
PHYSICAL REVIEW B VOLUME 11, NUMBER 10 15 MAY 1975

Theory of impurity scattering in dilute metal alloys based on the muffin-tin model~t
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The exact electronic eigenstates of a single substitutional impurity in an otherwise perfect lattice of
muAin-tin potentials are developed for the purpose of investigating impurity scattering in dilute metal

alloys. The impurity eigenfunctions are determined by an extension of the Green's-function method of
band-structure calculation. Expressions are derived for the transition and scattering matrices describing

impurity-induced elastic scattering between two Bloch states. These results are then related to a number

of experimental situations; namely to measurements of residual resistivity, Dingle temperatures,
Knight-shift satellites, and spin-lattice relaxation in conduction-electron spin resonance. The formal

expressions depend upon the impurity and host atomic scattering phase shifts and upon the band

structure of the host lattice through Bloch-wave amplitude coeNcients and Brillouin-zone integrals of
the inverse of the Green's-function secular matrix. The atomic scattering phase shifts can be determined

from ab initio calculations of the muffin-tin potentials or can be inferred from semiempirical analysis of
experimental data.

I. INTRODUCTION

The purpose of this paper is to present a the-
oretical study of impurity scattering in dilute met-
al alloys based on an expression for the exact elec-
tronic eigenstates of a single substitutional im-
purity in an otherwise perfect lattice of muffin-tin
potentials. The expression for the eigenstates
of this system was first derived by Dupree' by
extending the Qreen's-function. Inethod of band-
structure calculation. ' ' Morgan' later showed

formally how such a treatment can be used to cal-
culate the transltlon matrix which desel lbes im-
purity-induced scattering between Bloeh states of
the host lattice. In this paper explicit expressions
for the transition matrix as mell as the related
scattering matrix are derived. The transition ma-
trix depends upon the atomic potentials of the host
and impurity through their respective scattering
phase shifts, and upon the "band structure" of the
host lattice through the Bloch-wave amplitude co-
efficients and the Brillouin-zone integra1 of the in-
verse of the Green's-function secular matrix. In

addition to a nonrelativistic treatment, consider-
ation is also given to systems mhich have strong
spin-orbit interactions for which a relativistic
treatment is needed. The general expressions for
the eigenstates and transition matrices are then
related, within the independent scattering approx-
imation, to a variety of experimentally accessible
quantities for dilute metal alloys. Specifica) ly,
expressions are derived for the (reiativistic) im-
purity-induced spin-lattice relaxation rate of con-
duction-electron spin resonance and for the host-
metal Knight-shift satel1ites induced by single
impurities. Residual-resistivity and Dingle-tem-

perature anisotropies are discussed only briefly,
as a full account of these properties will be pre-
sented elsewhere. "

The muffin-tin model is expected to be an ade-
quate description of the lattice potential in metallic
systems having close-packed structures and neg-
ligible lattice distortions. It is expected to be
most accurate for the description of electronic
states near the Fermi level, for which the inde-
pendent-quasiparticle approximation is valid and

for which the mean electronic kinetic energies
exceed the interstitial potential fluctuations that
are neglected in the muffin-tin approximation.

The initial motivation of the present work was
provided by recent Dingle-temperature anisotropy
measurements in noble-metal alloys. ' " The
Dingle temperature measures the scattering rate
for electrons of a given Bloch state at the Fermi
level, averaged around the k-space orbit induced

by the applied magnetic field. The anisotropy of
the Dingle temperature can be expressed as a
product of a factor which represents variations in

the host-metal Bloch-wave amplitude components
over the Fermi surface, and a factor which in-
volves information about the impurity. Scattering
anisotropies may be studied theoretically by means
of ab initio calculations, or semiempirically, de-
termining the basic parameters of the theory,
namely the host and impurity scattering phase
shifts evaluated at the Fermi energy, from the
experimental data. The latter approach has been
followed by Coleridge and Lee.'" " They have in-
terpreted noble-metal Dingle-temperature data to
obtain a set of effective ("Friedei") phase shifts.
The Friedel phase shifts may be further inter-
preted, either by making appropriate assumptions
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about host backscattering, "or by evaluating the
expressions derived in the present paper, to de-
termine scattering phase shifts associated with

the impurity wave functions. '
This paper is organized as follows. In Sec. II,

general expressions for the nonrelativistic wave
functions of a muffin-tin lattice with a single sub-
stitutional impurity are derived. The wave func-
tions are written in such a form that they may be
readily compared with the corresponding wave
functions appropriate for free-space potential scat-
tering from the analogous perturbation. The latter
form was used by Friedel"'" and others" " in

early studies of impurity scattering based on the
free-electron model of the host lattice. Within
the muffin-tin model, the role of the host lattice
may be characterized in terms of a "backscatter-
ing" matrix defined by Morgan. ' This backscat-
tering matrix is related to the Brillouin-zone in-
tegral matrix of the present approach, and to the
"renormalization" of the wave function amplitude
on the impurity site. "'" In addition to a discussion
of scattering states, a prescription for finding the
bound states of the muffin-tin potential is also
given. In Sec. III, the corresponding discussion
is given for the relativistic wave functions. Ex-
pressions for the transition matrix are derived in
Sec. IV. In the presence of spin-orbit interactions,
the possibility of "spin-flip" scattering is intro-
duced, in addition to ordinary potential scattering.
In Sec. V, the eigenvalues of the scattering matrix
are derived and the Friede1. sum rule" is general-
ized. In Sec. VI, the role of the electron-phonon
interaction and the effects of finite impurity con-
centration are discussed qualitatively. Then, the
results of the preceding sections are used to derive
expressions for various experimentally accessible
quantities to which this analysis is applicable. It
is found that the present approach is most easily
applied to the interpretation of experiments that
involve electrons on a single surface of constant
energy. Experimental quantities involving elec-
trons throughout the conduction band of the host
metal could also be evaluated within this model,
but with increased computational effort. In Sec.
VII, the results of the present paper are summar-
ized and compared with other recent theoretical
treatments of impurity scattering. This paper is
concluded with a brief discussion of possible ex-
tensions of the present work.

II. SPIN-INDEPENDENT (NONRELATIVISTIC)

IMPURITY WAVE FUNCTIONS

The Schrodinger equation for the electronic
eigenstates of a single substitutional impurity in

an otherwise perfect lattice of muffin-tin potentials
was solved by Dupree' by extending the Green's-

function method of band-structure calculations. ' '
The same problem was later solved by Beeby" to
determine the local electronic density, using a
transition-matrix formalism. The bulk density of
states induced by the impurity atom has been de-
termined by Lasseter and Soven, "using a Green's-
function approach. In this section, the focus is on

the nature of the electronic wave function in the
vicinity of the impurity site. This is developed,
following the work of Dupree, ' but using the
Green's-function conventions of Kohn and Rostoker
(KR). A derivation of expressions for the elec-
tronic wave functions is given from the viewpoint
of a simple wave matching procedure as discussed
by Korringa. ' A similar approach has been used
by Johnson, "and by Keller and Smith, "to describe
scattering from small clusters of atoms. For
simplicity, the host lattice will be assumed to be
cubic, and to have one atom per primitive unit
cell.

The wave function in the interstitial region (i.e.,
exterior to any muffin-tin sphere) of an infinite
lattice, can be expressed quite generally as a co-
herent sum of scattered waves diverging from each
latti. ce site:

4', (k, r) = Q Q~~ (k, e) [ik,(ar„)] Y; (r„) .
N lm

4, (k, r) = Qi' zf (k, e) Jt ~~)'(r„) Y,„(r„), (2.2)

where R~", '(r„) denotes the radial wave function of
angular momentum l which pertains to the spher-
ical potential of the host [(N) =k] or impurity
[(N) = i] depending on whether the Nth site is oc-
cupied by a host or an impurity atom. It is con-
venient to normalize the radial wave function so
that outside the muffin-tin sphere it takes the form

(2.l)

The electron energy e =O'K'/2m is measured with
respect to the muffin-tin zero; R„denotes the
position of the Nth lattice site; r„—=r —R„; h, (vr„)
is a spherical Hankel function"; Y, (r„) is a s"pher-
ical harmonic"; and w,

"(k, e) are the "interstitial"
amplitude coefficients. The wave vector k labels
the eigenstates of translation for a perfect lattice.
The translational symmetry is broken when an
impurity is substituted for a host atom in the lat-
tice; in this case, the label k denotes those im-
purity states which exist in one-to-one correspon-
dence with the Bloch states of the ideal lattice.

The wave function inside the Nth muffin-tin
sphere may be expressed in terms of a single-
center expansion:
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~ (N)
R „(r~)=j,(z r„)+i sing, " e'"& h, (z rs),

where j,(sr~) is a spherical Bessel function, s~"~

is the appropriate muffin-tin radius, and q,
" (e)

is the appropriate "atomic" scattering phase shift.
For convenience in notation, the factor multiplying
the Hankel function will be termed the "atomic
scattering parameter" and denoted

(2.4)

To determine the muffin tin [z, (k, e)] and inter-
stitial [w,

"(k, e)] amplitude coefficients, one must
match the two expansions of the wave function
[(2.1) and (2.2)] and the corresponding normal
derivatives at the surface of each muffin-tin sphere.
In order to do so, the sum of the scattered waves
diverging from each lattice site (2.1) must be ex-
panded about a single lattice site. A spherical
wave diverging from a center at R„.can be ex-
pressed in terms of spherical waves diverging
from a different center RN by the expansion"

in Appendix A.
For a perfect crystal, the right-hand side of

Eq. (2.7) vanishes and it is natural to seek solu-
tions by taking the muffin-tin amplitudes to be of
Bloch form:

zg"~" (k, e) =a) (k, e) e'"'k&, (2 6)

or correspondingly for the interstitial amplitudes,

w,"'"(k, e) =[X(k, e)] ' v, (k, e) e' 's . (2.9)

cot'

~
e'k (Rs -RN)

N' &N

Here superscript 0 is used to denote coefficients
pertaining to the Bloch waves 4'~'~(k, r) of the pure
host metal, and X(k, e) is a normalizing factor.
Substituting the interstitial amplitude coefficients
(2.9) into the homogeneous form of Eq. (2.7), one
obtains the following secular equations for the
v, (k, e) coefficients:

il'(~ gr') I' '( N') Q jl ( s) I ( N) l I'
lm

=0 (2.10)

w,"(k, e) =i't~~"l(e)z, (k, e) . (2.6)

Secondly, the muffin-tin amplitude coefficients of
a given cell (N) are related to the coefficients of
all the other cells of the lattice (¹)and those of
the impurity cell (I) in the following way:

(2.5)

The convergence of this expansion and the exact
form of the two-center transformation matrix

NNH,"",
m are discussed in Appendix A.

The wave-matching conditions determine the fol-
lowing relationships between the amplitude coef-
ficients. Firstly, the interstitial amplitude is
directly proportional to the corresponding muffin-
tin amplitude and atomic scattering parameter:

These are the familiar Green's-function secular
equations as can be seen by noting that the struc-
ture matrix A, , i i(k, e) defined by Kohn and
Rostoker' is related to the Fourier transform of
the two-center transformation matrix [Eq. (2.5)]:

(1/v)Ag, +i5„5
BNN' ~i k ~ ( RNi —RN)

)m i'm' ~

(2.11)

Thus, the bracketed term in Eq. (2.10) is just the
KR Green's-function secular matrix, '

Mg, i(k, e) coty", 5=—„5 +(1/g)A, , (k, e),
(2.12)

~tm I2Sm i'm' I'i' & ~t'm'
N' ~N l'm'

H&~~ ~r(t~ t~ )5 z~ ~
~

~

~
NI a r' I

r'm'
(2.7)

and the v, (k, e) coefficients are components of its
zero eigenvector (corresponding to the eigenvalue
equal to zero). More generally, the eigenvalue
equations for the KR secular matrix can be written

M) )m k, & 'Llg

Provided that the otherwise undefined two-center
transformation matrix elements having identical
site indices, 0,"".. . are set equal to zero, this
expression is valid for N equal to a host cell index
oz to the impurity cell index I. The solution of
the Schrodinger equation for the muffin-tin im-
purity problem has thus been cast in the form of
an infinite set of algebraic linear equations. Fur-
ther relationships between Eqs. (2.6) and (2.7)
and their convergence properties are discussed

t'm'

(2.13)

The eigenvector v written without superscript will
be assumed to correspond to the zero eigenvalue
X(k, e) =0. The implicit relationship X(k, e) =0
defines the surface of constant electron energy
e(k) = e of the host lattice. For convenience, it
will be assumed that all eigenvectors are normal-
ized to unity:
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Q fv," (k, e) f'=1. (2.14)

x[ih,(zr„)J Yg (r„) . (2.15)

Using the above definitions, the wave function
for the pure host metal in the interstitial region
can be expressed in the Bloch form obtained from
Eq. (2.1)

+'"(k, r) = e'"' [OI(k, e)] 'Q Q v, (k, e) e '"'))(
lm

tegral over the first Brillouin zone. The corre-
sponding "Fourier transform" of Eq. (2.7) may be
expressed in terms of structure factors, which
for a substitutional impurity considered here, are
identical to the structure factors of the pure host
and may be written in terms of the KH secular
matrix (2.12). The details of the solution are pre-
sented in Appendix A.

The solutions can be expressed in terms of the
inverse Fourier transform of the reciprocal KB
secular matrix:

A more convenient expression for evaluating the
wave function within the Nth cell is obtained from
Eq. (2.2):

»I»,' (k, r) = e'"'" Qi ' a,~(k, e) R „(r„)1;„(r„).
lm

X»ryder y(» ~- s)

(2.20)

( )
a »»(», a))

K
(2.17)

In the presence of the impurity, there are two
types of solutions to the amplitude equation (2.7).
Bound states and continuum states occur, respec-
tively, for energies outside and inside the bands
of the host lattice. In either case, as the impurity
site is characterized by the full point symmetry
of the lattice, it is convenient to discuss the solu-
tions in terms of a "lattice harmonic" expan-
sion. ' A lattice harmonic is a linear combina-
tion of spherical harmonics of a given order /

which transforms according to an irreducible rep-
resentation I':

&ir.(&) = Q O'I" I"» (&) (2.18)

The transformation U between spherical and lat-
tice harmonics is unitary. The index y denotes the
specific member of the representation l'." In the
lattice harmonic basis the amplitude coefficients
tl ansform according to the inverse matrix

z»"r)(k e) = Q(U] &) 'z,"(k, e) . (2.19)

Dupree' has shown that the solution of the am-
plitude equation (2.7) in the presence of the im-
purity in the Ith unit cell proceeds most easily
by expressing the spatial dependence of the am-
plitude coefficients z, r& in terms of a Fourier in-

(2.16)

It is shown in Appendix B that the normalization
constant X(k, e) can be evaluated in terms of the
energy derivative of the zero eigenvalue of the KH
secular matrix. For a Bloch wave function nor-
malized to unity within the volume Q of the unit
cell [i.e., fod'r(4~')(k, r) ~'=1], the constant is
given by

Before discussing the nature of the solutions them-
selves, the properties of this Brillouin-zone in-
tegral will be briefly investigated. The integrand
of the g matrix is singular on the surface of con-
stant energy which corresponds to the locus of
81och states of the host lattice; X(q, e) =0. In
order for the general impurity wave functions to
be consistent with the "outgoing" scattered wave
condition as well as the optical theorem, the sin-
gular integral (2.20) must be evaluated in the fol-
lowing way:

I' d qe'" & I M q e )ry )~r~y~

x Res {[M(q, e)]»~, r.„.} .

="iry(q» e) t)(r'y'( q»&)» (2.22)

since M(q, &) is a Hermitian matrix. In particular,
the Brillouin-zone integral evaluated at the im-
purity site X(», 0), has special symmetry proper-
ties. It is diagonal in the irreducible representa-
tion Fy and is identical for each member y. Hence,
it is convenient to introduce the shorthand nota-
tion:

Xry, &'»r'y'(& 0) =X»»'(&) 6rr 6yy
r (2.23)

Continuum solutions to the amplitude equations
(2.7) may be expressed in terms of a linear com-
bination of the corresponding Bloch amplitudes.
The amplitudes for the impurity site take the
form

Here P denotes principal-parts integral. The res-
idue is nonzero for energies inside the bands of
the host lattice and may be evaluated according to

lim {&(q,e) [M(q, e)],r', ,„,j
x(q, ~) ~o
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i'zr'r z(k, e) = g Q«(e) i' a, r z(k, e) e' 'Rr,

(2.24)

(2.26)

where g is a real diagonal matrix with elements
given by

5 r(e) =- tr'(e) tr"(e) [tr'(e) —ti (e)]
= [cot'gr( e) —cotrl r( E)] (2.27)

From either expression (2.24) or (2.26), it is
evident that the comparison between the impurity
amplitude and the corresponding amplitude for the
pure metal depends upon both the impurity and host
scattering phase shifts g', and g„and the Brillouin-
zone integral p» . The physical significance of
these contributions is most easily understood in
terms of the partial-wave backscattering matrix
T defined by Morgan. ' The 7™matrix describes
the contribution to the amplitude at the impurity
site due to "backscattering" from all the host
sites, of a scattered wave diverging from the im-
purity. It is related to the renormalization matrix
(2.25) according to'"

~ l- l'8„(e)=i' ' (I-iTr t'), ,'. (I-iT" t"),-,

(2.28)

where the matrix

tr'(e)
6 X» (e) [tr'. (e) —tr" (e)]

rr' =
trr(e)

«' trr(e) t (e) (2.25)

determines the extent to which the impurity am-
plitudes have been "renormalized" with respect
to their corresponding Bloch amplitudes. For
this reason 8„~(e) is termed the "renormalization
matrix. " Alternatively, using relation (2.6), the
interstitial amplitudes for the impurity cell can be
written in the form

rv, r&(k, e)

=[3f(k, e)] '&iQ(&-X")„' v, rr(k, e) e'"' ',

The backscattering matrix T can be evaluated in
terms of the Brillouin-zone integrals; it satisfies
the same symmetry relations as does X(e, 0) and
is related to it in the following way:

t' ' Tr;rr (&) =t([X'(&)] «' —(t r) '6ir ) (2 29)

It is interesting to compare the results obtained
above with the corresponding results for a free-
electron model of the host metal. In that case,
there is no backscattering by the host lattice:
T =0. The "free electron" value of the Brillouin
zone integral matrix y" is thus inferred to be

I (&ree) ~h g=t (2.30)

1 —iTr;„ t'
&rr(&) -=l

1";ll l

~-i(gl- T]l) ~ P hh

sinr)i' sinr)r" —X'„ sin(r)r' - r)i")
' (2.31)

which is independent of k.
Once the impurity amplitudes have been deter-

mined, Eq. (2.7) can be solved for the amplitudes
on neighboring host sites, which can be expressed
as a linear combination of the amplitudes at the
impurity site as follows:

and the free-electron value of the renormalization
matrix 8 is seen to be the identity matrix.

For many alloy systems of interest, such as for
several types of impurities in noble metal
hosts, ""it is reasonable to assume that only
scattering phase shifts through l «2 are signif-
icantly different from zero. As each representa-
tion of the cubic point group is associated with
only one angular momentum for l «2, the block of
the X(e, 0) matrix needed in the calculation of the
amplitude coefficients is diagonal. Consequently
the partial-wave backscattering matrix T and the
renormalization matrix 8 are also diagonal.
Then, the impurity muffin-tin amplitude coefficient
is directly proportional to the corresponding Bloch-
amplitude coefficient, but renormalized by a sca-
lar factor' '":

i'z, r&(k, e) =i'arr&(k, e) e' "+
q Xrryr'r'y'(e R, rr

—Rr) r i 'zrr'y'(k, e) (&&I) (2 32)
gh

or explicitly in terms of the interstitial Bloch amplitudes:

Wry(k~ &) =[&(» &)] vrr r(k, &) e "+ g Xrr r, r'r'r (e, R„—Rz) ($ —X ), , ~ v, ~ r &
(k, e) e'

lij r yt. le

(%&I) (2.33)
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Fox host sites far from the impurity site, the
Brillouin-zone integral X~r y, i'r'y~(&~ Rsr Ity) may
be evaluated approximately by the method of sta-
tionary phase as discussed by Dupree. '

Bound-state solutions to the amplitude equation
(2.'I) can be determined by a procedure similar
to the one discussed above. A bound state con-
tains no admixture of the Bloch wave function of
the pure metal; the amplitude coefficient is given
only by the "scattex ed wave" contribution. Con-
sequently, for this case Eq. (A6) is a homogeneous
equation for the impurity amplitude s,r y

=zany~

which may be written in the more convenient form

rQ(&i6» &i-i) —M~ ry(e)=o (2.34)

Since g(e) is a real diagonal matrix and )t (e) is a
symmetric matrix, ($ —

y, ") can have a zero eigen-
value only if y (e) is real. Because the imaginary
contributions to g, according to Eq. (2.21), come
from the Bloch states of the host lattice at energy
e, bound-state solutions exist only for those en-
ergies e outside the bands of the host lattice. In
general, an impurity bound state will be charac-
terized by a unique representation F0 for which
(2.34) is satisfied with nonzero coefficients
w, .r y (e). The amplitude coefficients on other
sites are then given by

lWry(&)= Xiry, i r y (&~Ra -Ry)
( )

~) r, y(&) ~

III. RELATIVISTIC IMPURITY NAVE FUNCTIONS

%hen the conduction electxons in a metal are
treated in the independent-particle approximation,
the wave function amplitudes can depend upon spin
through the spin-orbit interaction. In addition to
intxoducing a new degree of freedom, the spin
affects the symmetry properties of the wave func-
tions. Relativistic effects are expected to be im-
portant for heavy atoms, such as gold, since the
associated strong atomic core potentials can induce
extremely large local electxon velocities. For-
tunately, the relativistic generalization of the
Green's-function method of band-structure cal-
culation" is straightforward, as is the relativistic
treatment of the impurity problem.

The Dirac wave function has two components

(2.35)

One is assured that such states are spatially local-
ized because the inverse Fourier integral
y, ry, r yi(e, 8» —By) decreases in amplitude with
increasing distance from the impurity. Such states
4,r (r) are conveniently normalized to unity within0
the entire volume of the crystal.

4'=(f~y) which satisfy two coupled first-order dif-
ferential equations'4

co p+ (r) =[e+2mc' —V(r)]%' (r),
co p9 (r) =[a- V(r)]4' (r) .

Here c is the speed of light, o' is a Pauli matrix,
p denotes momentum operator, V(r) denotes the
potential, and the energy c is the total energy of
the electron minus its ~est energy, measured with
respect to the muffin tin zero. The scalar wave-
vector x is related to e according to the relativis-
tic kinematic relation

k~=p=[a(2m+@/c')]'~' . (3.2)

4', (k, r) = Q Q wA„(k, e) [iX~„(r., r~)]. (3.4)

Here the two-component Hankel function, which
is a solution to the Dirac equation (3.1) in absence
of the potential V(r), is given by

@s (&r)'8y, (r)

, h , {zr)'JJqq(r)-

The orbital angular momenta for the upper and
lower components are, respectively, l =

~
A

~

+ &(SA —1) and I =I -SA. The spin angular functions
'JJJ„{r)are formed from a linear combination of
pxoducts of spherical harmonics and two-com-

The upper componGDt 4 18 1Rx'gel 1D magnitude
than the lower component 4 by a factor propor-
tional to the electronic velocity divided by the
speed of light. Two convenient quantum numbers
for labelling solutions of the Dirac equations in a
central field are the component p. of the total an-
gular momentum (j), measured along the direc-
tion of quantization, and the "spin angular" quan-
tum number" A which is related to the projection
of the spin angular momentum onto the orbital
RngulR1 momentum L:

a" L4 "= —(A + 1)k%'
(3.3

o ~ L% ~ = (A —1)K4 ~ .
The single quantum number A, which takes positive
Rnd negative integer values, represents the pair
of quantum numbers fj for a given electronic "par-
tial wave. " The relationship between these quan-
tum numbers can be written" ~A(=j+ —,

' and sgn(A)
—=Sz =2(l —j). In the following sections, the nota-
tions A = —1, 1, -2, 2, -3, . . . and lj =02, 12, 1~, 2~,
2~, .. . will be used interchangeably.

The Dirac wave function in the interstitial region
of the lattice can be written in analogy with Eq.
(2 1):
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ponent spinors X multiplied by the appropriate
Clebsch-Gordan coefficients, '4

'9,'~(r) = Q C""Y,„(r)X
ms kg/

where

C~Ifl —
[ 2(I j)] iiiii+ 1/2

x ([I —4 m, (I —j) p + 1/2] /(2l + 1)] ' A .

(3.6)

In the Nth unit cell, the wave function can be
written, in analogy with Eq. (2.2)

%, (k, r) =Q i'zA"„(k, e) 6IP~~~(r„),
Aj(I

(3.7}

where the two-component "partial wave" 6I,"z&(r„)
is normalized so that outside the muffin tin sphere
it takes the form:

Here the two-component spherical Hankel function

ZA& is defined in Eq. (8.5) and the two-component
spherical Bessel function gA„ is defined in a sim-
ilar way, with j,(er„) replacing the A', (mr~) Be-.
cause of the spin-orbit interaction, the relativistic
wave function is characterized by an atomic seat-

{er) {ar)tering parameter t A -=sing~ e "~ for each spin
angular quantum number A; that is, for l &0, there
are twice as many parameters as for the corre-
sponding nonrelativistic wave function.

The two-center expansion (2.5) can be applied to
the upper component of the Dirac scattered wave:

at each muffin-tin sphere. The resulting relations
between the amplitude coefficients are identical
to Eqs. (2.6) and (2.7) of Sec. II, but with the spin
angular indexes A p. or ljp. replacing the spherical
harmonic indexes Ern, the transformed two-center
expansion matrix HA"„A „replacing its nonrelativ-
istic analog, and the relativistic kinematic rela-
tion (3.2) determining the relationship between en-
ergy and momentum. The entire discussion of
Sec. II following Eq. (2.7) can be similarly trans-
lated into the relativistic version. That is, any
formal expression for the relativistic amplitude
coefficients can be easily determined from the
corresponding expression for the nonrelativistic
coefficients by using the simple translation pro-
cedure described above.

Although the relativistic and nonrelativistic am-
plitude coefficients are formally very similar, there
are some qualitative differences between them due
to the dependence on the electronic spin. In the
first place, for a lattice with inversion symmetry,
as considered here, the relativistic Green's-func-
tion secular matrix MA„~ „(k, e) for each energy
e and wave vector k, has doubly degenerate eigen-
values X" (k, e}. The double degeneracy of the zero
eigenvalue X(k, e) = 0 corresponds to the so-called
Kramer's degeneracy of the energy eigenstates of
the lattice and reflects the invariance of the Ham-
iltonian of the system under time-reversal sym-
metry. " The time-reversal symmetry relation
of the Green's-function secular matrix (as well
as of the relativistic two-center transformation
matrix) can be written in the form

Mgy, g,'„(k,, e) =(-1)' "(-SA)

(8.9)

where the relativistic transformation matrix is
given by

rn = Wl/2

(3.10)

For the lower component of the scattered wave,
the corresponding two-center expansion can be ob-
tained by application of the identity":

o'p g, (zr) tj,'„(r) =ihaSAg , («)'g&~(r) —(3.11)

to both sides of Eq. (3.9). Here &, denotes either
a spherical Bessel or spherical Hankel function.
The relativistic amplitude coefficients seA„and

zA& are then determined by matching the upper
and lower components of the interstitial (3.4) and
muffin tin (3.7) expansions of the wave function

xM,*, „~; „(k, e)(-1) ' '"'(-S,) .
(3.12)

Consequently, if v,"Jt (k, e) denotes a component
of a given eigenvector of the secular matrix, the
corresponding component of the time-reversed
eigenvector is given by

v,"q~(k, e) =(-SA)(-1)' "[v,"~ ~(k, e)] ~ . (3.13)

Because of the double degeneracy of the secular
matrix, the evaluation of the residue of its inverse
is no longer given by Eq. (2.22), but by a sum of
contributions from both zero eigenvectors:

Res([M(q, e)]A~re Air y }
= V Ary(qi e) V Airiys(qi e) + V Ary(qi e) V kiri yi(qi e)

(3.14)

In the absence of spin-orbit interaction, the two time
reversed states correspond to the two possible
spin orientations of the electron in the presence
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of a magnetic field. In the presence of the spin-
orbit interaction, the two time-reversed states of
the electron correspond to the two possible "gen-
eralized spin" orientations of the electron in the
presence of a magnetic field. The generalized
spin orientation is charac'erized by a combination
of actual spin and orbital contributions. In addi. -
tion, the spin-orbit interaction of the impurity
atom is usually different from that of the host atom,
so that the presence of the impurity in the lattice
generally induces transitions between Bloch states
of opposite generalized spin orleDtatlon as well as
between those of the same orientation. The former
process is called "spin-flip" scattering and will be
discussed in Sec. VI for cases in which the spin-
orbit interaction of the host atom is negligible.

The diagonalization of the Hamiltonian repre-
senting the effects of an external magnetic field
on the host lattice with significant spin-orbit in-
teractions is in general quite complicated. " This
is not attempted in the present paper; in the fol-
lowing discussions, the notations e and v will
be taken to mean two orthonormal eigenvectors
corresponding to arbitrary generalized spin orien-
tations of the electron, which are not necessarily
those which would occur in the presence of a mag-
netic field. Consequently, in the presence of sig-
nificant spin-orbit interaction, considerations will
be limited to those quantities which do not depend
upon a knowledge of exact generalized spin orien-
tations in a magnetic field.

A second qualitative difference between the rela-
tivistic amplitude coefficients and their corre-
sponding nonrelativistic amplitude coefficients is
that their symmetry properties are dictated by the

double point group. Gne can introduce lattice spin
angular functions 'JJ„r&(r) for the lattice double group.
For cubic symmetry, these have been described by
Gnodera and Okazaki. 38 %hen discussing the ampli-
tude coefficients s„"r&, the irreducible representa-
tion I' ref ers to the symmetry of the upper component
of the Dirac wave function. The corresponding
lomer component has the opposite parity. One
finds that for cubic double group symmetry, the
Brillouin-zone integrals y(e, 0) are no longer diag-
onal when I =2, since both the partial waves Ej =2 —,

'
and Ej =2& include the representation I,". The
gE~, ~ coefficients for cubic double-group sym-
metry are listed in Table I in terms of their —,', th
Brillouin-zone integrals x„.„,, „ for l ~2. One
notices that, as xs characterxstxc of the cubic dou-
ble group, expressions differing only in parity
and fj-(f +1)j are formally identical.

IU. TRANSITION MATRIX

In order to derive formal expressions for the
T matrix applicable to systems with weak and
strong spin-orbit interactions at the same time,
a generalized spin-orientation index 8=4 or 0 mill
be introduced. In the absence of spin-orbit inter-
actions, transitions between states of opposite
generalized spin orientation are forbidden and
the appropriate amplitude coefficients z",rz(k, e)
and soir &(k, e), are equal to those derived in Sec. ll
without consideration of the spin degree of free-
dom. The partial-wave index A will be used with
the understanding that in expressions for nonrela-
tivistic systems, A must be identified with the
orbital aDgular momentum 1Ddex E.

The transition matrix 9, ~ (e) describesthe rate

TABLE I . Evaluation of y», ~ coefficients for a cubic lattice in terms of their partial
Brillouin-zone integrals xo»~& &i. Lattice spin-orbital conventions are those of Onodera
and Okazaki {Ref. 38).

4 1/2, 01/2 = 24{+01/2
8+

~i 1/2, 1 1/2 24 {Xi1/
8-

&1 8/2, 18/2 = &2 {~18/2
8-

~2 8/2, 2 8/2 ~2 {+23/2
8+

1/2,01/2 1/2 +0 1/2 -1/2, 01/2 -1/2~

1/2, 11/2 1/2 +1 1/2 -1/2, 11/2 -1/2)

8/2, 13/2 3/2 +1 8/2 1/2, 1 8/2 1/2 +1 3/2 -1/2, 1 8/2 -1/2 +13/2 -3/2, 1 3/2 -3/2~

8/2, 23/2 8/2+@23/2 1/2, 28/2 1/2 +23/2 -1/2, 23/2 -1/2 @23/2 -8/2, 2 3/2 -3/2~

X2 5/2, 2 5/2 ~0{+25/2 5/2, 2 5/2 5/2 +2 5/2 -5/2, 2 S/2 -5/2~ +2{~25/2 3/2, 2 5/2 3/2++2 5/2 -3/2, 2 5/2 -3/2~
8+ +

2{~25/2 1/2, 2 5/2 1/2 @2 5/2 -1/2, 2 5/2 -1/2) 2~5 {+25/2 5/2, 2 5/2 -3/2

+2 5/2 3/2, 25/2 -5/2 +25/2 -3/2, 25/2 5/2 +2 5/2 -5/2, 2 5/2 8/2~

8+
~23/2, 25/2 0 { 28/2 8/2, 25/2 -5/2 ~23/2 3/225/2 5/2) -2&6{

+23/2 -3/2, 25/2 -3/2~ ~2{+28/2 1/2, 25/2 1/2 +28/2 -1/2, 25/2 -1/2~

~2 5/2, 2 5/2 2 {+25/2 3/2, 2 5/2 3/2 @2 5/2 -3/2, 2 5/2 -3/2~ 4{+25/2 5/2, 2 5/2 5/2 +2 5/2 -5/2, 2 5/2 -5/2~
'7+ +

4~5 {+25/2 5/2, 2 5/2 -8/2 +2 5/2 3/2, 2 5/2 -5/2 +2 5/2 -3/2, 2 5/2 5/2

+2 5/2 -5/2, 2 5/2 8/2~
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of change of the probability amplitude for finding
an electron in the Bloch state%'«i'i (k', r), under
the influence of a perturbing potential given that
it was initially in the Bloch state 4i'i (k, r). In
this case the perturbing potential is the potential
difference AV(r) of the system with and without
the impurity, and the transition matrix is given
by"

&««'(&) = ~ T«'«'(&)
C

d'r[4', ' (k', r)] *AV(r)4, (k, r) .

d'««'(&) =
k

—'
I T««'(&) I'8(e(k) —e(k')} (4 2)

C

As the number of electrons scattered out of the
initial state by a given impurity atom must be equal
to the number of electrons scattered into all final
states, the T matrix satisfies a sum rule called
the optical theorem":

ImT««(e) =—,d'k' g I T, «(e}I'5(e—e(k')) .Al 8&2

(4.3)

Consequently, the inverse lifetime of the Bloch
state 4'," (k, r), with respect to impurity scatter-
ing, is given by

ee, = ——cr ImT««(e) .
r(k, c)

(4.4)

In the muffin-tin model, the perturbing potential
EV(r) is confined within the Ith unit cell and has
a spherical boundary. In order to evaluate the T
matrix in terms of the exact wave functions derived
in Secs. II and III, one can use the Schrodinger or
Dirac equation to reduce the volume integral (4.1)
to an integral over the surface of the muffin-tin
sphere enclosing the perturbing potential r V(r)
= V'(r) —V (r) 'In terms. of the muffin-tin ampli-

(4.1)

Here iii, (k, r) is the wave function of the defected
lattice associated with the Bloch function of the
pure host lattice ii t«'~ (k, r). The factor N„ the
total number of unit cells in the crystal, appears
in the denominator of (4.1) because the Bloch
waves (as well as their associated impurity wave
functions in the limit N, » ~) have been normalized
to a primitive unit cell. The T matrix is important
for calculating electronic transition rates and life-
times. The transition rate per unit time induced

by incoherent scattering from an atomic fraction
c, of impurities, given that the initial state is
occupied and the final state is not, is given by the
Golden rule"

tude coefficients (2.24), the T matrix then reduces
to the form

(4.7)

In Appendix C it is demonstrated that these results
for the forms of the T matrix are consistent with
the optical theorem (4.3) as required.

As discussed in the introduction to this section,
the expressions for the T matrix given above may
be interpreted either for a nonrelativistic or for
a relativistic treatment„where the irreducible
representation indices Fy refer, respectively, to
the single or double point group of the lattice.
Another case of interest occurs when the spin-
orbit interaction of the host-metal atom is negli-
gible but that of the impurity is significant. It is
then convenient to evaluate the T matrix in terms
of the single point group of the lattice, even though
the amplitudes of the alloy wave function for the
impurity cell are not diagonal in this representa-
tion. The host basis functions (4.7) corresponding
to a definite spin orientation m, can be written in
the form (neglecting arbitrary phase factors)

fi'r r,(k &) =fir, (k, &) 88 . , (4.8}

where the right-hand side of the expression de-
pends upon the amplitude coefficients calculated
as described in Sec. II, without regard for the spin
degree of freedom, and where throughout this
paragraph Fy refers to the irreducible representa-
tions of the single point group of the lattice. The
T matrix then takes the form

e'eTe, 9(e) ei( k-ti')' R~

K

&& g sin(i)~ —riA«) e'i "i~ "A&gAe'„*(k', e)
AI" y;A'

x QAA (e) aA, r y(k, e) (4.5)

This form of the T matrix is similar to that de-
rived by Morgan' and utilized by Coleridge and
Lee'" for analysis of impurity scattering. How-
ever, in the earlier work, the explicit form of the
renormalization matrix 6!«A (e) was not known.

Alternatively, the T matrix can be expressed
in a more symmetric form:

T«~i«(e) = — g fp &r(k & E) (( )( )Ai e fArr&(k& E)

Al y; A

(4.8)

by introducing Bloch-amplitude basis functions
proportional to the interstitial amplitude coeffi-
cients (2.9):
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T.".(6)=- P f*, , (k', 6)
r(}r/ yl ~

rry
'

&&(k —X) 'Ir' y'e', rIyef(ry(k} &) ~ {4.9)
Q (2', fd'0'8,','(e}s.~y(I', e}
e'

=S„r(6)s eI y(k, 6) . (5.4)

The evaluation of the nondiagonal kernel ((-X) '
depends upon the unitary transformation between
the single and double point group representations
and will be given explicitly in a.subsequent publica-
tion.

Performing the integral over k' and the sum over
0', this reduces to the matrix equation

U. SCATTERING MATRIX AND THE FRIEDEL SUM RULE (k-x'*)(k-x") ' r-~vr @.A,
The number of eleetronie states of energy less

'tlIR11 6 N(6), introduced by R slllgle 1111plll'ity 1I1

an otherwise perfect lattice can be calculated quite
generally from the scattering matrix S(6), as
shown by Langer and Ambegaokar. 4' The relation-
ship is given by

I}}y(e)= —Im (Tr [InS(&)]}.1
2r (5 1)

This expression is a genera. lization of that derived
by Friedel" for free-electron impurity scattering.
The 611ergy deI'1VRtlve of f}/(E') gives tile cllRllge ill
the density of states induced by the impurity. The
total number of electrons displaced in the vicinity
of the impurity is given by (5.1) evaluated at the
Fermi energy. Because the system must remain
electrically neutral, the total amount of electronic
charge displaced by the impurity N(6I, ), must ex-
actly compensate the excess nuclear charge Z
introduced by the impurity. The equality Z =N(61,)
is known as the Friedel sum rule. "

In order to evaluate Eq. (5.1), one must find the
eigenvalues of the scattering matrix S(e). This
matrix is related to the transition matrix E(6)
according to"

S„„(6)= 5(k —k') 588.
(2 II)'

E,O
—2IIi5(6 —6(k')) V~e,e(e) . (5.2)

From the form of the T matrix [Eqs. (4.5) and
(4.6)J, one may anticipate that an eigenvector of
the S(6) matrix can be formed from a linear com-
bination of Bloch-amplitude basis functions of the
form:

s e„y(k, 6) = g Q„"A(6)f~e r y(k, 6) . (5.3)

Here, a,s in Sec. IV, A denotes the genera, lized
partial-wave index, corresponding to the nonzero
interstitial impurity amplitudes u}~ry(k, 6); v labels
the distinct eigenvalues of the S(6) matrix which
exist in one-to-one correspondence with the A
indexes. In this basis, the eigenvalue equation is

where g is given by Eq. (2.27). The kernel

oAA -=[(( —x"*)($—x') 'J„

(5.5)

(5.5)

is not unitary, a result that is caused by the use
of nonorthogonal basis functions f,„y{k,6). How-
ever, it can be related to a unitary matrix o by
means of a similax ity transformation:

(5.8)

Since a unitary matrix has eigenvalues of magni-
tude unity, the eigenvalues of the 8 matrix can be
written in the familiar form

(6) 62(p }(r(&)

where 2(/},r(6) is the phase angle of an eigenvalue
of o' or (I . The degeneracy d, r of the eigenvalue
can be deduced from the form of the eigenvalue
equation (5.4). In the absence of spin-orbit inter-
actions, there is a distinct solution of Eq. (5.4)
for each spin orientation 0, as well as for each
member of the irreducible representation I'.
Thus, for a nonrelativistic treatment, the degen-
eracy is given by d, I = 2g(I'), where g(I') is the
degeneracy of the 7th representation of the single-
point group of the lattice. In the presence of spin-
orbit interactions, the eigenvectors of Eq. (5.4)
are no longer characterized by a specific "spin-
orbital" orientation 8, so that the degeneracy is
given by the degeneracy of the Fth representation
of the double-point group of the lattice, i.e., by
d, r=g{F). In either case, the number of impurity-
induced states can be expressed by

(yr, =((dr(}() &/2 g

(uI'a)d'or

r(}(
( r(y')I/2

AA'

(5.7)

Here ~ and u "denote the eigenvalues and eigen-
functions of the "overlap" matrices [Appendix Eq.
(C2)]
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1
N(e) = —Q d, rpvr(e) . (5.10)

the host system in the presence and in the absence
of phonon interactions for given wave vector k.

vP

The effective phase shifts y, & will be termed
"Friedel" phase shifts.

Whenever the Brillouin-zone integral )I (e) is
diagonal (for l ~2 in a nonrelativistic treatment
and l &1 in a relativistic treatment), the eigen-
values of the scattering matrix can be written im-
mediately. In this case Q„A =&,~ and the Friedel
phase shift is given by

9A) ™&AA
sissis s'sos —sin(Ss —Ss) Rsisss )~ ~

~

~

(5.11)

An equivalent expression has been derived by
Lasseter and Soven. " Alternatively, the Friedel
phase shift may be expressed in terms of the
Bloch-amplitude renormalization coefficient QAA(e):

PAr = ()4 —QA) +argQAA(e) . (5.12)

VI. APPLICATIONS

The calculations described in Secs. II and III
yield exact normalized wave functions for a single
substitutional impurity in an otherwise perfect
infinite lattice of muffin-tin potentials. In Secs.
IV and V the corresponding expressions for the
transition and scattering matrices are derived.
In order to relate these ideal quantities to actual
experimental situations, two modifications must
be considered: namely, the effects of the electron-
phonon interactions and the effects of finite im-
purity concentrations. A qualitative discussion of
these points is given below.

First consider the effects of the electron-phonon
interaction. In the previous discussion, it has
been implicitly assumed that the atoms of the alloy
are clamped at their lattice positions R„. In a real
material, even for temperatures close to absolute
zero, the electronic states near the Fermi level
are coupled to the lattice vibrations. " Consequent-
ly, for electronic states near the Fermi level, the
wave functions as calculated in Secs. II and III,
and the corresponding scattering rates or life-
times as calculated from Eqs. (4.2) or (4.4), must
be modified in order that they may be compared
with experimental data. '" It is reasonable to
assume that dominant electron- phonon effects
are those of the pure host metal, which are de-
scribed by the real part of the electron-phonon
self-energy Z,~(k, e *))." [Here the asterisk (+)
is used to indicate that the quantity has been cor-
rected for electron-phonon effects. ] The real
part of the electron-phonon self-energy gives the
difference between the effective eigenenergy of

e *'(k) = e(k) + Z,~(k, e *
) . (6.1)

d'r[@,&„I* (k, r)] *4', (k, r)

8 ~ (~)
1/2

1 — (~) Z,pk, E (6.2)

It can also be shown that this renormalization of
the amplitude of the Fermi-level Bloch wave func-
tions is simply related to the corresponding re-
normalization of the Fermi velocity in the pres-
ence of the electron-phonon interactions. The
"renormalized" Fermi velocity can be determined
by taking the gradient of Eq. (6.1) with respect to
wave vector and evaluating it at the Fermi energy.
Since the variation of the seIf-energy with respect
to wave vector &Z,),/&k is negligible compared
with its variation with respect to energy
&Z,~/Set*),"the renormalized Fermi velocity is
given accurately by

(6.3)

This relationship means that the ratio of the
squared magnitude of a Fermi-level Bloch wave
function to its corresponding Fermi velocity is
nearly invariant under the effects of the electron-
phonon interaction

(k, r)~'

v, (k)
(6.4)

In the presence of the impurity, a similar argu-
ment can be made. If simultaneous phonon and
impurity scattering processes, and changes in the
phonon spectrum induced by the impurity, are
neglected, then Eq. (6.4) remains valid if the im-

(g)
purity wave functions q, (k, r) or 4', (*)(k, r) re-
place their corresponding Bloch wave functions.
It follows that the ratio of the squared T matrix
to the corresponding Fermi velocities is, to a
good approximation, the same for a clamped lat-
tice as for a more realistic lattice including elec-
tron-phonon interactions:

If the electronic eigenstates of the host renormal-
ized by the electron-phonon interactions 4'~gI* (k, r)
satisfy the same boundary conditions as do the
corresponding clamped lattice eigenstates 4'~') (k, r)
it can be shown from Brillouin-Wigner perturba-
tion theory that the overlap of the two correspond-
ing eigenstates is related to the energy derivative
of the real part of the self-energy"'4'
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I 7'g g (&p) I'

v, (k') v, (k)

~

~(e) (e(s))
~

2

v, ~*)(k') v, (*)(k)
(6. 5)

These results" are very convenient from the view-
point of the analysis of experiments involving
electrons at the Fermi level in terms of the im-
purity wave functions and transition matrices dis-
cussed in the preceding sections. As will be shown

below, experimentally observed quantities such as
impurity-induced Knight shifts or transition prob-
abilities" " involve Fermi-surface averages of
these ratios (6.4) or (6.5). In any case, methods
for evaluating the renormalization parameter
SZ,~(k, &i*i)/S e~*~ either semiempirically, 44'" or
from fix st principles~6'4' are well documented in
the literature.

Secondly, consider the effects of finite-impurity
concentrations. Realistic impurity concentrations
are atomic fractions of the order of 10 ' to 10 '.
The formal extension of the amplitude equation
(2.7) to include scattering from more than one
impurity is straightforward, but its exact solutions
then depend upon the relative locations of the im-
purities. Fortunately, t e incoherent scattering g
approximation, in which each impurity scatters
electrons independently of all other impurity sites,
is valid for lorn impurity concentrations. In this
approximation the expressions derived in the above
sections may be used to describe impurity scat-
tering at finite impurity concentrations, except
for a concentration-dependent change in the nor-
malization of the wave functions, or equivalently
in the spectral meight function. Such effects can
be observed experimentally as a change in the
bulk density of states as discussed by Lasseter
and Soven" (and briefly below). For the purposes
of the present paper, it suffices to note that the
expx'essions derived in the sections above are
applicable for investigating incohex ent scattering,
and the resulting scattering rates (4.2) or inverse
electron lifetimes (4.4) are accurate through terms
linear in the impurity atomic fraction c. Similarly,
the electron densities calculated from the squared
magnitude of the impurity mave functions as cal-
culated in Secs. II and III, are valid to zero order
in the impurity atomic fraction.

Within this framework, a variety of experimental
measurements can be analyzed. The approach
followed in the present paper is especially suit-
able for the analysis of experiments which involve
the ei„enstates of the system at the Fermi level

It has the advantage that the Brillouin-zone
integrals (2.20) need be evaluated only at the
Fermi enexgy, and it gives one the option of treat-
ing the basic parameters of the theory, namely
the atomic scattering phase shifts q",(ez) and q'&(ez),

by semiempirical analysis of experimental data.
data. '" '4 Moreover, one expects that the muffin-
tin model best describes the dilute alloy potential
close to the Fermi level. In this section, con-
nections of the present approach with recent work
of other authors are briefly discussed; two addi-
tional applications are then developed in detail.

The change in the electronic density of states
induced in a dilute alloy, relative to that of the
pure host, is proportional to the energy derivative
of Eq. (5.10) multiplied by impurity atomic frac-
tion ez." It affects experimental quantities such
as the electronic specific heat and the static mag-
netic susceptibility. This was the subject of a
recent paper by Lasseter and Soven. "

Besidual resistivities of alkali metal alloys were
calculated by Dupree' in his original treatment of
the muffin-tin impurity problem. He estimated
the scattering amplitude from the asymptotic for m
of the wave function amplitude coefficients (2.32),
(2.33) for host lattice sites far from the impurity
cell in order to calculate the resistivity by means
of the usual approximation to the Boltzmann equa-
tion. Introducing explicit expressions for the T
matrix (4.5-6) into the epxression for the impurity
scattering rate (4.2) considerably simplifies the
calculation of the residual resistivity. Such an
approach has been followed by Coleridge and co-
morkers. '"'"

The Dingle temperature is a measure of impurity
scattering as it affects the damping of de Haas-van
Alphen oscillations for a specific Landau orbit.
It is often calculated by averaging the scattering
rate [r(k, e~)j " as determined from Eg. (4.4)
around the corresponding Landau orbit in k space, "
This approximation neglects the effects of mag-
netic field-dependent variations of the density of
states at the Fermi level upon the scattering rate,
and in the presence of spin-orbit interactions it
assumes that the magnetic field does not affect the
"spin-flip" scattering rate relative to the "no spin-
flip" scattering rate. A justification of this approx-
imation may be based on the fact that for the mag-
netic field stx engths used in typical de Haas-van
Alphen experiments (&10' G), the mean fractional
variation in the electronic density of states with
magnetic field is of the order of a few per cent and
the magnitudes of the energy level shifts are of
the order of 10 ~ times the Fermi energy. Anal-
yses of Dingle temperature anisotropies in various
noble metal alloys have been discussed by Cole-
ridge and Lee'"'" and mill also be the subject of
further work s

Spin-. Aip scattering rates

It is found experimentally that impurity-induced
spin-flip scattering contributes to the spin-lattice
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relaxation rate and consequently to the widths of
conduction-electron spin resonance signals. Such
effects have been observed in dilute alloys of
lithium and sodium by Asik et a/. "'" The longi-
tudinal spin-lattice relaxation rate T, is defined
as the time constant for exponential decay of the
magnetization of a sample, initially polarized by
a dc magnetic field, when the magnetic field is
removed. Since the magnetization is proportional
to 6n(t}, the population difference between elec-
tronic states of up and down spin, the spin-lattice
relaxation rate can be calculated from the analysis
of the expression'

d6n(t) 6n(t)
(6 6)

For the reasons discussed in Sec. III above, only
host metals having negligible spin-orbit interac-
tion will be considered here. The appropx iate T
matrix describing the spin-flip scattering process
at the impurity is thus given by Eq. (4.9), with
6}' = —8. The rate of change of the population dif-
ference d6n/dt can be calculated from the corre-
sponding transition rate [Eq. (4.2)] multiplied by
the appropriate Fermi distribution factors and
integrated over all possible final and initial wave
vectors. In this way, the impurity scattering con-
tribution to the longitudinal spin-lattice relaxation
rate, for atomic fraction cr of impurities, is re-
lated to the spin-Slip T matrix according to

1 4n cr Q

T, tf $(ei,) (2w)'

d'k
I Ve(k) I,

(6.7)

Here &(ei,} denotes the number of states of given

spin per unit energy of the host metal at the Fermi
level normalized to the volume of a unit cell 0:

Q d'k
(2 1r)' I VE(k) I,

Evaluating this expression with the T matrix of
Eq. (4.9), the following result is obtained:

(6 6)

4'
T, iiti Xl(C~)

fm)arri, (c~)

(6.9)

The change in the density of states induced by the
impurity has been neglected in this expression
since it contributes terms of order cr. Previous
theoretical treatments of spin-flip scattering
(Hefs. 19, 50, 51}have been based on the analo-
gous free-space scattering process, valid for free-

electx'on-like I1osts. The free-electron tre8tn1ent
may be justified for alkali metal host, "but the
more accurate treatment given by Eq. (6.9) may
be needed to describe relaxation in copper or
silver hosts, for example. Unfortunately, to the
knowledge of this author, conduction-electron res-
onance experiments for nonmagnetic hosts in Cu
and Ag have yet to be performed. In principle,
a similar analysis should hold in the more general
case in which the impurity causes "flipping" be-
tween the two generalized spin orientation eigen-
states of the host. However, spin-orbit interaction
in the host metal causes additional experimental
difficulties in measuring 7.'„ the resulting wave
vector dependence of the conduction-electron g fac-
tor may contribute significantly to the linewidth
of the signal. "

Host Knight shift due to an impurity at a specific neighbor site

In the presence of an external magnetic field,
the electrons of the alloy are polarized so that the
effective magnetic field "seen" by the host nucleus
in the Nth unit cell of the crystal is shifted by
an amount AC~ relative to that of the pure host
metal K . This effect is termed the Knight shift
and is observed through nuclear magnetic reso-
nance (NMB) measurements. " Because the mag-
nitude of the Knight shift depends upon the loca-
tion of the host cell relative to the impurity cell,
one expects to see, in the NMR spectrum of the

alloy, a series of satellites on either side of the
resonance of the pure host.

The shift is proportional to the applied magnetic
field, so the separation between satellites in-
creases linearly with increasing applied field. In
this way, Knight shifts can be distinguished ex-
perimentally from quadrupole interactions which
also cause NMB satellites. "'" The magnitude of
the Knight shift for a given satellite is only very
weakly dependent upon the impuxity concentration
for sufficiently dilute alloys. Such satellites have
recently been studied by Lang, Boyce, Lo, and
Slichtex" for magnetic impurities in Cu in external
magnetic fields through 65 kG. These spectra are
apparently dominated by the effects of the spin
polarized impurity atoms which interact directly
with the host nuclei via dipole-dipole interactions
and which induce spin density oscillations of the
conduction electrons through an exchange scatter-
ing mechanism. Such dipolar and exchange scat-
tering contributions to the Knight shifts will not
be considered here; the present analysis can be
most easily applied to the calculation of the con-
tact contribution to the hyperfine interaction when

the conduction-electron cha~ge distribution is de-
termined by potential scattering. The contact con-
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tribution to the Knight shift due to potential scatter-
ing is expected to dominate for nonmagnetic im-
purities. " A free-electron calculation by Blandin
and Daniel" suggests that it will be of the same
order of magnitude as that quoted for magnetic
impurities. " Furthermore, the contact interaction
is isotropic whereas dipolar interactions depend
upon the magnetic field direction; so that these
two contributions can be distinguished experimen-
tally through measurements on single crystals.

The Knight shift in the Nth unit cell of the lattice
due to the contact interaction is given by'"

(6.10)

where the term in parentheses denotes the average
value of the electronic magnetic moment per unit
volume parallel to the applied magnetic field Hp
evaluated at r = R„, relative to that for the pure
host metal. For simplicity, it will be assumed
that spin-orbit interactions are negligible and that
a nonrelativistic treatment sufficies. Contribu-
tions to Eq. (6.10) from polarization of core elec-
trons due to exchange interaction with the valence
electrons" will also be neglected. Then, eval-

uating the expectation values in Eq. (6.10), the
Knight shift can be written

~„=—x,nff, [&le, (I, H»)l'&-&Ie", &(k, H»)l'&],

(6.11)

0 dk
=[n(e»)] '( ), i (-), Iq, (k, r=R„)l'

fp

(6.12)
and the electron spin susceptibility per unit vol-
ume is given by

Here g is the electron g factor and p,~ is the Bohr
magneton. Evaluating the wave function averages
in terms of the amplitude coefficients of Eq. (2.33),
and noting that only the s-wave component (I = 0)
and therefore the totally symmetric representation
I'„are nonzero at r = B„, one obtains the following
relation for the Knight shift:

u' e
X,ufo . 2 a lflee~o(&» =0) I g ™[Xor,. try(ez~ H» Rr) (& X")rt'Xor, &'r y(e,»~ H» Ry)1

p sr';s'

(6.14)

where S'(e») —= Q»»/4w'e». In deriving this result
the symmetry properties of the Brillouin-zone
integral X,„y, r. y.(e, R„—R,) were used. From
the symmetry properties of the KB secular ma-
trix Eqs. (A8) and (A9) and using the cubic har-
monic conventions of von der Lage and Bethe, ' '"
it can be shown that the real and imaginary parts
of X,ry, r y (e, 8» -Hy) are determined from the
principal part and residue contributions, respec-
tively, of the Brillouin-zone integral (2.20). Also,
Xtry, l'r' ( yHe» ~t ) =Xi'r'y', try(e~ (H» Ry))
As in the evaluation of the T matrix of Sec. IV,
the sum over partial-wave components l and /' in
in this expression should include only those for
which the phase-shift differences (q', —yI",) and
(yi', —y)", ) are nonzero. Furthermore, as expected
X,ry, „y (e, H„—R,) and therefore ~» obtained
from Eq. (6.14), is identical for all host sites N
belonging to a given neighbor shell surrounding
the impurity site I. It is also interesting to note
that the position of the Knight-shift satellite is
largely independent of impurity concentration; con-
centration-dependent corrections to Eq. (6.14)
come from impurity-induced changes in the density

of states. Experimentally, the fractional Knight
shift is frequently measured. If K' denotes the
Knight shift of an isolated host nucleus, the frac-
tional Knight shift is given by

K' Imx„'r, p lm[Xor, , ir y(~»~ H» —Ry)

sry;t'

&&(5 X )~i'Xor, &'r y(e» R» Ry)] ~ (6 15)

V11. DISCUSSION

In summary, the following results have been
developed in the present paper. Following the
work of Dupree, ' expressions have been derived
for the exact, nonrelativistic wave functions of
an electron in a muffin-tin lattice containing a
single substitutional impurity. These are given
by (2.1) and (2.2), where the amplitude coeffici-
ents are given by (2.24)-(2.27) and (2.32)-(2.33).
These amplitude coefficients depend upon the
atomic scattering phase shifts of the host atom
q", and impurity atom q'„upon the Bloch amplitude
coefficients of the pure host (2.8)-(2.9), and upon
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the Brillouin-zone integrals (2.20). Expressions
for the analogous relativistic wave functions are
given by Eqs. (3.4) and (3.7). The relativistic am-
plitude coefficients may be determined by a pro-
cedure very similar to that for determining the
coefficients for a nonrelativistic treatment, as
explained at the end of Sec. III. Once the electron-
ic wave functions are known, the transition and
scattering matrices may be evaluated; the results
are given by Eels. (4.5)-(4.6) and (5.9), respec-
tively. The phases P,r of the 3 matrix (Friedel
phase shifts) determine the Friedel sum (5.10), as
recently derived in less general form by Lasseter
and Soven." From the knowledge of the electron-
ic wave functions, transition matrices, and scat-
tering matrices of the model system, and with
certain assumptions about the relationship of the
model to real materials, one can calculate vari-
ous experimentally accessible quantities. Five
examples are discussed. The calculation of the
change in the electronic density of states is men-
tioned as an application of the present approach
which has been recently studied by Lasseter and
Soven." Residual resistivity and Dingle-tempera-
ture anisotropies are mentioned briefly; they are
the subject of collaborative work of the present
author with Coleridge and Lee." Expressions
for longitudinal spin-latti. ce relaxation rates in
conduction-electron spin resonance (6.9) and for
host Knight-shift satellites (6.14) are, however,
developed in detail.

The difference between impurity scattering in a
lattice and the analogous potential scattering prob-
lem in free space can be characterized in terms
of the host backscattering matrix T~, defined by
Morgan, ' and the re1ated renormalization matrix
g ."~" Morgan's backscattering matrix has
been shown to be related to the Brillouin-zone
integral according to (2.29). For a free-electron-
like host, the Brillouin-zone integral is given by
Eq. (2.30); the backscattering matrix vanishes and

the renormalization matrix reduces to the identity
matrix. Brillouin-zone integrals and backscatter-
ing matrix elements have been numerically eval-
uated for the three noble metals, copper, silver,
and gold, at their Fermi energies. The numeri-
cal results will be given in a subsequent publica-
tion. ' One finds that these hosts show significant
deviation from free-electron-like behavior, and
that an accurate procedure such as the present
one is needed for a realistic analysis of experi-
mental data for their dilute alloys.

Throughout the present treatment, the effects
of the muffin-tin potentials enter only in terms of
their "atomic" scattering phase shifts qA(~) and
q'A(e). If one is interested in impurity scattering
at the Fermi level, the host atom scattering phase

shifts can be calculated either from an ab initio
calculation of the muffin-tin potential or from a
phase shift analysis of the Fermi surface based
on accurate de Haas-van Alphen frequency mea-
surisments. "'" The latter approach has several
advantages. Because of the errors inherent in
the independent-electron approximation, no ab
initio calculation has yet been able to reproduce
the Fermi surface of a metal as accurately as it
is known from de Haas-van Alphen measurements.
Such a semiempirical approach has been success-
fully adopted for use in the analysis of Dingle-tem-
perature anisotropy data for dilute noble metal
alloys by Coleridge, Lee, and Holzwarth. ''
The host phase shifts determined from fits to
de Haas-van Alphen data" were comparable to
those determined from ah initio calculations. ""

Other treatments of impurity scattering which
are more realistic than a free-electron treatment
have appeared in the literature. Most of the com-
petitive approaches are based on approximate
eigenfunction expansions. Orthogonalized plane
wave basis functions have been used for calcula. -
tions involving free-electron-like hosts"; com-
bined orthogonalized plane wave and tight-binding
functions have been used for calculations involving
noble" "or transition metal hosts. " Such ap-
proaches have in principle two main advantages
over the present exact muffin-tin solution ap-
proach. Firstly, non-muffin-tin potential treat-
ments can take into account nonspherical contri-
butions to the host and impurity potentials and
can include long-range components of the effec-
tive impurity potentials. The approximate eigen-
function treatments listed above did not focus on
these aspects of the problem. However, it should
be possible to adapt some of the systematic pro-
cedures now being developed for correcting the
muffin-tin potential model in pure metals" to the
impruity problem. Secondly, electron-electron
correlations, which are important for describing
magnetic impurities or hosts, are perhaps more
easily treated by use of an eigenfunction expansion
procedure. This point is briefly elaborated below.

In the present work, attention has been focused
on the Fermi surface properties of nonmagnetic
substitutional impurities in nonmagnetic metallic
hosts. It is evident that the general formalism
developed here can be extended to other systems
as well. Firstly, a very similar analysis can be
used to study interstitial impurities. This was
the subject of a recent paper. " Secondly, the
present approach could be applied to analyze ex-
perimental measurements which probe electrons
throughout the conduction band of the metal. This
extension leads to a technical difficulty; the eval-
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uation of the Brillouin-zone integrals at a single-
electron energy involves lengthy computation,
comparable to the construction of a density-of-
states curve for the conduction band of the host
metal. If the Brillouin-zone integral computa-
tions were streamlined, then one could use the
present approach to analyze such experiments as
the impurity-induced eLectric field gradients as
measured by nuclear quadrupole resonance ex-
periments"'4 or optical spectra of the alloys. "
The present approach is also relevant to x-ray
spectra of the pure host metal in which relaxation
effects of the absorbing or emitting atom may be
represented in terms of the "impurity" phase
shifts. " Thirdly, the treatment presented here
need not be restricted to metals. Although one
expects the muffin-tin approximation to be less
accurate for insulators and semiconductors than
for metals, the formalism of the present approach
can describe impurity states in nonmetals. Since
the muffin-tin approximation is unable to repre-
sent long-range Coulomb interactions induced by
charged impurities, attention would have to be
confined to neutral impurities. For bound states
of these systems, Ezls. (2.34) and (2.35) are di-
rectly applicable. Finally, for the description of
magnetic impurities or hosts in which electron-
electron correlations are important, such as in
the description of exchange scattering by a mag-
netic impurity, the present approach is not direct-
ly applicable. On the other hand, correlation be-
havior can be simulated within a modification of
the present approach by assuming certain free-
atom-like correlations (such as I;S coupling)" to
exist within the muffin-tin spheres. Whether such
an approach is feasible or whether correlations
are better handled by approximate eigenfunction
expansion procedures" "needs to be the subject
of further study. However, for the description of
rigidly aligned magnetic systems that can be de-
scribed simply in terms of a spin-dependent elec-
tronic potential, the present approach can be easily
modified in analogy to the calculation of ferromag-
netic band structures. ~' In the absence of spin-
orbit interactions, the introduction of a spin-de-
pendent electronic potential means that one merely
has to solve the impurity scattering problem sep-
arately for each spin orientation. In the presence
of spin-orbit interactions, the introduction of a
spin-dependent electronic potential breaks the
double-point group symmetry of the system, as de-
scribed by Falicov and Ruvalds. " Aside from the
introduction of new symmetry properties, it is
anticipated that the relativistic treatment of spin-
dependent impurity scattering can be carried out
by a straightforward extension of the present
treatment. Such a treatment may be appropriate

for the study of such systems as dilute Au(Fe}
alloys aligned in a magnetic field.
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APPENDIX A: DETAILS OF THE NONRELATIVISTIC

TREATMENT OF THE IMPURITY V(AVE FUNCTIONS

The two-center transformation matrix introduced
in Eg. (2.5) is given by

H, ~) ~~(e) =4zzi' ' Q i [zhz(~zz„~) J)Y)zz(Rzzyi)

d'r Y,* r" Y~„y Y, ~ i r"

(Al)

Expansion (2.5) converges provided that the dis-
tance between the point at which the wave is eval-
uated and the second center is smaller than the
distance between centers, i.e., as long as r&

From Eq. (2.6), it is evident that the intersti-
tial amplitude coefficient w", (k, ~) vanishes when-
ever the corresponding atomic scattering parame-
ter tI"'(e) is negligible. Since, for electronic en-
ergies in the range appropriate for the conduction
band of a metal, z)I" (e) decreases rapidly with
increasing l, the interstitial expansion of the wave
function (2.l) generally contains only a few, low
angular momentum, partial-wave contributions
from each lattice site. In contrast, the muffin-
tin amplitude coefficients z", given by Ezl. (2.7)
diverge for large angular momenta L because the
two-center transformation matrix H", ",' i diverges.
However, the condition for convergence of the two-
center transformation (2.5) ensures that the single-
center expansion for the wave function (2.2) con-
verges with increasing l, not only inside the muf-
fin-tin sphere, but also at any distance less than
the nearest-neighbor distance of the lattice. As
will be shown below, the technical difficulty
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caused by the divergence of the muffin-tin amph-
tude coefficients for large I can be avoided by
solving Eq. (2.7) in terms of the finite number of
interstitial ampUtude coefficients Io,„(k,~) cor-
responding to nonzero atomic scattering parame-
ters tIN~(e). If needed, the muffin-tin amplitudes
zzi (k, e) for higher angular momenta can then be
determined from them accox ding to

ar»
~)gg 4 ~ Q )yyl) S~Sgg )SyyIS .

gy~g g Smy

The solution of Eq. (2.7) by means of Fourier
transformation' proceeds by expressing the muf-
fin-tin amplj. tude coeff3,clents as a Brlllouln-zone
integral:

d'q e'"' ~z r»{q; k, e) .

Substituting this relation into Eq. (2.7), one finds
that for each value of q, the Fourier transform
Kiry{0') must satisfy a relationship of the form

Miry

iver&yt(qz

6) f ii I' 1 lire g(q) 8
g

$ pSyS

t

=(2 p g [(fi) ~II'~rr'~yy™iry I'r'y'(q «)1(~i ~ ti')&' zi'I y (k &) ~

g
S pS~S

Continuum solutions to the Schrodinger equation

are conveniently expressed as the sum of a Bloch
wave and a scattered wave contribution:

purity site, Eq. (2.23}, can be expressed as an in-
tegral x(e) over an "irreducible sector" of the

Brillouin zone (+, th of the total volume of the

Brillouin zone for a cubic lattice) and a summa-

tion over all the symmetry operations of the lat-
tice point group. It may be simply determined

from a summation over the partial Brillouin-
zone integrals x(z):

e, (k, r) = +&"(k, r)+a& &(k, r) .

The Fourier transform of the muffin-tin amplitude

coefficient then takes the form

g I r(yq; k, e) = ai ry(k, e)6( q -k) + &I'„~.( q; k, e) .
(A5)

Xii (&}=- 'q. Q&iry, i ry(&)
gk~$

Substituting this form into Eq. (A4), one finds

that the Bloch wave contxibution on the left-hand
side of the equation vanishes. The equation may
then be solved for the scattered wave amplitude
on the impurity site zli&g(k, c) by eliminating the

KR secular matrix from the left-hand side of the

equation and then performing the Brillouin-zone
inte gral:

I'I zf~&(k, ~)

0 g g (pI I y)-I & (&) UI
'I'I

lyly

(A 7)

Here, the total number of symmetry operations of

the lattice point group is denoted by n, (no= 48 for
cubic symmetry) andg(1') denotes the degeneracy
of the irreducible representation I'. The coeffici-
ents multiplying the partial integrals in the spheri-
CR1 harmonic expRIlsloII xi ~ I ~~i fox' Eq. (AV) Rl"8

listed in Table II for Ne case of cubic symmetry
and / ~3.

The symmetry properties of the nonrelativistic
Green's-function secular matrix (2.12}are im-

portant in various contexts, For a lattice with

inversion symmetry, it can 5e shown that the

KR secular matrix (as well as the corresponding
two-center transformation matrix) satisfies the

symmetry relationship

M, , „(k,z)=(-I)I "Mf „, (ek).(-I) ' '

[(fI) Xir I prl t(Ey O)(f I 1)

g
S PSyS

-«I} '~II &rr&yy 1

x(t', i —t", i)ii z, iriyr(k, 8) .

It follows that the phases of the eigenvectors e"

can be chosen so that the components obey the

relation

This equation contains apparent divergences if an

impurity scattering parameter f I,(e) is nonzero

while the corresponding host scattering parame-
ter f", (e) is negligible. However, one may show

that for this case the product Xi,ry I r y. (~,R„R,)-
x[f it(6)] asymptotically becomes 5gl5I irtirr&5

as t," (e) tends to zero. Therefore the coefficients
i'« I,(&)z,,ry(k, z) =—siri ry( k, e) are indeterminate

on the basis of Eq. (A6} and will be set equal to

zero.
The BriU.ouin-zone integral evaluated at the im-
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TABLE H. Expressions fox nonrelativistic y» coefficients for a cubic lattice in terms of
the partial Brillonin-zone integrals xi i te Ji/Qth ae-d tf [M(q G)],~ 1 ~t Lattice harmonic
conventions are those of von der Lage and Bethe (Ref. 29).

&00 =48xoo,OO

ri

ri5
~11 ~6 ~x 10,10 11,11 xi -'1,1-1~

&22
= 24x20,20+ &@x22,22+x2-2,2-2+x22,2-2+x2-2, 22~

~22 6 ~xi 1,11 xi -1,1-1~ 8 ~ 22, 22 x2-2,2-2 x22, 2-2 x2-2, 22~
"2S'

33
——16xsoso+10(xssss+xs 83 3)+6(xsisi+xs 18 1)

ri5

+2~»~ sss-1+ s-ssi+ s-iss+ 313-s~
ris = &6xso, io —4~6 ~xsi, ii +xs -i,i-ij 4~&o ~xss, i-i+xs-s, ii~
r2

Xss =24«32,32+xs-2,3-2-xs2, s-2 -x3-2,32~

r25'
43 8'Cxs2, 32 x3-2,3-2 x32,3-2 x3-2,32j

+6~xss,ss+xs-s, s-s~ +&O~xsi, si +xs-i,s-i~

-2~&5 (xsss, +x, 38, +x„, , +xs, ss)

v",„(k,e) =(-1)' v", * (k, e) . (A

(For m=0 this means that v"„(k, 8) is real if l is
even qnd is imaginary if I is odd. ) These rela-
tions are used in Appendix C for consideration
of the optical theorem, as well as in deriving
Elle. (3.12) and {3.13), and (4.14) and (4.15).

+U Jmefftp. -tin aphexe lgite (kt r)I4~(kj =
J'„[y,"&(k, r)Pd'r

(81)

APPENDIX 8: NORMALIZATION OF
THE BLOCH VfAV E FUNCTIONS

If the potential within the muffin-tin sphere is
raised by a uniform amount 4'0, the energy eigen-
value at wavevector k is raised by

according to first order perturbation theory. '
Consequently, the normalization condition,
Joie"{kt r)~'d'r =1 may be expressed in terms
of the integral within the muffin-tin sphere

,'& k, r 'd'~=
mtlffin- tin sphere

where

(82)

&e(k) . tete(k)

~V-0
= lim

Consider first the evaluation of (82) using non-
relativistic dynamics. The left-hand side may
be converted to a surface integral over the muffin-
tin sphere by using an identity involving the
Schrodinger equation. '~'~ The result may be
expressed in the form

Fg =8
spy

x —, ' +-,(at"t)'[(j,' —tang', n,'}'—(j, —tang", n, )(t,'-tang", n,")]) .
e &tang",

se(k) 8 A(k, 8)
8 *U 8'U

eA(k, 8)
8&

(84)

Here j, and n, denote, respectively, spherical
Bessel and Neumann functions evaluated at the
argument as~"~; prime denotes differentiation
with respect to the argument. The right-hand
side of (82) 1nay be evalllated by' llse of 'tile

identity

where, following the notation of Sec. II, X(k, e)
is the zero eigenvector of the KR secular matrix
M(k, e). Its derivatives may be determined from
the expectation value of the derivative of the
secular matrix":

&A(k 6)
{

.

)
BMgry 1 r t( tt8k)

~X Bg
lay,
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In particular, the derivative of the secular matrix
with respect to a constant change in the muffin-
tin potential is given by

&M(ry ltr, )i(k) e) q 1 atan))(= —cot'q, '5„.5„~5z& .

(88)

However, it is apparent from Sec. II that the nor-
malized eigenvector components of the KR, secu-
lar matrix are related to the muffin-tin expansion
coefficients of the 81,och wave by

1)»(k, ~) =X(k, e)i' a,„(k,~) sin)}", e'"&, (BV)

where the normalization factor is to be deter-
mined. Consequently, the right-hand side of equa-
tion (82) becomes

1),(k) . (810)

The second form of the renormalizing constant
in Eq. (810) follows from the fact that the velocity
of the Bloch state ls given by

(-) &Z(k, e)
ek

state are rel.ated according to

tang", tang",
ee 2~

"'+ —(s(" )'[(j - tan~'s )'

—(j, —tanl)", n, )(j," —tan)1", nI')] . (89)

Equating (83) and (88), the normalization constant
is determined to be

g k ~ 2 cos2qA l . 88
lr'y

It can furthermore be shown that the variation of

the phase shift q", with respect to a constant change

in the muffin-tin potential and its variation with

respect to a change in the energy e of the eigen-

For relativistic dynamics, a similar analysis
follows. Now the normalization integrals involve
a sum of the contributions from the upper and
lower components of the Dirac wave function.
The left-hand side of Eq. (82) can then also be
expressed in terms of a surface integral with
the result

APy

~~ ~~

lu))r)(k, ~)l'cos'))& — "" + ',
2 (s("))'[(y,' —tan))~An, '}SA(j-, —tan)ll, nT)

It etFCC (8 )2 (A3 2
—(), —)anacin, )SA()i —)annAn-, )) —

p
~ S~() ,

—
)annwfn , )(), —)annwfn, ))--. (811)

Rel«tons (84)-(88) remain valid in the relativistic treatment, with the spin-orbital index p replacing
the index /. Relation (89) is modified according to

stan'gp 6 etang(E) I( (t+ roc ) ())) 3

p ~ (s )'[(jl —«nl) &')~ (j —tan)) )1--, ) —(j, -tarn) 11,)S (j-, -tan)1'n-, )j

2 2

+
( ), (&'"')'&A(j , —tangy)1 , )(j, -—tan)-1'An, ) . (812)

Substituting this result into the relativistic equiva-
lent of (88) and equating it to expression (811),
the normalization constant is found to be again
given by Eq. (810).

APPENDIX C: OPTICAL THEOREM

In this appendix it will be demonstrated that the
expl'essloll fox' 'tile T matrix (4.6) is collslstellt wl'tll

the optical theorem (4.3). ft follows from symme-
try relationships discussed in Appendix A that the
phases of the amplitude coefficients can be chosen
so that products of the form fg,(k, e)f~~,&(k, e)

are real numbers and that the X' matrices are
symmetric. The imaginary part of the diagonal
element of the T matrix is then

fmT„'= —g f~~(k, ~)fe)) ~(k, e)lm(g-)( )„)) .

Agy; A'

The right-hand side of the optical theone~ (4.3)
may be evaluated by noting that the overlap inte-
gral between basis functions f~(k, e) is given by
the residue term of the Brillouin-zone integral
(2.20) evaluated at the impurity site:
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(()I(2&)')f&'0 &(& —&((')) P(f nry(&, &il "fa r z (&, ~) = ((l~) ™xlA'ttrr' ~yy '

The right-hand side of Eg. (4.3) is thus

(C2)

Ap„k & X AA ImXAA X AA'
Wry;A' Ash

The eguaiity of (Cl) and (&3) follows from the matrix identity [&m(& ') j& =-&* '[&m(&*)], w»&»»»id
for any complex matrix J3.
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