.

We conclude with a few remarks of comparison
with earlier Green's-function theories of films and
surfaces. Reference 7 is limited to one-dimension-
al "slabs. " References 8 and 9 make the incorrect
assumption that inside the crystal the eigenfunctions
have a simple Bloch form whereas, in reality, they
are linear combinations of at least two Bloch func-
tions with wave vectors k= (k„, k„, + k,), and of ex-
ponentially decaying (or growing) waves. Further,
outside the crystal, the potential is taken as con-
stant, which is a rather crude representation of
real surfaces. In Ref. 10 the inside solution is
taken to be the sum of two Bloch waves, still an
incorrect form. In Ref. 11,, the potential outside
the surface is constant up to an infinite barrier.
Reference 12, which does allow a z-dependent po-
tential in the surface region, approaches the prob-
lem from the T-matrix standpoint. It requires
first the calculation of the 7-matrix for each layer
r„(k+K, k+ K ) and then the solution of an infinite
set of equations coupling these planes. This paper
does not fully take advantage of the exact descrip-
tion of the wave propagation in the region of con-
stant potential, offered by the Green's-function
method. Also, it does not have the variational ac-
curacy of the present approach.

APPENDIX: STRUCTURE CONSTANTS

In Table I we listed the various forms of expan-
sion of the Green's function (10) involving certain
structure constants, such as ALL. , AL„', etc. The
constants enter the linear equations (23), (28), and
(29) whose solutions yield the eigenvalues and
eigenfunctions of the original problem. In this Ap-
pendix we give expressions for these coefficients.

The Green's function G(r, r') is given by Eq. (10)
or, alternatively by the momentum sum

G(r, r')= —g exp[i(q+Q„)(u -u')]

G(r, r')= Q [«~, j)(Kp;) k&(KC,')
L, L'

+ALL'A(Kpi)j &(Kp,')] YI (e. , )Y~(e)),

where
(A2)

F112 &—= (l, m),

and A» ~ is given in terms of the coefficients DL,
and Cf ..., ., ~ ~ by the following relation [see
Eqs. (A14) and (A13) of Ref. 2]:

(l-l') VAlm., l i'= 4'/72' ~ 2 Df, m mi Cp, m-m'~lm~l 'm'
&

(As)
where

Cl-. l .l~ r=— YPm 0 Fl 0 Fl ~ r 8 dA (A4)

Dp —-=~ e"'"~ np ~u, —s jp ~u, r ~- 8,

gK

(4 )1/2 sto smoi (As)

here u, —= lu, l [cf. Eq. (A2. 22) of Ref. 2].
Similarly, for r just inside S& and r just outside

S;(i&j), G(r, r') has the form

G(r, r ) = g A~'~.j,(Kp/)j, (Kp;)Y/, (6/)Y~. (O, ),
L,L'

(A6)
where, in analogy with (AS}, Az~'z, . is given by

Al mal m' 4~~ ~~l ~ m-tn' +ly m-m'llm$l 'm t

(A7)
here C is the same as in (A4) and

D; „=Kexp[iq ' (r/ —r. )]-g-e""/~~

& [nr(K r„,) —ijr(K r/„)] Y-, -(e„,), (A8)

1
exP[iK„(K& —K()],

22K'

where Q„, u and K„are defined under Table I and
z& and z& denote, respectively, the smaller or
greater of quantities z and z; a is the cross-sec-
tional area of the unit cell.

Using the coordinate sum (10) for G (r, r ') and
following Ref. 2, we find for r just inside and r'
just outside the sphere S,. of center r,. and radius
Pf
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where

(A9)

and O&„corresponds to the direction of this vector
[cf. Ref. 9, Eq. (A13}].

Next we take r just above S, and P just outside
S,. Then, using (A1), G(r, r') can be written as

G(r, r') = Q A»~'. exp[i(q+Q») u+iz»(z —b)]
where

xexp[ —i(g+Q». ) ' u'-iz» (z'+ b)],
(A19)

Similarly, if r is just inside S; and r just below
S, we find

G(rs r ) g Alh Jt(zpg)YL(Og)
Lzhz

where

haL

"A (za')Yi (e') (Alo)
2Khz a

(A20)
Next we take r just above S, and r' just below S„

which gives, by (Al),

with

exp[i P „' r;]Y~ ~(e»'), (A11)
(4z)(- i}' e*"»'

22gh a G(r, r') =Q A»"'exp[i(q+Q») (u -iT'}+iz»(z -z')],
(A21)

with

P»=(Cx+'Q»x~ A+'Q»~~ &») ~

8„'-=(8„', p»)-=polar angles of P „'.
(A12)

G(r, r')=+A»~'. exp[i(q+Q») u —iz»(z+b)]

Similarly, if r is just below S and r' just outside
S, , we find

A»" = 1/2iz»a. (A22)

G(r, r') =Q A»" exp[i(Q+Q»} (u -u')

Similarly, with r just above S, and r' just above S,
we find

xA '(zpq) Yi~'(eq') (A13) where

+ iz»(z -z'- 2b)], (A23)

where = exp(2izb)/»2iza. » (A24)

A»~', = . exp[i P„r,]Y~,(e„) (A 14)
i»»»

ZKh a

with

When r is just below S and r' just below S„we
find

P» (n+ Q»g t Vy+ Q»y & z») s

0»-=(e„, y„)-=polar angles of P„.
(A15)

(A18)

Next we take r just inside S& and r ' just above
S,. This gives

G(r, r') = Q A,*„'.g, (zp, )Y,(e, )

with

+ iz»(z'-z -2b}],

A»" = exp(2iz»b)/2itc»a;

G(r, r') =g A„" exp[i(q+Q») ~ (u -u')

(A25)

(A28)

where

I„h'

xexp[ -i((f+Q».) ~ u'+iz». (z' —b)],
(Alv)

(«}(i)' exp(iz„. b)
Lh'

2Mh a
(A18)

and when r is just below S and r' just above S,

A» = 1/2iK»g, (A28)

G(r, r'}=+A„' exp[i(q+Q») (u -u')+iz»(z' —z)],
(A27)

with
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