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The ferromagnetism of a random disordered substitutional binary alloy described by the
narrow-energy-band model of Hubbard is discussed within the framework of the coherent-potential
approximation with strong correlation effects included. The treatment of Coulomb correlations used is
an improved version of the first Hubbard approximation which seems to adequately describe those
correlation effects that have a major influence on the stability of the ferromagnetic phase for large
intra-atomic Coulomb repulsion. Disorder is considered in the site-diagonal terms of the Hubbard
model. Numerical illustrations are presented which describe the ferromagnetic solutions in terms of the
component magnetizations and component densities of states as functions of electron concentration in
the band for several cases of disorder and alloy compositions. In these examples the intra-atomic
Coulomb repulsion is assumed to be infinite. Comparisons are made with results obtained using a
Coulomb repulsion of the order of the bandwidth treated by the Hartree-Fock approximation. One finds
that results are qualitatively similar for small electron concentrations and the examples detail the
differences at larger concentrations. Finally a brief discussion with respect to experiment is made.

I. INTRODUCTION

Itinerant magnetism of disordered substitutional
alloys has been discussed' in recent years within
the framework of the coherent-potential approxima-
tion (CPA). ~'3 The CPA provides a promising ap-
proach for nondilute narrow-band magnetic alloys,
and there have been practical calculations 7 which
show reasonable agreement with experiments on
ferromagnetic and enhanced paramagnetic alloys.
However, in these calculations Hartree-Fock or
random-phase approximations were used which ig-
nore the strong intra-atomic Coulomb correlations
present in narrow energy bands. Some attention
has already been given to the problem of strong
correlations in disordered alloys, ' but it can be
argued that the approximations used in these dis-
cussions are too restrictive to ferromagnetism and
therefore do not properly describe the effects of
disorder on ferromagnetism within the CPA. It is
the aim of the present investigation to reexamine
this problem using an approximate treatment of
correlations more favorable to ferromagnetism. '

The model usually employed to describe narrow-
band alloys is the Hubbard model, "where the atom-
ic level and intra-atomic Coulomb repulsion param-
eters may depend on the type of atom at the given
lattice site. For a single narrow band this model
is represented by the Hamiltonian

H= ~ t&& c«c,a+~&, n;, +2@ I;n;, ,n;, ,
f, e f, e

which is here written in second-quantized form us-

ing a Wannier basis. In the case of a binary alloy
of the type A„B,„, the atomic-level energy && and
the intra-atomic Coulomb repulsion parameter I;
take on values e„or &~ and I„or I~ depending on
whether the ith site is occupied by an A. or B atom.
The transfer term is assumed independent of the
types of atoms on the i and j sites.

In the initial treatment by Roth, ' where effects
of disorder on ferromagnetism were discussed, and
in the extensive treatments by Hasegawa and Kan-
amori' and Levin et al. ,

~ a local Hartree-Fock ap-
proximation was made for the Coulomb repulsion.
This corresponds to replacing the model Hamilto-
nian of Eq. (l) by

a'""' = Z t,, c„c„+Q (~, +I, (n, ,))n„,
i, a

where (n&,), the average electron number with spin
0 at the ith site, is determined self-consistently
such that the dependence on the site is only on the
type of atom occupying this site. Since H~ is a
one-electron Hamiltonian with site-diagonal dis-
order the application of the CPA is straightforward.
However, the Hartree-Fock approximation is jus-
tified only if the Coulomb repulsion is weak. When
the Coulomb repulsion is strong, as usually as-
sumed for narrow bands, correlations play a cru-
cial role in determining the electronic properties.

The treatment of strong correlations in disor-
dered alloys is a very difficult problem. As a rea-
sonable first attempt one tries to exploit, as in the
case of the Hartree-Fock treatment, the simplicity
of the CPA as formulated for one-electron Hamil-
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tonians with site-diagonal disorder. Several of the
approximations used to treat correlations in the
Hubbard model are well suited for this scheme.
These treatments are characterized by the one-
electron Green's function in the Wannier repre-
sentation G;;(&u) being determined by an equation
of the form

G;;(~) =g,'(~) &;; +g,'(~)P»; & G;;(~),

where g,'(&u), the "ith-site atomic Green's function, "
depends only on the type of atom occupying the ith
site. The correlations are taken into account by

g (&u). Although not exact for the Hubbard model,
the form of Eq. (3) is suggested by the intra-atom-
ic character of the correlations. Examples for
g (cu) are as follows;

(a) First Hubbard approximation":

1
&d —«4 —64:

&
((d )

g (~)=

where

.
( )

I (n, ,)
1 —[I;—h«', ((u)]G4', ((u)

(c) improved first Hubbard approximation (I;
))» )14 19.

ij

,
( )

1 —(n, ,)
~ —«; —(n;,)W;,

where

(n;,)
&u —«; —I; —(1 —(n;,))W;, ' (7)

(n,.)(1 —(n, ,))W,.= —P», , [(c,.'. c,.)
&+1

—((c,,c„+c,,c;,)n;,)] (8)

For comparison the Hartree-Fock approximation
is obtained with

a('(~) = 1
(u —«,. -I,.(n, .)'

When Eq, (3) is rewritten in terms of an effective
atomic-level energy «;, (&u) defined by

1
(u —«;,((u) 'g (~)=

one obtains the equation

1 —(n, ,) (n, ,)
gi y(dg +

& —6 ~ (d —6 ~ - Ii

(b) Alloy-analogy approximation of Hubba, rd (with-
out resonance broadening)'3:

(u G,',.((u) = 5,, +Q», , G;,.(~) + «,,((u) G,.', (+) (l l)
lWi

The disorder associated with «;,(e) can be treated
within the framework of the usual CPA. The only
new feature is the energy dependence of i;,(e) which
comes from the inclusion of correlations. Of course
the success of the scheme depends on how adequate-
ly correlation effects are approximated by «;,(~).

Fukuyama and Ehrenreich have investigated
strong correlations in disordered alloys using the
CPA with the alloy-analogy approximation of Hub-
bard. The first Hubbard approximation has been
used with the CPA in the work of Esterling and
Tahir-Kheli' where the further complication of dis-
order in the transfer term was considered. In the
case of the ordered Hubbard model, ferromagnetism
is not generally possible within these approxima-
tions and this result remains unchanged with the in-
troduction of disorder described by the CPA. Hence
both these approximate treatments of correlations
are probably inadequate for a discussion of the mag-
netic properties of narrow-band alloys. It has been
argued that they are too restrictive to ferromag-
netism. ' ' ' In particular, as pointed out by Harris
and Lange, ' there are spin-dependent terms which
do not appear in the Hubbard approximations that
make ferromagnetism more favorable.

In the present investigation we treat correlations
within the approximation we have called the improved
first Hubbard approximation. It is appropriate to
the case where the Coulomb repulsion is large com-
pared with the bandwidth. As seen by comparing
Eq. (7) with Eq. (4), this approximation differs with
the first Hubbard approximation by having the W, ,
terms. These produce spin-dependent band shifts,
the existence of which was indicated by Harris and
Lange. The approximation is very similar to ones
by Roth and Tahir-Kheli and Jarrett' which are
based on conserving the first few moments of the
spectral function of the one-electron Green's func-
tion. The only difference is the neglect of certain
terms appearing in those treatments which are in-
consistent with the single-site character required
by Fq. (3). A full discussion leading to Eqs. (3),
(7), and (3) has been given by Faulkner and Schweit-
zer

The zero-temperature magnetic properties of the
Hubbard model in the ordered case have been dis-
cussed by Meyer and Schweitzer' using this im-
proved first Hubbard approximation in the limit of
infinite Coulomb repulsion. The results obtained
for the occurrence of ferromagnetism were reason-
able extrapolations of the exact results of Nagaoka~'
for the nearly-half-filled band to arbitrary electron
concentrations. These results are also in agree-
ment with the recent treatment by Yang 2 based on
a perturbation scheme. It therefore appears that
this approximation provides an acceptable treatment
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when I is very large for the correlation effectswhich
have a major influence on the stability of the ferro-
magnetic phase.

In the present application to ferromagnetism in
disordered alloys where the disorder is treated
within the CPA, we are primarily interested in a
qualitative understanding of the effects of including
correlation. We consider a model binary alloy with
random disorder and treat in detail three special
cases. The first case is where the disorder in the
atomic-level energies is so large that the electrons
are completely excluded from sites occupied by
atoms of one type. Furthermore strong intra-atom-
ic Coulomb repulsion prohibits double occupancy of
the accessible sites. In the second case the dis-
order in the atomic-level energies is not so large
and the Coulomb repulsion is assumed negligible on
one type of sites. This is just the Wolff~ model for
localized magnetic moments in nonmagnetic host
metals generalized to concentrated alloys. The
third case considered assumes strong Coulomb re-
pulsion on all sites. Solutions for the component
magnetizations in the ferromagnetic state are ob-
tained and representative partial densities of states
are shown. For comparison Hartree-Fock results
are also obtained with the Coulomb repulsion equal
to the bandwidth.

The general plan of the paper is as follows. Sec-
tion II gives the basic CPA formalism as general-
ized to treat ferromagnetic alloys with correlation
effects included. The results of our numerical cal-
culations for the three special cases are presented
in Sec. III, and conclusions are summarized in Sec.
IV. Also in Sec. IV there is a brief discussion with
regard to experimental results for ferromagnetism
in the pyrite solid solutions Co„Fe, „S~and Ni„Co, „S~.

II. APPLICATION OF CPA

We adopt the single-band Hubbard Hamiltonian,
Eg. (1), as the model for a disordered substitution-
al magnetic alloy A,B, „. Within the treatment of
Coulomb correlations considered here, the one-
electron Green's function in the Wannier represen-
tation satisfies Eq. (11) for a given configuration of
A and B atoms. The effective atomic-level energy
e„(&u) appearing in Eq. (11) is to be determined such
that it takes a value e„,(&u) or es, (&u), depending on
whether the ith site is occupied by an A or B atom.

The sites are assumed to be occupied in a random
way with concentrations x and 1 —x for A- and B-
type atoms, respectively. In the CPA~' the con-
figuration-averaged Green's function G~(&u) in the
Block representation is approximated by

(12)

where

i„,((o) —z, ((o)
1 —[K„,(u)) —z, ((u)]E,((u)

(14)

where

E,(&u) = E"'[&u —z, ((u)],

with

E"'(~) =N ' P = de
k (d —6k ~ (d- 6

(is)

p'o'(e) being the density of states associated with &„.
The alloy density of states p, (e) is given by

p, (a) = — N' Q Im—G'„(e+ i0')

1= ——ImE (c+i0').
7T

It is possible to decompose p, (&) into partial den-
sities of states associated with the A and B atoms:

p, (e) =x p„,(e)+ (I -x) ps, (e). (is)

To evaluate pz, (e), R =A, B, one considers an atom
of type R embedded in the coherent-potential medi-
um at some site. Then the local Green's function
in the Wannier representation for that site is easily
determined to be

Thus the component densities of states are just

p„,(&) = ——ImGz(E+i0'), R =A, B1
(2o)

and the average electron number with spin o at A
and B sites at zero temperature is

6p
n~, = p„,(e) de, R =A, B

«CO

(21)

where e~ is the Fermi energy determined by the
total electron number.

To complete the formalism we must give the pre-
scription for the self-consistent determination of
the effective atomic-level energies K„,(u&) andi~, (&u)

1 t elk~(R) Rg)
k ij

f, j
(& &i)

and the coherent potential Z, (&u) is determined self-
consistently by the requirement that the single-site
T matrix for scattering relative to the coherent-po-
tential medium is to vanish when configuration aver-
aged. Thus the CPA condition for Z, (&o) is
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Equation (10) defines ('.„(&u) in terms of the "ith-
site atomic Green's function" g,'(&u), which in the
improved first Hubbard approximation is given by
Eqs. (7) and (8). When using this approximation
we will for simplicity restrict our discussion to the
limiting case where the Coulomb repulsion on the
site is infinite. In that case (I& =~)

e;+(n;,)(W, ,—(d)
(22)

with

(n„)(1—(n;,))W,, = -Q t„(c',,c„). (23)

The simplification seen in these expressions is the
result of two electrons on the ith site being rigor-
ously forbidden when I; is infinite.

The usual Green's-function techniques~4 yield

6p

Pi&(c„c;,)= —— delm g i&GP(t+io')) (24)
j~i 7T -N j0i

6~
de Im([e —R,,(~ + iO')]G', , (~ + iO')]

(25)
where we have used Eq. (3) to obtain the final form.
Hence for use with the CPA

with

cs+n„,(Ws (())-
ggk j —n Z-ty

(28)

(o, (2/v)(I —&')'" Ie I
=I

p' '(~)=
0,

(29)

1
nz()(I ns()) Wz() =

7T

x imge —e,(a +iO')]G'„(&+io')];
(27)

when the Coulomb repulsion on the sites occupied
by B,-type atoms is infinite. For comparison the
Hartree-Fock approximation for arbitrary U„ is
described by

HP
Z~, = ~~+ U,n~, .

For a given choice of parameters x, &&, &&, E~,

U„, U~, and E( '(&u) associated with the band struc-
ture e)„one must solve Eq. (21) self-consistently
for n~, and n~, for both spin orientations. This in-
volves the simultaneous self-consistent determina-
tion of the coherent potential Z, (&u) by Eq. (14) and,
in our treatment of strong correlations, the quan-
tities W„, and W~, by Eq. (27). For an arbitrary
density of states p'0)(e), the solution of this set of
equations may become formidable. Since we are
interested in qualitative aspects rather than ap-
plications to specific alloys, we shall assume the
semielliptical band considered in Ref. 3:

where the energy is expressed in units of one-half
the bandwidth. For this density of states

E'" ((d) = 2[+ —(uP —1)'"] (3o)

In order to illustrate the effects of disorder and
strong correlations on the ground- state magnetic
properties of the Hubbard model we shall consider
in some detail three special cases. These cases
are distinguished by the choices for the parameters
5= &~ —E&, I„, and I~. We are primarily interested
in the occurrence and character of the ferromag-
netic solutions in the presence of disorder treated
within the CPA when strong Coulomb correlations
are included by means of the improved first Hub-
bard approximation. In particular, we have studied
component magnetizations and component densities
of states as functions of the electron concentration
in the band for several value s of x, the alloy con-
centration parameter. Although all the results pre-
sented are from calculations which use the simple
density of states p' )(E) of Eq. (29), we shall indi-
cate what these results suggest for more general
band shapes.

In the treatment of strong correlations by means
of the improved first Hubbard approximation we
have in every case assumed an infinite Coulomb re-
pulsion. This restriction should not significantly
diminish the physical character of the results since

With this particular E( )(~) it is easy to explicitly
evaluate Z, ((d) as determined by Eq. (14) in terms
of the i„,((d) quantities. In practice one evaluates
E,(u) directly; the procedure is discussed in detail
in Ref. 3. The remaining self-consistency condi-
tions are solved numerically.

The numerical procedure was a fixed-point itera-
tion scheme. One notes that in calculating the set
of quantities

$, =(n„„n~„n„,(l —n„,)W„„ns,(1 n~, )W sj—

one needs only the corresponding set $,. The equa-
tions are thus of the form

(32)

Starting with an initial guess, the up- and down-
spin quantities were calculated alternately until the
absolute value of the difference between two suc-
cessive iterates was less than 10 5. This termina-
tion criterion was empirically determined so as to
give a consistent accuracy of three decimal places
for the quantities in the (, set. For the Hartree-
Fock calculations (, consists of n„, and ne, only.

In Sec. III we present some results from calcu-
lations made within our treatment of strong corre-
lations. For comparison results using the Hartree-
Fock treatment with Coulomb repulsion equal to the

-bandwidth are also presented.

III. NUMERICAL ILLUSTRATIONS
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one expects these results will be representative of
the situation where the ratio of the bandwidth to the
Coulomb repulsion is small. However, there is
one difference between an infinite Coulomb repul-
sion and a large but finite Coulomb repulsion which
is very important for the magnetic properties. For
the ordered Hubbard model a nearly-half-filled band
will have the antiferromagnetic state as the stable
phase relative to the ferromagnetic for a large but
finite Coulomb repulsion. This instability of the
ferromagnetic state does not necessarily occur at
infinite I according to the Nagaoka results. a' This
situation should not change with disorder provided
there is a large Coulomb repulsion at all sites.
However, in the present discussion we only con-
sider spatially uniform solutions.

I.O

0.2—

n

I

FERROMAGNETIC SOLUTIONS

CASE A: 6~ =

0.8 —————HARTREE - FOCK
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&.(~) = ~&,(~) =
&

when 6=&~- &„»1. Then for the model density of
states p"'(e) of Eg. (29) one easily finds

+,(~) =2&I~ —~„,(&d)] —{i(d—~„,(4)]'-xj'/3). (34)

This yields for the component density of states as-
sociated with the A sites

p .( ) = (2/' )E
—le —-..( )]')'", (35)

where &„,(e) is the effective atomic-level energy.
In the Hartree-Fock approximation i„,(cg) is given

by Eg. (2S) while in the improved first Hubbard ap-
proximation with Iz infinite it is given by Eq. (26).
This CPA, result for p„,(e) is seen to differ with the

density of states for the ordered P-type Hubbard
model by having its width narrowed by a factor x' 3

while keeping the same normalization.
The ferromagnetic solutions obtained as one var-

ies the Fermi energy across the band are shown in

Fig. 1, where the average moment of anA atom,

Case A: 5=@&-e&» 1

When the disorder in the atomic-level energies
is large compared to the bandwidth of p"'(e}, the

alloy density of states splits into two subbands, one

localized at &„and the other at E~. If the Fermi
energy lies in the lower &~ band the B sites will be
unoccupied and will correspond to excluded volumes

in the crystal. This case has been considered by
Roth' using the Hartree-Pock approximation for
the Coulomb repulsion, and by Fukuyama and Ehren-
reich using the Hubbard alloy-analogy approxima-
tion with the CPA to treat the disorder. Fukuyama

and Ehrenreich found no ferromagnetic solutions
[their result is independent of p~o'(E)]. Here we

contrast the results we obtain using the improved
first Hubbard approximation with the Hartree- Fock
results.

For energies near ez the CPA condition for Z, (&u)

given by Eq. (14}reduced to

FIG. 1. Magnetization as a function of electron con-
centration where &~&&&& so that electrons are excluded
from the B sites.

ng nQ (36)

is plotted as a function of the average electron con-
centration for an A site,

n~ =n~, +n„, . (37)

The dashed curves are Hartree-Pock results for
various values of I~x ', which is the single pa-
rameter that characterizes the solutions in the
Hartree-Pock treatment of the Coulomb repulsion.
These solutions can be extended to n~ =2 by noting
that the curves must be symmetric about n~ =1.
For I„x '/2 & m/2 there are no ferromagnetic solu-
tions. The solutions obtained when correlation ef-
fects are included within the improved first Hubbard

approximation are shown by the solid curve in Fig.
1 for the case where I„ is infinite. Here we restrict
the range of n& such that n„—1 because of the in-
finite Coulomb repulsion. For n& & 0.72 there are
no ferromagnetic solutions. The onset of ferro-
magnetic solutions at n„=0.72 is discontinuous
(i.e. , the moment as a function of increasing n„
first appears with a finite value near the saturation
value) and the moment has the saturated value for
n„& O. VV.

These solutions for I~ = ~, where correlations
are included within the improved first Hubbard ap-
proximation, are independent of the concentration
x for the alloy (i.e. , the m„ for a given n„does not

depend on x). This result is not general to the ap-
proximation scheme but is due to our particular
choice for p'0'(e), which yields a p„,(e) that depends
on x only through a narrowing by an x' ~ factor.
Hence x can be absorbed into a change in energy
scale. For general band shapes there can be a
nontrivial dependence on x; however, to the extent
that the major effect of the disorder is to narrow
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the band with dilution rather than to distort its
shape, the solutions will be insensitive to x in our
approximation with I„ infinite.

The discontinuous onset of ferromagnetic solu-
tions with increasing electron concentration is also
a result of our choice for p' '(e), and is not a gen-
eral feature of the approximation used to treat elec-
tron correlations. In a previous study by Meyer
and Schweitzer'~ of the ordered Hubbard model
which can be compared with x =1 here, the onset
of ferromagnetic solutions was found to be continu-
ous for the densities of states appropriate to cubic
crystals with nearest-neighbor tight-binding band
structures. Clearly the magnetic properties within
our treatment of correlations are quite sensitive
to the form of p' '(e). As might be expected from
the magnetization results in the present case the
paramagnetic susceptibility is everywhere positive
and finite and hence there is no instability against
an infinitesimal magnetic field perturbation. How-
ever, the ferromagnetic solution where it exists is
energetically stable relative to the paramagnetic
solution, indicating a first-order transition from
paramagnetism to ferromagnetism with increasing
electron concentration.

Finally let us contrast the results using the im-
proved first Hubbard approximation with the Har-
tree-Fock results as they might be applied to an al-
loy system A„B, „, where the B sites represent ex-
cluded volume for the electrons. If we make the
assumption that n~ is independent of x for the alloy,
then m~ will also be independent of x in our treat-
ment of Coulomb correlations when I~ is infinite.
However, in the Hartree-Fock treatment m„will in-
crease toward its saturated value n„with decreas-
ing value of x. (Of course, if I„ is infinite in the
Hartree-Fock treatment, m„will be saturated for
all x. ) In order to make m„ insensitive to x in the
Hartree-Fock description one must choose U„pro-
portional to x', which is to require U~ to decrease
in the same manner as the band narrows with dilu-
tion.

Case B: 6 =cg -eg =0.8, I~ =0

In this case the effects of disorder in both the
atomic-level energies and Coulomb repulsion ener-
gies are studied. The parameter 5 is chosen to be
sufficiently small for the electrons to have access
to both the A and B sites. However, since 5 is
comparable to half the bandwidth, the scattering is
strong enough to introduce significant distortion in
the component densities of states. The Coulomb
repulsion on the B sites is taken to be zero and thus

Eg ((d) = Es.

At the A sites the Coulomb repulsion is assumed
infinite when treated within the improved first Hub-
bard approximation. The Hartree- Fock calcula-

I.O

0.8—

I

FE RROMAGN

CASE B: e—
B

0.4—

0.2—
X = 0.

0,0
0,0

I

0.2 0.4
n

0.6 0.8 1.0

FIG. 2. Magnetization as a function of electron con-
centration for the A sites within the improved first Hub-
bard approximation for various alloy compositions when

Ijp = 0 and Ig = ~.

n =xn~ + (I —x) n~, (4o)

are plotted as functions of the position of the Fermi
energy for the x =0.4 case. Since I~ is infinite the
A sites cannot be doubly occupied and hence n~ =1
is approached as the Fermi energy moves across
the band. The magnetization is almost entirely as-
sociated with the A sites; however, there is a small
induced magnetization on the B sites. This B-site

tions which we present for comparison use Iz =2.0.
This situation where the Coulomb repulsion is im-
portant only on the A sites is the generalization to
arbitrary concentrations of the Wolff~3 model for
magnetic impurities in a nonmagnetic host metal.

Figure 2 shows numerical results of our treat-
ment with I„=~for the A-site magnetization as a
function of the electron density at the A sites for
concentrations x = 0.4, 0.6, and 0. 8 of A atoms.
The x=1.0 case is given by the solid curve of Fig.
1, which clearly also describes the ordered A-type
crystal. One sees that the range of n„where ferro-
magnetic solutions exist is extended to smaller val-
ues with decreasing concentration of A atoms. This
is a general feature for e~ & e„which results from
the distortion of the p„(e)-component density of
states. This distortion increases as x decreases.
In contrast, when &„&&~ the range of ferromagnet-
ic solutions is reduced as x decreases.

A more complete picture of the ferromagnetic
solutions is shown in Fig. 3, where the component
magnetizations and electron concentrations, as well
as the alloy averages

ni =xm„+(I-x)m~

and
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FIG. 3. Component and average magnetizations and
electron concentrations as functions of the position of the
Fermi energy for x=0. 4 using the improved first Hub-
bard approximation when Iz = 0 and I&= ~.

magnetization is parallel to that of the A sites for
small n but becomes antiparallel for large n. and
eventually goes to zero as the band is filled (n„=1,
ns =2).

In Fig. 4 we show two representative examples
for the partial densities of states from the x =0.4
solutions as the Fermi energy moves across the
band. In Fig. 4(a) the value of c~ is such that n„
=0.6, while in Fig. 4(b) n„ is very close to l. One
sees clearly the narrowing of the A minority-spin
band and its shift to higher energies above the Fermi
energy. This increaes as the magnetization on the
A sites approaches saturation. The spin-dependent
shift is the essential feature of our treatment of
correlations that makes ferromagnetic solutions
possible. The CPA treatment of disorder is re-
sponsible for the distortion of the bands from the
semielliptical shape of the ordered systems to the
shapes shown.

Since the occurrence of magnetic solutions de-
pends primarily on the shape of the component den-
sity of states p„,(e), one can understand the depen-
dence on x seen in Fig. 2 in terms of the distortion
from the semielliptical shape caused by the disorder.
In our treatment of correlations the paramagnetic
state will be more likely to be unstable against fer-
romagnetism at lower electron concentrations if
there is a rapid increase of p„(&) with energy on the
low-energy end and an extended tail on the high-en-
ergy end. This is just what the disorder produces
when &~ & e„provided the difference is not so large
as to reduce the situation to that discussed in case
A. However, if e„& e~ the distortion of p„(e) is
such as to make ferromagnetism less likely.

The Hartree-Fock treatment with I& = 2. 0 yields
results which are in several ways quite similar to
the results of our treatment of correlations with I„
infinite. This is consistent with the general ex-
pectation that correlations must reduce I„effective-
ly to a quantity of the order of the bandwidth. Fig-
ure 5 shows the ferromagnetic solutions for x = 0.4
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FIG. 4. Component densities of states corresponding
to two solutions from Fig. 3.

FIG. 5. Component and average magnetizations and
electron concentrations as functions of the position of the
Fermi energy for x= 0.4 using the Hartree-Fock approxi-
mation when I&=0 and I&=2.0.
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by the Stoner criterion I„p„(e~)~ 1, where p„(e) is
the paramagnetic component density of states at the
Fermi energy. As a result of the distortion of p„(&)
due to the disorder the range of ferromagnetic solu-
tions is extended to smaller n~ with decreasing con-
centration of A. atoms when e~ & e„, and constricted
to values near n„= 1 for e„&&~. Although there is
little apparent relationship between the Stoner cri-
terion and what is involved when one treats correla-
tions within the improved first Hubbard approxima-
tion, nevertheless the results for the dependence of
the ferromagnetic solutions on the concentration x
of A atoms are qualitatively the same in both treat-
ments for our simple model density of states.

Case C: 6 = &~ —&g = 0 8, 4 = ~a
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FIG. 6. Component densities of states corresponding
to two solutions from Fig. 5.

when the Hartree-Fock approximation is used with
the CPA. The different behavior seen in Figs. 3
and 5 is primarily due to the fact that in the case
where I~ is infinite and correlations are included
n„must approach 1 as the Fermi energy increases
across the band since the states corresponding to
double occupancy of the A sites have been displaced
to infinity. Hence, for n„not too close to 1 the two
treatments yield results which are very similar for
the dependence of the ferromagnetic solutions on the
average electron concentration.

Representative densities of states are shown in
Fig. 6 for the Hartree-Fock solutions. In contrast
with the results shown in Fig. 4 there is no narrow-
ing of the A minority-spin band. The Hartree-Fock
approximation gives only a rigid spin-dependent
shift. However, one can see clearly in Fig. 6(b)
that this shift enhances the disorder with the result
that the majority- and minority-spin bands can be
quite different in shape.

In the Hartree-Fock treatment the occurrence of
ferromagnetic solutions is essentially determined

In this example we study the effects of disorder
in the atomic-level energies when there is strong
Coulomb repulsion at all sites. Again for the treat-
ment where correlations are included we assume
this Coulomb repulsion to be infinite and therefore
there can be no doubly occupied sites.

Figure 7 shows the ferromagnetic solutions for
a concentration x =0.4 of A-type atoms. In con-
trast to case 8 both n„and n~ must approach 1 as
the Fermi energy is increased across the band.
Also the contribution to the magnetization from the
B sites is larger as expected with I~ infinite, and
it can be either parallel or antiparallel to the A-
site magnetization depending on n. A particularly
interesting feature is the behavior of m~ near n =1.
Here one sees that m~ is parallel to m„and is in-
creasing rapidly as n =1 is approached. Unfor-
tunately our numerical procedure did not permit
us to follow the solutions closer to n =1 than shown.
It is expected, however, that m» like m„will be-
come saturated so that m =n at n = 1. Such a be-
havior is suggested by an extension of the exact re-
sults of Nagaoka which includes disorder.
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/me
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FIG. 7. Component and average magnetizations and
electron concentrations as functions of the position of the
Fermi energy for x= 0.4 using the improved first Hubbard
approximation when I& =I& = ~.
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FIG. 8. Component densities of states corresponding
to three solutions from Fig. 7.

Another importa, nt feature seen in Fig. 7 is the
existence of a range of n where m =n. This satu-
rated region is displaced to smaller n with decreas-
ing concentration x of A-type atoms. We shall com-
ment in Sec. IV on this behavior being important
for the understanding of some experimental obser-
vations on itinerant narrow-band alloys.

The evolution of the component densities of states
as &~ increases across the band is shown in the
three examples of Fig. 8. One sees the expected
complicated interplay between disorder and cor-
relation effects. These examples aid in understand-
ing the behavior seen in Fig. 7 for the component
magnetizations.

Now let us inspect the Hartree-Fock results for
the same disorder in the atomic-level energies but
with I„=I~=2.0. The x =0.4 solutions are shown
in Fig. 9. One notes that the rather complicated
curves for the component magnetizations show the

expected near symmetry between electrons on A
sites and holes on B sites. In making a comparison
with Fig. 7 one should consider only the n —1 solu-
tions. There is a qualitative similarity for small
n and significant deviations near n =1 as should be
expected. At smaller n one finds a saturated re-
gion (m =n) similar to that found in the treatment
with correlations included. However, unlike the
behavior seen in Fig. 7, here m~ does not remain
saturated as n„=1 is approached and also the anti-
parallel B-site magnetization becomes very large.
This behavior can be understood in terms of the
evolution of the component densities of states as E~

increases, as shown in the examples of Fig. 10.
A comparison of Figs. 8 and 10 shows some of the
effects of Coulomb correlations.

IV. CONCLUSIONS

I.2-
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FIG. 9. Component and average magnetizations and

electron concentrations as functions of the position of the
Fermi energy for x=0.4 using the Hartree-Fock approxi-
mation when Iz =I& = 2. 0.

We have reexamined the problem of strong Cou-
lomb correlations and disorder in the Hubbard model
using the CPA to treat the disorder and the im-
proved first Hubbard approximation described by
Eqs. (3), (7), and (8) to treat the Coulomb correla-
tions. Although this treatment of Coulomb correla-
tions has several dissatisfactory features it seems
to provide, when the Coulomb repulsion is large
compared with the bandwidth, an adequate descrip-
tion of those correlation effects that have a major
influence on the stability of the ferromagnetic phase
relative to the paramagnetic phase. It is hoped
that it provides some insights into inadequacies of
the Hartree-Fock treatment.

Unfortunately this treatment involves much more
calculational effort than the Hartree-Fock descrip-
tion, and therefore it would be quite difficult to go
beyond the simple-model-alloy calculations shown.
However, the examples considered here indicate
that the Hartree-Fock description with an effective
Coulomb repulsion of the order of the bandwidth
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gives a very similar description for the case where
the Coulomb repulsion is large compared with the
bandwidth, provided the electron concentration is
small. Hence our treatment suggests how to inter-
pret the Coulomb repulsion parameter in Hartree-
Fock treatments. This result is consistent with the
exact low-density results of Kanamori for the or-
dered Hubbard model.

A major effect of strong correlations is to dis-
place the states corresponding to double occupancy

of sites to higher energies making them inaccessi-
ble. This feature is missing in the Hartree-Fock
description and hence it cannot properly describe
the situation as v~-1 with I~ very large. Our re-
sults suggest what deviations are expected from
the Hartree-Fock results. These deviations are
detailed by the examples shown.

Finally let us briefly comment on a possible ap-
plication of our results to experiment. The pyrite
solid solutions Co, Fey Sg and Ni„Co, ,S~ can likely
be described by the Hubbard model with strong in-
tra-atomic Coulomb repulsion. ' In these ma-
terials crystal fields are important and one pictures
the conduction band arising solely from the doubly
degenerate d orbitals of e~ symmetry. FeSz is a
nonmagnetic semiconductor; CoS3 is a ferromag-
netic metal with 1 conduction electron per Co atom;
and NiS~ is an antiferromagnetic semiconductor with
two e, electrons per Ni atom. Hence the e,
electron concentration should go from 0 to 1
in Co„Fe, „S~ and from 1 to 2 in Ni„Co, „S~ as x is
increased from 0 to 1. The semiconducting char-
acter of NiS~ indicates splitting of.the band due to
strong Coulomb correlations.

If Hund's-rule interactions are neglected, one
can use the nondegenerate-band Hubbard model
with the electron concentration given by n = —,

' x for
Co„Fe, „Sz and FT=-,' (1+x) for NI„Co, „S~. Theatomic-
level parameters must be chosen such that &F, & Ec,

Then it is clear from our model calculations
that there will be a tendency toward saturated fer-
romagnetism (m n) as x=decreases in the Co„Fe, Sa
alloy system and a tendency away from saturation
with increasing x in the Ni, Co, ,S~ system. This
behavior, which is seen in experiments, is found
both in our treatment with correlation effects and
in the Hartree-Fock treatment with the Coulomb
repulsion of the order of the bandwidth. Also, as
the Ni concentration in Ni„Co, „S~ increases the
electron concentration approaches the half-filled
band limit and therefore one expects to see a transi-
tion from ferromagnetism to antiferromagnetism
at some value of x since the Coulomb repulsion is
large but finite. This final feature, however, is
outside the scope of the solutions considered in this
investigation.

These considerations suggest that the Hubbard
model with disorder treated within the CPA can
provide a simple explanation of the behavior seen
in these alloys. A more detailed application will
be presented in the future.

*Supported in part by the National Science Foundation. un-
der Grant No. GH34359 and the U. S. Atomic Energy
Commission.

Developments in theoretical treatments have been re-
viewed by H. Fukuyama, AIP Conf. Proc. No. 10,
1127 (1972).

P. Soven, Phys. Bev. 156, 809 (1967); 178, 1136 (1969).
B. Velicky, S. Kirkpatrick, and H. Ehrenreich, Phys.
Bev. 175, 747 (1968).

H. Hasegawa and J. Kanamori, J. Phys. Soc. Jpn. 31,
382 (1971); 32, 1665 (1972); 33, 1599 (1972); 33, 1607
(1972).



ELECTRON CORRELATION IN THE NARRO%-BAND. . . 47

5K. Levin, R. Bass, and K. H. Bennemann, Phys. Rev.
Lett. 27, 589 (1971); Phys. Rev. B 6, 1865 (1972).

6R. Harris and M. J. Zuckermann, Phys. Rev. B 5,
101 (1972).

~F. Brouers, A. V. Vedyayev, and M. Giorgino, Phys.
Rev. B 7, 380 (1973).

H. Fukuyama and H. Ehrenreich, Phys. Rev. B 7, 3266
(1973).

D. M. Esterling and R. A. Tahir-Kheli, in Amorphous
Magnetism, edited by H. O. Hooper and A. M. de Graff
(Plenum, New York, 1973), p. 365.

' Some preliminary results were presented in G. F.
Abito and J. W. Schweitzer, AIP Conf. Proc. No. 18,
626 (1973); J. W. Schweitzer, Lectures delivered at the
Karpacz Winter School for Theoretical Physics, Poland,
1974 (unpublished).

' J. Hubbard, Proc. R. Soc. A 276, 238 (1963).
L. M. Both, Phys. Lett. A 31, 440 (1970).

' J. Hubbard, Proc. R. Soc. A 281, 401 (1964).
' A. B. Harris and R. V. Lange, Phys. Rev. 157, 295

(1967).
"L. M. Roth, Phys. Rev. Lett. 20, 431 (1968); Phys.

Rev. 184, 451 (1969).

'6R. A. Tahir-Kheli and H. S. Jarrett, Phys. Rev. 180,
544 (1969).

~D. H. Faulkner and J. W, Schweitzer, J. Phys. Chem.
Solids 33, 1685 (1972).
W. Nolting, Phys. Lett. A 38, 417 (1972); Z. Phys.
255, 25 (1972).

'~J. S. Meyer and J. W. Schweitzer, AIP Conf. Proc.
10, 526 (1972); Phys. Rev. B 7, 4253 (1973).

20K. Elk, Phys. Status Solids B 61, K5 (1974).
Y. Nagaoka, Phys. Rev. 147, 392 (1966).
B. Yang, thesis (University of Illinois, 1973)(unpub-

lishedd).

3P. A. Wolff, Phys. Rev. 124, 1030 (1961).
D. N. Zubarev, Usp. Fiz. Nauk 73, 71 (1960) [Sov.
Phys. -Usp. 3, 320 (1960)j.
P. Lederer, F. Brouers, and M. Heritier, J. Phys.
(Paris) 35, 171 (1974).
J. Kanamorj, Prog. Theor. Phys. 30, 275 (1963).
H. S. Jarrett, W. H. Cloud, R. J. Bouchard, S. R.
Butler, C. G. Frederick, and J. L. Gillson, Phys.
Rev. Lett. 21, 617 (1968).
N. Chandler and R. W. Bene, Phys. Rev. B 8, 4979
(1963).


