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Various approaches to the problem of localization within Anderson’s model for random lattices are
examined. A new approximate criterion based on the Economou-Cohen L(E) approximation is
developed. Results are presented and compared for several real lattices and for various probability
distributions of the site energies. The new criterion is shown to be remarkably successful.

I. INTRODUCTION

Any advancement to the theory of electronic
transport in noncrystalline materials requires in-
formation about the nature of the eigenstates. Pos-
sibly the most important information to be acquired
from the eigenstates is their localization proper-
ties, i.e., to inquire whether the electrons are
essentially confined within finite volumes of the
material or are allowed to escape to infinity, 2

This important question has been studied theo-
retically within the framework of certain simplified
models, most notably the so-called Anderson mod-
el for random lattices. It is widely accepted, how-
ever, that certain qualitative conclusions based on
Anderson’s model are of universal validity. Ex-
perimental evidence seems to support this supposi-
tion, 1

Anderson’s model is a tight-binding Hamiltonian
in which a band is formed from atomic orbitals as-
sociated with lattice points. Randomness is intro-
duced in the model by assuming that the site ener-
gies (i.e., the diagonal matrix elements of the
Hamiltonian) are statistical variables having a
given probability distribution of width W, which is
taken as a measure of the degree of randomness.

It has been demonstrated?~!! within Anderson’s
model that a critical value of W, W,, may exist
such that all eigenstates are localized for W>W,.
For W< W, the spectrum is separated?? by critical
energies E,, termed mobility edges, into regions
of extended (i.e., not localized) and localized eigen-
states.! As W approaches W, the mobility edges
merge together eliminating the regions of extended
eigenstates. This disappearance of extended eigen-
states has been termed Anderson’s transition.

Although some other models have been exam-
ined, #1315 most of the theoretical attention has
been focused on Anderson’s model because the lat-
ter includes some of the universal properties char-
acterizing disordered systems. 2 In spite of the
oversimplifications present in Anderson’s model
various assumptions and approximations are needed
to obtain solutions. Although these approximations
lead to the same qualitative conclusions they differ
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appreciably in their quantitative results.

Until recently the quantitative discrepancies
among the various approaches have been given in-
cidental attention® since there existed almost no
means by which to check the approximations or the
results; moreover, the exact numbers were not
considered very important since they were not re-
lated with observable quantities. The whole quanti-
tative picture is presently receiving increased in-
terest!® 1618 que partly to the suggestion by Mott!®
of the existence of a minimum metallic conductivity
at T=0 when the Fermi energy E; lies at the mo-
bility edge; Mott connects this minimum conduc-
tivity directly with W,. Since the minimum metal-
lic conductivity, if it exists, is a measurable quan-
tity, the exact value of W, is very significant.
Moreover, the theoretical results for W, can now
be checked against some recent numerical work on
finite systems®®2! as well as against!™1%22 the re-
sults on percolation theory. %24

It is in this light that we systematically examine
here the problem of localization within the frame-
work of Anderson’s model. In Sec. II we summa-
rize the general theoretical formulation of the
problem as developed by various authors.* %8 In
Sec. III the existing approximate approaches to the
problem are outlined with particular emphasis on
their relationship. Next, in Sec. IV, a new crite-
rion for localization is developed which is shown
to be particularly successful. In Sec. V we present
and compare results (for various real lattices and
probability distributions of the site energies) ob-
tained by using the methods outlined in Sec. III and
developed in Sec. IV. A discussion on the accuracy
of the different methods is presented in Sec. VI.
Finally, in Sec. VII, conclusions are given.

II. GENERAL THEORY

Most of the discussion in this section is applica-
ble to a general disordered system; however, for
the sake of clarity and simplicity we consider here
the specific case of Anderson’s model for disor-
dered lattices. .

The Hamiltonian H in Anderson’s model may be
expressed by
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(D] H| m) = €035 + Via, (2.1)

where In) is an atomic orbital associated with the
site n, the sites form a lattice, and Vzz is taken
equal to a constant V for n, m nearest neighbors
and zero otherwise. Randomness is introduced by
assuming that €; are statistically independent ran-

dom variables with a common probability distribution

pleg).

A. Definition of localization

There are several definitions of a localized eigen-
function ¥(r) of which the most intuitive requires
the existence of the integral [¥*(¥)¥(¥)dr. De-
manding a more stringent test one could use the
existence of [ 72¥*(F)¥(T)dr as a criterion for lo-
calization. In cases where the wave function has
been evaluated, usually in one dimension, ¥(r) is
known to behave exponentially,

‘I’(;) ~ e-r/Ra,

)
so that one may define a decay localization length
R,. These statements are taken to imply a vanish-
ing of the dc conductivity at T'=0 which is some-
times itself used as a criterion for localization.
Another useful trick used mostly in the numerical
computation® of localization properties is the ob-
servation that changes in the boundary conditions
for finite systems shift the energy levels by an
amount only of order e™¥ (assummg exponential
decay) for localized states as opposed to 1/N for
extended states; d is the dimensionality of the system.

The method advanced by Anderson* considers the
infinite time evolution of an electron wave function
which was initially localized at a particular site or
region of the system. If there are localized eigen-
states in the neighborhood of the region considered,
these would certainly overlap with the site in ques-
tion and the particle would have a finite probability
of being initially in each one of these eigenstates.
Since these states localize the electron and are
time independent, one would expect a finite proba-
bility pgg of rediscovering the particle at the initial
region after an infinite time lapse. On the other
hand, if no localized states exist in the neighbor-
hood of the region considered, the particle will dif-
fuse away, and the overlap with the site will ap-
proach zero as ¢—~«, Thus, according to this cri-
terion, the existence or not of localized eigenstates
is associated with whether or not pg3 is different
from zero. It seems that these definitions of lo-
calization are equivalent, although no rigorous
proof exists for this statement.®

An eigenfunction is called extended or propagating
if it is not localized.

B. Localization of the behavior of G(z)

Any of the above definitions of localized eigen-
states implies a basic difference in the analytic
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structure of the Green’s function G(z) for localized
and extended states; here G(z) is defined as
(z2-H)™, where H is the Hamiltonian of the system.
As is clear from the definition, G(z) is analytic at
every point in the z plane not belonging to the spec-
trum of H, e.g., Imz+#0. Further, it exhibits a
branch cut at portions of the spectrum correspond-
ingtoextended states. Those parts of the continuum
spectrum belonging tolocalized states (if any) are
lines of singularity which are not branch cuts; they are
the so-called natural boundaries at which not even
the side limits, i.e., limg. ,+G(E +is), exist.

To be more specific, consider Anderson’s defini-
tion of localization in which one assumes the parti-
cle initially at the site § with a wave function | 0).
For f>0 the wave function can be written as

¥(t)= et 7). (2.2)

The quantity of interest is
1 t
pys=tim 5 [ czen|®at’.
t o 0

The time average has been taken to avoid unneces-
sary oscillations as t— . pgg is the (time aver-
aged) probability of finding the particle in the state
10) at t=co, if initially (£=0) it was in the same
state 10). Thus one must find for what degree of
disorder pgz #0, which implies the existence of
localized states.

It can be shown® that pg;
of the form

is related to an integral

pyy=lim : f dE G(E +is)GH(E —is),  (2.9)
s=0* -0
where G3(E) is the diagonal element of the Green’s
function in configuration space, i.e., G§(E)= O1IE
- H)™110). From Eq. (2.3) it is clear that the ques-
tion of localization is directly related to the ana-
lytic properties of the Green’s function. To pro-
ceed with this discussion we introduce the self-
energy Ag(E) at the site 0, which is essentially the
reciprocal of Gg defined implicitly by

Gj=(E - g—ap™. (2.4)

Here €3 is the value of the energy level at the site
0, which is a random quantity in Anderson’s model.
Substituting (2. 4) into (2. 3) we obtain

ImGg(E - is)

2is —[A§(E +18) = AH(E —is)] *

(2.5)
Equation (2.5) shows clearly that extended eigen-
states make no contribution to pzs since for those
states Aj(z) [and equivalently Gj(z)] has a branch
cut on the real E axis. On the other hand, for
localized states the nonexistence of the side limits
of A (or Gj) persuades one to consider alternatively
the N— « limit of a finite system. Although for

©
go=lim — dE
pDO §+0+ T Juoo
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finite systems no rigorous distinction exists be-
tween localized and extended states, the peculiari-
ties reappear in the limit N— o,

The quantities of interest may be written

(E) = Ji
3(E)= ;E-—E,

(2.6)

and

83(m)= 2 Ey

- E ’

where E; are the energy eivenvalues corresponding
to the eigenfunctions |¥;), f;=(81¥;X¥,10) is the
probability that an electron in the eigenstate |¥;)
will be on the site 5, and the summation extends
over all the eigenfunctions; similarly E? is the en-

2.7

ergy eigenvalue for a system with the 0 site missing

(i.e., €g=~«). [Equation (2.7) may easily be de-
rived from the equation Gg=®!(E - A)10) and
(2.4).] The quantities g; are rather complicated
functions of overlap matrix elements. The impor-
ta.nt property of Aj(E) is that its poles coincide with
EY.8 Using Eqs. (2.3) and (2. 6) we obtain

=278,
7
which satisfies (since 0< f;< 1 with J; f;=1)
0<pgs<1

for the finite system as it should.

We examine now the consequence of allowing the
dimensions of the system to approach infinity. If
the states are not localized, each f; should be the
order of N! so that f4~N and the sum pz5~2 %
x1/N%~0 as N~ as expected. For localized
states, the residues approach some finite limit f;,
as N— although they vary in magnitude consider-
ably depending on the state. In general, if the f;
are arranged for each N in descending magnitude,
then the nth term behaves, for large =, like f,
~0(1/n®), where 8>1 and the largest f;~1. Thus,
for localized states pgs=2;f ;. #0 and the distinc-
tion between localized and extended states is re-
covered.

The preceding remarks imply that in the case
of localized states one can approximate quantities
like pgg to any degree of accuracy by taking into ac-
count only a finite number of residues in Eq. (2. 8);
by contrast, this would not be possible for extended
states since each f; in Eq. (2. 8) is the same order
of magnitude.

The situation is more complicated if one con-
siders the quantity G3(E) [or Aj(E)]. One cannot
rigorously approximate Gg(E) with a finite number
of terms in Eq. (2.6) because of the possibility that
E may lie arbitrarily close to the position of the
pole of an omitted term. A probabilistic approach
should be used: For E randomly chosen, the prob-
ability that it lies in regions dominated by omitted
terms in Eq. (2.6) is proportional to Ei>,-0 fi (since

(2.8)
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each pole dominates a region proportional to its
residue). For localized states f;<(const.)i™® g>1
and consequently ;s ; fi approaches zero as iy—«;
for extended states f, N~ and consequently Zisipfi
tends to 1 as N— « for every ¢,. Thus one can con-
clude that for extended eigenstates one cannot ap-
proximate G3(E) [or Az(E)] by a finite number of
terms in Eq. (2.6); on the other hand, for localized
eigenstates one can use a finite number of terms
(i< iy) in (2. 8) and the error approaches zero with
a probability which approaches 1 as ,—~ =,

A different but equivalent way to examine the
question is the following: Consider a finite system
of N sites. Since {¢, | are random variables so are
Ei n, fi,ns Ei,y, &, and consequently G, y and
Aj x. Denote by Py(Ag y; E) the probability dis-
tribution of Ag, y(E) for E belonging to the spectrum
of the infinite (N =) system. If E belongs to a
segment of the spectrum corresponding to localized
states the limit limy. ., Py(Ag y; E) does exist, which
implies that the probability distribution of A§(E) [or
Ga(E)] can be approximated by the probability dis-
tribution of the sum of a finite number of terms in
(2.6). On the other hand if E belongs to a segment
of the spectrum corresponding to extended states
the limit limy., Py does not exist.

One can also consider®* the probability distribu-
tion of ImAg, y(E +2s) in the limits s—~0* and N—~,
In the case of extended states, for example, the
limg. g+ limy. P (ImAg, y; E +is) does exist* and
is a smooth function of E while for localized states
it is the lim. o+ lim,. .PE Y(ImAg, y/s; E +is) which
exists* and defines a smooth function of E; P is
the probability distribution of ImAg, y(E +is) while
P® is the probability distribution of s ImA;, 4(E
+18).

The question of localization can also be decided
by examining the dependence of Gg;(E)= OIE
—H)™I1) on the distancel® Rs; as Rgz~~=. For ex-
tended eigenstates it is expected that Gjz~ R&l,; as
Rj 3~ while for localized states exhibiting expo-
nentlal decay?® Gy:~e"R01/?4 where R, is defined
as the decay locahzatlon length. Such an approach
although more direct has the disadvantage of deal-
ing with a more complicated quantity like Gzz and
requires additional approximations. In this paper
we restrict ourselves to a study based on the ana-
lytical properties of Gj or Ag.

In summary, the existence of localized eigen-
states depends on the existence of the probability
distribution for the self-energy A3(E). In order to
study the properties of this distribution one would
like first to express it in terms of known quantities.
Unfortunately, a simple perturbative approach in
terms of site energies where the hopping potential
V is used as the perturbation diverges for all ener-
gies belonging to the spectrum.®* The problem is
resolved by expressing the self-energy A3(E) in a
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renormalized perturbation expression®'?" (RPE) in
which the site energies are modified self-con-
sistently:

0\-1
Aa(E)=§Va;<E—<;—A%> Vis
n

+ Z Vi E - € = a3
n#0; 0’41, 0

XVailE - 65— A Wig4ee0 ,  (2.9)

where, as before, the superscripts 0, n,... denote
that the corresponding quantity has been calculated
for €z, €3,... =, The right-hand side of (2. 9) can
be represented by all paths which begin and end at
0 and do not visit the same site more than once.
Thus repeated scattering from the same site which
leads to the divergence in ordinary perturbation
theory is eliminated. The relation (2. 9) for Aj(E)
holds everywhere on the complex E plane except
along the branch cuts on the real axis. Within the
RPE, however, one no longer has an explicit ex-
pression for Az since unknown quantities A%"‘ appear
on the right-hand side of Eq. (2.9). These quanti-
ties can be expressed through relations similar to
(2. 9) and substituted back into (2.9). Repeating
this process to eliminate all the unknowns on the
right-hand side of (2.9), we obtain an infinite con-
tinued-fraction-like expression in each term of the
series of the form

1 -1
Ag(E) = ZV(,;(E €& - ZVEFE"“_“‘,‘.‘VH+"'>

X Vag+eoe. (2.10)
Equation (2. 10) may be applied to a system con-
sisting of a finite number of sites. In this case
both the continued-fraction-like structure as well
as the series terminate due to the self-avoiding
nature of the diagrams. Thus Eq. (2.10) consti-
tutes an explicit closed solution for the self-energy
Ag of a finite system, a property of the RPE which
makes it of central importance to our problem.
We may rewrite Eq. (2. 10) for the finite system of
N sites as

Ag,5(E)= ZAO,N(E) (2. 11)
where Ag’ N(E) is the sum of all diagrams visiting
M sites. In order to show that the probability dis-
tribution of Ag, x(E)converges as N—= for localized
states one must show that both the infinite-step itera-
tion procedure implied by (2.10) and the series itself
converges in probability. More precisely, the
absence of extended states implies that (a) the prob-
ability distribution of A5 N(E) converges ag N—~»
and (b) the contribution of all terms IAaM B,
where M >M,, are negligible as M,—~=. Clearly

if both conditions (a) and (b) are satisfied, there
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are no extended states at E.

The problem could be considerably simplified if
the convergence of series [renormalized perturba-
tion series (RPS)], for example, implied the con-
vergence of the iteration procedure or vice versa.

Economou and Cohen® assumed that the conver-
gence of the RPS is equivalent to the convergence
of the whole RPE; as a result they studied the con-
vergence of the RPS only. On the other hand Abou-
Chacra et al, %28 examined the question of the con-
vergence of the iteration procedure only by making
in addition the approximation of terminating the
RPS after the first term. Abou-Chacra et al. by
terminating the series, have found that the itera-
tion procedure converges if the randomness ex-
ceeds a critical finite value; otherwise it diverges.
Thus their results indicate that the convergence of
the iteration procedure may be as important as the
convergence of the RPS itself. As a matter of fact
the numerical values they obtained for W, (E) from
this procedure are very close to the numerical
values obtained originally by Anderson* who con-
sidered the convergence of the series. Note fur-
ther, however, that these numerical estimates are
inconsistent with the numerical results obtained in
finite systems, 22!

The one-dimensional (1-D) case requires some
comments because it has created certain confu-
sion.?® Since the RPS terminates in one-dimension
(with nearest neighbors coupling only) it certainly
converges, and consequently whatever divergences
appear are due to the divergence of the iteration
procedure. It has been shown3® ! that in this case
the iteration procedure converges for any nonzero
degree of randomness. Thus botk the Economou-
Cohen procedure and the Abou-Chacra ef al. pro-
cedure yield correct results in the 1-D case. On
the other hand, it would be definitely wrong to apply
the F(E) (or the G°) criterion (see below) in the 1-D
case, since the derivation of these criteria is ex-
plicitly based on the existence of a nonterminating
RPS.

Another case worthwhile referring to is that of
the Cayley tree.?* In a Cayley tree a site may have
Z nearest neighbors (where Z >2 as in the 2-D or
the 3-D cases) but, on the other hand, only a finite
number of self-avoiding polygons is allowed, as in
the 1-D case. The total number of sites increases
exponentially with the distance from a given central
site so that the “surface” sites are as numerous
as the “bulk” sites. The above properties make
the Cayley tree a quite special case which should be
examined with extreme care. Regarding the ques-
tion of localization in a Cayley tree one should
specify how localization is defined in this case since
the usually assumed equivalence of the various def-
initions of localization is probably not valid. Ob-
viously any approach based on the convergence of



11 STUDY OF LOCALIZATION IN ANDERSON’S MODEL FOR...

the RPS would predict always localization since the
possibility of divergence of the iteration procedure
has been omitted and the RPS terminates. On the
other hand, the approach by Abou-Chacra et al. is
exact in a Cayley tree, although the physical expla-
nation of the divergence or convergence of the RPE
requires further elaboration.

Results obtained in a Cayley tree with Z nearest
neighbors [or with connectivity K, where K is de-
fined as K =1im,. .(1/M)InC, and C,, is the number
of self-avoiding paths of M steps; in a Cayley tree
K =2 - 1] acquire practical significance if one fur-
ther assumes that they are good approximations to
the corresponding results in real 2-D or 3-D lat-
tices with the same Z (or K). Experience with the
Ising model'®2¢ indicates that the above assumption
is reasonable for quantities that depend mainly on
local properties (as, e.g., the local magnetic mo-
ment) while it may lead to wrong conclusions for
quantities of global character (as, e.g., the total
partition function). Abou-Chacra ef al,®28 gs-
sumed that their results for the divergence or con-
vergence of the RPA in a Cayley tree of connectivity
K are reasonable approximations to the problem of
localization in a real lattice of the same K.

If one makes the assumption that the convergence
of the RPE is equivalent to the convergence of the
series alone (i.e., that the convergence of the
series always implies the convergence of the itera-
tion procedure) the whole problem reduces to that
of finding the probability distribution of

S rv.v

all diagrams €1 €2 eu
af order M

as M~=, Here e;=E - €;— A?’ bee 11 are random
functions possessing a distribution function and the
sum extends over all M-step self-avoiding dia-
grams starting from and ending at the site 0. Vari-
ous approximations have been used in the literature
to obtain information about the probability distribu-
tion of a particular contribution to A{*(E), i.e.,

(2.13)

Here j labels a specific Mth-order diagram. Even
if one knows the probability distribution of T{*’, the
problem is far from solved since, in order to find
the distribution of A*’, one needs to know the de-
gree of statistical correlation among the various
T{". 1t is only in the two limiting cases of no cor-
relation® or extremely strong correlation® that one
can proceed with the present analysis. It should be
noted that both these limiting cases do not corre-
spond to the real situation. There are roughly

K" T{ terms contributingtoa§"”’, where K is the
connectivity of the lattice; there are only M® inde-
pendent statistical variables involved (since the in-
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dependent statistical variables are in one-to-one
correspondence with the lattice points). Conse-
quently all T{*" cannot be independent. We show in
a later section that at least in one case the assump-
tion of strong correlation is incorrect. For our
purposes, by strong correlation we mean that al-
most all T{*’ for a given M are almost equal. We
make this statement more precise later. The as-
sumption of strong correlation is probably closer
to reality.®' It has the additional advantage of al-
lowing a more sophisticated treatment by control-
ling whatever additional approximations are used.
By contrast the assumption of no correlation re-
quires further drastic approximations, the effects
of which are unclear,

Before we close this section we mention that dif-
ferent approaches to the problem of localization
have been attempted. Thus Haydock and Mooker-
jee!® have considered a model which is similar al-
though not identical to Anderson’s model in which
they propose to replace the static site disorder by
a dynamical one. This technique allows the elec-
tron to have transitions at a particular site even
when the hopping V=0 so that in this case the ener-
gy spectrum would be equivalent to the site proba-
bility distribution. The advantage of this redefini-
tion in which the disorder is put on an equal footing
with the spacial hopping is that one may, as an ap-
proximation, ignore certain matrix-element se-
quences to simplify the problem. Thus Haydock
and Mookerjee construct a matrix Hamiltonian
which has a structure in correspondence with the
Cayley tree and thereby permits an analytic solu-
tion.

Lukes!! has examined the quantity (G*G),,, which
is related to the static conductivity. By using an
approximation essentially equivalent to that em-
ployed by Ziman® he studied the localization transi-
tion. He considered also the question of the local-
ization length which was also examined by Ander-
son, 3!

Finally, by examining an altogether different
model for a disordered system, Abram and Ed-
wards® provide further evidence for the basic elec-
tronic band picture described in the Introduction by
reaching similar conclusions.

IIIl. APPROXIMATE METHODS

In this section we briefly discuss some of the
existing techniques related with the present ap-
proach to the question of localization. The discus-
sion is summarized in Table I.

The method of Herbert and Jones, 1 in which the
residue of the off-diagonal propagator Gi; is exam-
ined, neglects the renormalized denominators in
the expansion for this residue; i.e., it replaces
the denominators e; in Eq. (2.12) by E-¢; and
omits the self-energies A; altogether. This is a
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TABLE L. Approximations used in different approaches to the localization problem within Anderson’s model.

Anderson’s model

0

Convergence in probability of Ay

Omit altogether
the self-

Omit the higher
terms of the

Assume that convergence
of the renormalized pertur—
bation series is equivalent
to convergence of the re~
normalized perturbation

I

energies in the renormalized
propagators perturbation
series
expansion
Other Omit altogether
approximations the self-

energies in the

Assumption of
strong correlation
of the diagrams

Herbert and
Jones, Ref, 10

Abou-Chacra,
Anderson, and

propagators and
assume statistical
independence of
the diagrams

Anderson, Ref. 4
Kikuchi, Ref, 7

Thouless, Ref. 16 Thouless, Ref, 6

Economou-Cohen L (E) expression, Ref, 8

Omit altogether
the self-energies
in the propagators

Economou and
Cohen Eq. (4.18),
Ref. 8 Bishop,

Omit altogether
the self-energies
in the propagators
and correct to
reproduce periodic
case

Ziman, Ref, 5

F(E), Ref, 8

Use coherent-
potential approxi-
mation to calcu-
late averages in
the presence of
self-energies

Licciardello and
Economou, Ref. 18
and present results

Ref, 17

very drastic approximation which eliminates the
possibility of divergence of the iteration procedure
but allows easy determination of the probability
distribution of products of 1/e; terms. Under the
assumption of no correlation they obtain results
identical with Anderson’s* “upper-limit” condition.
Their approach admits a procedure to include cor-
relation effects. They argue that since the residues
of the poles in the expansion for Gij are bounded

by unity, the long tails in the probability distribu-
tion of Gy predicted when one assumes statistical
independence is spurious and would be removed by
a proper treatment of the correlations. Thus they
introduce a Gaussian distribution as an approxima-
tion to the distribution of the residue to reduce the
tail and they then obtain lower Anderson transitions.
On the other hand, their approach treats correla-
tions between energy levels on the same path and

is not easily compared to the Economou-Cohen ap-
proach, which assumes strong statistical correla-
tions among different paths of the same order.
Herbert and Jones’s approach using a rectangular
distribution of total width W for the site energies
predicts

2¢%3< W, /V< 2e'°K (3.1)

for the critical disorder. The above result gives
the critical disorder at which the eigenstates at the
center of the band (£ =0) become localized. It was
assumed that the last states to become localized
are those at the center of the band.

Anderson in his classic paper? calculated the
probability distribution of T}M ) by assuming also
that ;= E - €;, i.e., by neglecting altogether the
self-energies except for a cutoff to prevent the
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denominators e; from vanishing. He further as-
sumed that the quantities 7" are statistically in-
dependent. He thus obtains values of W, /V for
E=0. Thouless® presented a critical and clarifying
discussion of Anderson’s method. He also extended
Anderson’s method to the case where the site en-
ergies possess a binary-alloy type of distribution.
Generalizations” of Anderson’s theory to E #0 are
unfortunately limited to a range of E within the dis-
tribution of the site energies. This is due to the
use of a theorem which depends on the uncorrelated
signs of the T{” which is true only for these limited
values of E. Thus, for example, if one expects

the range of localized states to be confined to the
band tails, such states would be inaccessible within
Anderson’s theory., Moreover, study of the mo-
bility edges as a function of the disorder parameter
would be difficult. In spite of these limitations
Kikuchi, using similar approximations to that of
Anderson, derived’ the following expression for

Wc(E):

where (8.2)

n(E)=1{1 - [2E/WJ(E)F}/4,

which reduces to Anderson’s “best estimate” for
E=0. WJE) is the critical value of the randomness
in which the eigenstates at energy E become lo-
calized. This expression includes Anderson’s cut-
off in the energy denominators e; generalized for

E #0.

The L(E) theory of Economou and Cohen® clearly
delineates between the basic assumptions and any
further approximation. Assuming that (a) the con-
vergence of the RPE is equivalent to the conver-
gence of the renormalized perturbation series and
(b) the T§" are strongly correlated as M~ =, one
can show® that the probability

e[LHHYE)< | af(E)| < LHH(E)] —1
where ¢<1. Thus if L(E)<1 (>1) the RPS con-
verges (diverges) in probability. L(E) defines a
localization function: Those parts of the spectrum
for which L(E)< 1 correspond to localized eigen-
states whereas those eigenstates for which L(E)>1
are extended and the energies satisfying L(E,) =1
define the so-called mobility edges E, which sepa-
rate the two regions. L(E) is given by

0<|El<w/2

, (3.3)

G hgeeed 1/M
L(E)= 11m<VM*1Z G» GOn1 Gg;l M-1> ’

M=
(3.4)
where the E in (3 4) indicates summation over all
indices nln2 « 0, with the restrictions correspond-
ing to all self-avoiding paths of order M starting
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and ending at the site 0. The quantities Ggi1*¥i-1
are defined by

&35 an] G-,

=<1n L >av . v(3.5)

E = ¢, - AL TA(E)

It should be noted that besides the original assump-
tion (a) and (b) no further approximation was used
toarrive at Egs. (3.4) and (3.5). Onthe other hand,
the L(E)givenby (3.4) istoo complicated for practical
calculations. Nevertheless, aswill be shown below,
one can control the level and sophistication of any
further approximation. In addition, the general
expression (3.4) exhibits the correct behavior in
the limiting cases of zero disorder and infinite dis-
order.®

Within the L(E) approach one can make the fur-
ther approximation of neglecting altogether the
self-energies A**"i-1, This approximation was
used from the very beginning in Anderson’s zero-
correlation treatment. Then the quantities Ga" ni-1
can be easily evaluated and the result for L(E) is

L(E)~ Lo(E) =KV e~¢'n1B=¢il; Day | (3.6)

Equation (3. 6) is the expression within the strong-
correlation approach which corresponds to Ander-
son’s approximation. Note that both Ly(E) as well
as Anderson’s results do not reproduce correctly

the periodic limit (i.e., zero randomness) due to

the omission of the self-energies.

One can partly remedy this defect by multiplying
Ly(E) by a constant correction factor to be deter-
mined from the condition that in the periodic limit
the mobility edges coincide with the band edges.
Thus, one obtains

L(E)~ L(E)=ZV e~ 1nIE-ciil)av (3.7
where Z is the number of nearest neighbors.
was first obtained by Ziman,

Economou and Cohen® have obtained within the
framework of an effective-medium theory®® and for
symmetrical bands a more sophisticated approxi-
mation to L(E) which retains the self-energies
A""'“"l in Eq. (3.5). Their approximate localiza-
t10n function, denoted by F(E), has in addition the
property that

L,E)

F(E)<1—~L(E)<1 (3.8)

and therefore is an exact underestimate of the re-
gion of localized eigenstates within the premises of
L(E) and the effective-medium approximation. F(E)
is given by

F(E)=2V/|E-3(E)|, (3.9)

where Z(E) is the effective-medium site energy.
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Before discussing the implications of the pre-
ceding localization criteria for various lattices

and site distributions it is worthwhile to clear up
some confusion apparent in the literature with re-
spect to using effective-medium approximations in
the theory of localization. It is obvious that any
direct use of the effective medium to predict the
nature of eigenstates would be nonsensical since
for any H,; all the eigenstates are extended. Simi-
larly, use of any effective-medium theory to di-
rectly calculate (G*G) would yield results which
would imply no existence of localized states. On
the other hand, L(E) has been derived from a first-
principles theory of localization which in its final
form contains averages of the type {(In|G|). Itis

at this point that the effective-medium concept is
applied to estimate these quantities (In!GI); the
localization information is still predicted from L(E)
itself. The point is better illustrated by observing
that in deriving the Ziman criterion (3.7), the
omitting of the self-energies is equivalent to Ziman
or Anderson considering propagators of the type
1/(E - €;), which considered by themselves would
only predict localized states. But at the level at
which Ziman or Anderson used this approximation
to obtain their results the final criterion does in-
deed contain information about localization transi-
tion,
tion about localization directly from quantities like
(G), or approximate calculations of quantities like
(G*G), the coherent-potential approximation®!
(CPA) and similar approaches may be used effec-
tively to approximate averaged quantities on which
properly derived localization criteria may depend.

IV. NEW CRITERIA BASED ON THE L(£) METHOD

In this section, starting from the general expres-
sion for L(E) [Egs. (3.4) and (3.5)], we attempt to
obtain more-sophisticated approximations to L(E)
and at the same time estimate the errors thereby
introduced.

One has first to calculate the average in Eq.
(3.5). This can be done exactly only for the case
of Lorentzian distribution of the site energies; in
all other cases some approximation must be used.
A general scheme for evaluating such averages is
to introduce an effective Hamiltonian 3C satisfying
the relation

InGE**F-1(E) = (in| @y (B - HF 5-0)1 | 5)] )y

. ~In| @) (B =50t B (@)
where the superscript 0-- .ni .3 denotes that €5=---
=€3, =% 70*%i-1 ig in general a non-Hermztwn
operator having the symmetry propertles of
(A%*fi-1y_ | One then requires that %% **i-1 obey
certain equations which will make the approximation
(4.1) as good as possible, The most successful
such scheme is the coherent-potential approxima-

Thus as long as one does not ask for informa--
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tion (CPA) and its extensions, ** which in the sim-

plest form introduces an ¢ such that the diagonal

matrix elements are all equal to a complex quantity

Z(E) which is determined self-consistently, 333
Introducing

Sg;nni'iz (0] (E =3€0Hi-1)-1] n;)
we can write Eq. (4.1) as

Gl itz | gl 560 Tiy(p))) (4.2)
Since 560+t has the symmetry properties of
(as qi-ry 85“““'-1 is a Green's operator matrix
element correspondmg to a non- Hermitian peviodic
(apart from the missing sites 0-- nl-l) Hamiltoni-
an. Thus 9° **ii-1 ghould exhibit branch cuts and
possibly 1solated simple poles (associated with the
missing sites) in the complex energy plane. Since
gB:e*fi-1 jg not Hermitian these singularities will
not coincide with the real axis. If one replaces
each Gg;"“i-l in Eq. (3.4) according to (4.2) and
defines '

| (B, 5(B))| =] ¢8 g1 .- (4.3)

one can obtain an effective-medium localization
criterion L (E):

* gg; .;M-ll ’

L¥(E)~ L¥(E) = V™1) | gM(E)| = V¥*1Kk¥|g|  (4.4)
and hence
L,(E)=KV| g(E)|. (4.5)

The simplification in Eq. (4.5) is less than sub-
stantial, however, since g(E) is defined through the
complicated Eq. (4.3). On the other hand, note
that all the §’s entering the right-hand side of (4.3)
have the same branch cuts, which are therefore
branch cuts of g(E). If 3C corresponds to a single
branch cut (one band) this branch cut is the only
singularity of g(E). If, however, ¥ corresponds to
two or more nonoverlapping bands then g”(E) has
poles which coincide with the poles_of 9‘ and zeros
which coincide® with the zeros of 90 “ehyt 1, There-
fore g(E) may develop additional smgularltles which
complicate the study. Note also that g(E) as de-
fined in (4. 3) is, strictly speaking, path dependent.
It is reasonable, however, to assume that there is
a particular path j, as M~ such that K”’V"’Ig |4
=V¥3,lg; 1" to exponential order.

If one knows where the branch cuts of g(E) are
as well as the discontinuity of g(E) at the branch
cuts, one can determine g(E) for any complex or
real value of E. A rigorous analogy exists between
the behavior of a Green’s function G(E) in the com-
plex E plane with a branch cut and the two-dimen-
sional electrostatic field problem of a line charge.
In particular, if we consider the discontinuity
across the cut to be proportional to a line-charge
density occupying the same position in the plane,
then the real and imaginary parts of the Green’s
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function will be proportional, respectively, to the
x and ¥y components of the corresponding electric
field due to the line charge. When one is seeking
approximations this analogy is very useful because
it provides a simple vivid illustration of the be-
havior of g(E). Using this analogy we can say that
the localization function is essentially given by the
magnitude of the corresponding electric field eval-
uated at the x axis, the latter corresponding to the
real E axis. It is worthwhile to point out that the
total charge determines the behavior at infinity
which is known, namely, g(E).,1/E. Thus the
total charge of the equivalent electric problem is
equal to 1. Another condition that the charge dis-
tribution should satisfy stems from the fact that the
localization function in the periodic case (no ran-
domness) should be equal to 1 at the band edges,
which implies that [g(E =E,) ly.q= =(KV)™. Note that
for the periodic case 3=, H,,. and that the branch
cuts of § coincide with the bands of Hw,, which, of
course, all lie on the real E axis. As the random-
ness increases from zero the branch cuts of g(E)
move away from the real axis.

In what follows, whenever concrete results are
sought, we use the single-site® CPA according to
which 7C is determined by a single effective site en-
ergy Z(E) so that

GEiin(m) = | 6T S(e - 2(B))], (4.6)
where
SF(B)=(5il (B - HE)Y 5)) 4.7

and ™ =% 2:Va1 M)(1] with the sites m«++ ex-
cluded. In this case the only singularity of g(E) is
a branch cut along the line determined by the equa-
tion

z-2(z)=x, xreal and -ZV=x=ZV. (4.8)

The quantity Z(z) is determined by standard CPA
techniques. 3

It should be noted that usually Z(E) is introduced
through the relation (G3(E)),,~ S3(E - Z(E)) while
in the present case a logarithmic partial average
is involved. It can be easily shown that to first
order in ¢£3=(€;-2)/[1 - € - 2)G;] the logarithmic
and the direct average provide the same value of Z.
On the other hand the partial averaging (due to the
excluded sites having fixed, i.e., infinite, values)
requires in general a more sophisticated effective
medium and consequently extension of the simple
CPA method. Because of the numerical complexity
of the CPA extensions and in view of the discussion
given in Sec. VI below, we decided to use the sim-
ple CPA throughout the present work.

We examine first the case of a single band, where
a highly accurate approximate technique has been
developed. Then we discuss briefly some less ac-

3705

curate but more general techniques which can be
used in more complicated cases.

A. G° criterion

[
i

Assume for the moment that for any factor in the
right-hand side of (4. 3) one can write approximately

Bevotir_ oRgeseiiygt
G ti-1x g1 (4.9)
where m1 - +m . are the nearest-neighbor sites of
n; belonging to the sequence 0-- -n,_l Obviously
Z'=Z-1linorder to permit the diagram to “es
cape.” Using (4.9), the expression for g(E) becomes

g(E)= (g.;?‘x)"l(g ?1'7‘2)”2 e e (g ?152”"52')%' ., (4.10)

where the v; are defined as the number of times a
factor § with j neighbors excluded occurs in a

given diagram of order M divided by M. Note that
only a small finite number of the various §’s enter
in (4.10) since the m; s are nearest neighbors of n.
Symmetry considerations further reduce the number
of different G entering (4.10). For example, for a
diamond lattice Eq. (4.10) becomes

2(E) = (g F1)'1(g Fria)e(g Baaiayes (4.102)
For a square lattice
2(E)= (9;5‘1)"1(5;3‘1'“2)”2(9 g1m3)"z(g;.“1mzm)”3 . (4. 10b)

For a simple-cubic lattice the expression is slight-
ly more complicated. Using the very definition of
g(E) and Eq. (4.9) it is easy to see that

Zvj=1.
7

For a diamond lattice (4.11) means that v, +v, +v,
=1 and for a square lattice v, +v, +v; +v;=1, and
SO on.

Thus if the decoupling implied by Eq. (4.9) is
true, the Green’s function at any site along a dia-
gram path may (i) only include nearest-neighbor-
excluded sites and (ii) may not include more than
Z - 1neighboring sites in order to permit the dia-
gram to escape. This result is particularly prom-
ising since the quantities GF1™"*"™, i< Z -1, may
be calculated without much difficulty. The only in-
determinacy remaining is the quantities v; which
measure the “distortion” of the typical diagram of
order M as M- =, For example, those diagrams
which are bubblelike or inflated should satisfy
V> v, > vg +++; those which are heavily contorted
should weigh more heavily those § with many
neighbors excluded. It is in general exceedingly
difficult to predict {vj} for a given lattice since
L(E) is ultimately defined for M~ <, However, the
expression (4. 10) is a weighted logarithmic average
of the quantities IS Hyiaee*Mi | for which the numbers
v; represent '_ghg “_r‘elghts ” Thus in those cases
where the |GF172""™ | are not very different for

(4.11)
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good one (typical errors of the order of 3% or less).
4240 We have next examined the cases of diamond or
W/ V square lattices where g(E) is given by Eqgs. (4. 10a)
<+ 20.0 and (4.10b), respectively. An important check of
L the success of any new criterion for localization is
1 T80 __| its behavior in the periodic limit. We should have
\ SETEEST -
\ o 12.0 lg(E) [W=0E—:E;(KV) 1 (4. 14)
T+ 8.0 which stems from the condition
+ 4.0 L(E)W=0;;—.?b 1,
| 1 where E, is the band edge for the periodic case
-2.0 -1.0 [0} 1.0 2.0 (W=0). We have calculated the limits
E/ZvV

FIG. 1. Mobility edge trajectories E,(W) (dashed
lines) for the simple-cubic lattice with a rectangular dis-
tribution of site energies of width W demonstrating the
approximation described by Eq. (4.9). I is predicted by
Eq. (4.12) and II by Eq. (4.13). Solid lines denote the
CPA band-edge trajectories.

various ¢, the weights will have little significance.

To illustrate the technique, we have applied the
criterion (4. 10) to various lattices within the CPA.
In particular, the approximation (4. 9) was found to
be an excellent one for every case we considered.
In Fig. 1 we demonstrate the mobility edge tra-
jectory (rectangular or Anderson distribution of
site energies or width W) for the simple-cubic lat-
tice using the criterion

LYE)=KV|§¥E - =) (4.12)

and

LB =KV| 3 (E-3)], (4.13)
where m is a neighbor of E, and 1 is a next nearest
neighbor of n. We have used the approximation
v;=0, j#1, for convenience only in illustrating this
point. We observe from the figure that the next-
nearest-neighbor-excluded site has a negligible ef-
fect on the mobility edge trajectory. The solid line
in the figure is the CPA band edge. There is some
arbitrariness in choosing the next nearest neighbor
in relationship to the site n but we have found this
result invariant for all possibilities. Thus we con-
clude that the decoupling approximation (4.9) is a

lim [ §¥y(E)|, 1lim | §E1(E)],
E=Ey B~E, "

and
lim | §F17eTsy(E)| |
E-~Ep
where
§51=5;-65:6:2,/9: (4.15)
G = §F1 - §Fy GTi/6H, (4. 16)
G 1afs < GFie - gRyTa gl /G T, (4.17)
Here we employ the relations®®
Sia,(E)=[ES:(E)-1], (4.18)
Sa.,(E) = $[ESz5,(B) - 15:(B)]. (4.19)

The values for the periodic limits of (4.15)—(4.1%7)
are given in Table II as well as what they imply for
the periodic limit of L, (E) in the case v,=v,=v,,
The importance of these results is as follows: (i)
The narrow distribution of the periodic values of
the §’s about the exact g(E)=1/KV implies that the
localization function L,(E) is insensitive to the only
remaining adjustable parameters, i.e., the set

{vj } Indeed the choice of an equal-weight loga-
rithmic average yields values within 10% of the
exact periodic limit for L, at the band edge. (ii) it
is to be understood that the requirement L(E;)=1
for no randomness gives another constraint on the
set of {vj } Note that in the cases we studied (Ta-
ble II) there always exist values of {vj} to satisfy
the requirement (4.14). From Table II it appears
that “kinks” in the diagrams contributing terms of

TABLE II. Values of different approximations to the quantity g(E) for the preiodic case
at the band edge E,., The quantity g(E) determines the localization function L (E)=KV | g(E) |

Equal weight

Approximation logarithmic Exact
lgEy | g (Ep) | lgEp) ] average 1 g(Ep) |

Lattice ~IGPEY | ~IGP™(E,) | =~ |GPHM™M™E)]  vy=v,=v; =Kv)!
Square 2.00 1.33 1.11 1.44 1.51
Diamond 1.44 1.23 1.01 1.25 1.39
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the type 95'31';2 are more important for the square
lattice, whereas for the diamond lattice the 9;‘1
vertices are more abundant. This kind of behavior
is consistent with what one expects from dimen-
sionality arguments, since a self-avoiding diagram
would try to cross itself more frequently in the 2-D
square lattice and less frequently in the 3-D dia-
mond lattice. As is expected, in both cases three
excluded site vertices appear very infrequently
(i.e., requires the least weight to predict the peri-
odic limit).

The most important information, of course, is
the behavior for large disorder where the Anderson
transition occurs. Fortunately, L(E) is least sen-
sitive to the parameters {v,} in this case and the
§’s become essentially degenerate. Thus, the
localization criterion corresponding to v, =1, v;=0,
Jj#1, in Eq. (4.10) and given explicitly by

L(E)=KV|§3(E - (E))

Simi(E - Z(E))S#:a(E - Z(E))
- S(E -Z(E)

should yield good results. The subscript ¢ in L,
denotes the use of effective-medium theory. We
refer to the localization function (4.20) as the G°
approach (since one site is excluded).

To summarize this subsection the localization
function defined by (4.20) is expected to be a defi-
nite improvement over old localization criteria.
For low degrees of disorder the L, given in (4. 20)
can be further improved by using Eqs. (4.5) and
(4.10), where {v;} satisfy (4.11) and (4.14); com-
plete determination of the {v,} requires further in-
formation about the shape of the self-avoiding poly-
gons in the lattice under study.

(4.20)

B. Other techniques

. Within the framework of any effective theory

%€ is known and consequently the position of the
branch cuts of g(E) is also known, What is not
known is the discontinuity across the branch cuts,
i.e., the charge distribution of the equivalent elec-
trostatic problem. As in electrostatics one can
try a moment expansion which in the simple CPA
case can be written as

A A
8(E)= E~§(E)+[E_22E)F Fren.

Even-power terms are absent in the present simple
case because §(E)=G(- E). As was discussed be-
fore A;=1. One more coefficient can be determined
from the condition (4.14). Determination of the
other coefficients requires elaborate numerical
Monte Carlo techniques, a rather impractical ap-
proach. It is not in general possible to decide
whether or not a truncated moment expansion is a
good approximation to g(E) for E~ E,.

(4.21)
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We have mentioned the moment expansion (4. 21)
only as an interesting possibility in the evaluation
of L, in difficult cases. The approximation F(E)
can easily be derived within this framework. Con-
sider the first term only in (4.21). Then

L(E)~KVA,/|E-%]|, (4.22)

Now we cannot satisfy both the correct behavior at
infinity and Eq. (4.14). If we choose to satisfy
(4.14) we have A;=Z/K. Thus we obtain

L(E)~2V/|E-3(E)|=F(E). (4.23)

As was done in deriving the Ziman criterion (3. 7),
we have used the one arbitrary parameter available,
in this case A,, to satisfy the periodic boundary
condition, For a small degree of disorder the mo-
bility edges will be close to the band edge so that
it is important to satisfy this limiting condition.
Further, as the disorder is increased so does
IZ(E)| and as the mobility edges move inward the
quantity [E - Z(E)| does not vanish. Thus F(E) in
this region remains a reasonable approximation to
L,(E). The incorrect behavior at E—~ « again is
not important for a description of the position.of
the mobility edge at least within this approxima-
tion; note that as E~=  Z(E)— 0 and again the pole
is never a problem. Since in the periodic limit
F(E)~ ZV/E, F(E) is termed a single-pole approxi-
mation to the localization function.

The pole approximation to L (E) can be gener-
alized to include several poles. This is equivalent
to replacing a continuous distribution of charge by
some properly placed point charges. This allows
added degrees of freedom from the pole residues
and positions by which more limiting conditions
may be satisfied. Further, in cases of generaliza-
tions of the CPA in which clusters and short-range
correlations®” are included, the use of more than
one pole is necessary since other techniques fail.
A localization theory developed for such an exten-
sion®” using only two poles yields results in striking
agreement with what is expected from a semi-
classical approach to the same problem. To pro-
ceed with a proper generalization, the following
remarks are useful. It is clear that the branch
cut along the real E axis in g(E) for the periodic
case is displaced and distorted in the complex E
plane when E is replaced by the complex E - Z(E)
in the single-site CPA. Thus in approaching the
mobility edge along the real E axis to examine the
behavior of L(E) one observes that we are not too
close to the cut, especially for large disorders.
Thus it is not unreasonable to suppose (in the elec-
trostatic language) that one could approximate the
line charge by a few point charges which would ap-
proximately reproduce the field as long as we are
not close to the source. Equivalently, we replace
the branch cut in g(E), whose corresponding dis-



3708

continuity is extremely difficult to calculate, by a
few poles. This procedure is indispensable in
more complicated cases, 7 but can also be used in
the simple CPA case. For the present one-band
case, a two-pole approximation is not good for
small degrees of disorder since it erroneously pro-
duces very small values of [g(E)| for E lying be-
tween the poles. Thus the simplest reasonable
generalization of the simple pole approximation is the
three-pole approximation (3P) which gives for L(E)

a . q’ N q
|IE-Z(E)" E-Z(E)+E, "E-Z(E)

L(E)=KV L

q
(4.24)
where ¢ +2¢ ' =1, and (4. 14) should be satisfied.
These two equations do not determine ¢, ¢’, E,
uniquely and one is forced either to use elaborate
numerical techniques to eliminate the uncertainty
or to use E,., for example, as a free parameter.
Although (4. 24) is an improvement over F(E) it is
definitely worse than (4. 20).

V. RESULTS

In this section we present specific results based
upon the theories of localization outlined in Sec.
III and developed in Sec. IV.

We work within the framework of Anderson’s
model., Thus the input of our study are the follow-
ing: (i) The lattice structure; quantities associated
with the lattice structure are the number of nearest
neighbors Z, and the connectivity K, 4 the band
structure E(k) associated with the periodic Hamil-
tonian H,er-EamVﬂ InXmI, where Vzz is a con-
stant V for fi and m nearest neighbors and zero
otherwise, the Green’s function matrix element
O I(E=H,,)"10), and the 0-site contribution to the
denSIty of states pg,er(E) = — (1/7)Im(0 |(E*
-H,,)10). We consider here three lattices: sim-
ple cubic (Z=6, K=4.68), diamond (Z=4, K=2,88),
and square (Z= 4, K=2,64). Sometimes one con-
siders a semicircular pg, ,..(E) (Hubbard density of
states) which corresponds to no lattice but simpli-
fies the computational work. (ii) The probability
distribution of the site energies py(€;). We con-
sider here the case of a binary-alloy type where
Pol€;)=x5(€; —€,)+(1 -~ x)0(¢; — €5). This probabili-
ty distribution is essentially characterized by two
parameters; x, the “concentration” of A atoms,
i.e., the probability that a given site will be €4,
and 0= |€,~€,1/ZV, which can be considered as
determining the degree of disorder. We examine
also the rectangular distribution where py(€;)=1/W
for — W/2=< ¢;=< W/2 and zero otherwise; the single
parameter W characterizes the degrees of dis-
order. Finally we consider the Lorentzian distri-
bution where py(€;) = (1/m)[[' /(2 +I?)], with the sin-
gle parameter I' measuring the degree of disorder;
the Lorentzian distribution plays a unique role be-
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cause it allows an exact calculation of all the aver-
ages involved in the various theories and, conse-
quently, no effective-field approximation is neces-
sary.

For all distributions considered, the single-site3
CPA has been used to evaluate the averages em-
ploying the effective site energy Z(E), which is in
general a complex quantity. Z(E) has been calcu-
lated by numerically solving the basic CPA equa-
tion. It should be noted that the CPA produces the
exact®!” result for the Lorentzian distribution,
Also, the probability distribution py(e;) = (2/7W?)

X (W2 - €2)120(W? - €2) has been used in the litera-
ture®® 17 (in addition to the more common ones pre-
viously referred) because it considerably simplifies
the CPA equation from which Z(E) is determined.

We have used various theories of localization to
obtain results; thus we are able to compare various
theories among themselves. It is more important
to compare the results of these theories with inde-
pendent reliable results. Unfortunately the latter
are not abundant. A case of importance is the bi-
nary-alloy distribution when 6 =, In this case,
the only way an electron being initially at an A (B) -
site may propagate to infinity, is to find a path con-
sisting entirely of A (B) sites and extending to in-
finity., Percolation theory?*3¢ examines exactly
this problem, i.e., the probability P(x) of finding
such an exclusively A path. It turns out that this
theory predicts a critical concentration x, such that
P(x)=0 for x< x, and P(x) >0 for x>x,, where x,
depends on the particular lattice. The value of x,
for various lattices has been tabulated.?* Accord-
ing to these remarks, the percentage of extended
states in the A subband as 5- « should be equal®®
to P(x) and the percentage of extended states in the
B subband should be equal to P(1 - x). This may be
used to check theories of localization especially
with respect to whether or not they predict a criti-
cal value x, at which an Anderson transition takes
place in the impurity subband and how close this
value is to the one obtained from percolation theory.

The localization theories can also be tested
against numerical results based on finite sam-
ples.2*?! It seems that these results are rather
reliable for the 2-D square lattice,*® Results for
3-D lattices such as the diamond and simple-cubic
lattices have been obtained in small samples and
should be taken with extreme caution.

Typical results are shown in Fig. 2 for the case
of a binary-alloy distribution. The average density
of states per site is plotted as a function of energy
for given values of x and & and for three lattices,
Localized eigenstates [according to the F(E) meth-
od] are shown as shaded areas and the mobility
edges (arrows) separate the regions of localized
eigenstates (shaded areas) from the regions of ex-
tended eigenstates (white areas). Note the signifi-
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FIG. 2. Density of states per site p(E) [in units (ZV)"1]
for a binary-alloy distribution of the site energies with
6=0.8 and x=0.10 using the CPA. Shaded regions de-
note localized eigenstates and arrows indicate the posi-
tions of the mobility edges according to the F(E) method.

cant lattice dependence of these results, It is in-
creasingly more difficult to localized eigenstates

as one moves from the square lattice to the diamond
and finally to the simple-cubic lattice, in agree-
ment with what one expects intuitively.

A more condensed and efficient way to present
our results is through the so called V diagrams,
where one draws the trajectories of the band and
mobility edges in the E-R plane; R stands for the
degree of randomness. (R=5, W/ZV, T'/ZV for
the binary-alloy, rectangular, and Lorentzian
cases, respectively.) Cutting such diagrams with
R =const. lines one obtains immediate information
about the localization of the energy spectrum, the
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portions which correspond to localized eigenstates
and the portions which correspond to extended ei-
genstates. We classify our results mainly accord-
ing to the form of the probability distribution pg(e;).

A. Binary-alloy distribution

We observe that the Ziman criterion (3. 7) applied
to the binary-alloy (BA) case® becomes

|4 |4
LEA(E)=Zexp(xln m +(1-x)In E——G’BT)’

(5.1)
which predicts no Anderson transition in either
band since for E arbitrarily close to the site en-
ergies LBA>1,

The argument of Anderson’s theory applied to the
binary-alloy case has been treated by Thouless. ¢
In this case, the probability of finding conductive
(A) sites on a particular L-site path is given by the
binomial distribution. Assuming, according to
Anderson, statistical independence of the K L paths
and choosing the path with the largest number of A
sites one obtains® ! for small x

n=|1nx| /InK, (5.2)

where 7 is the average number of steps between A
sites on this particular path. However, this esti-
mate, as Thouless points out, is much too small
since there can be no more than L/x1/® A-type sites
on a path of length L. Nevertheless, this theory
predicts a band of extended states within the im-
purity subband in the region

¢} 1 1YV 0 1 1\”
5-%-(23) <E<§“z€+(23) .

Thus from (5.3), the Anderson-Thouless (AT)
binary-alloy theory also does not allow a critical
%, since it predicts an Anderson transition for
& - at any concentration. On the other hand, the
recent self-consistent approach of Abou-Chacra
et al.'®® predicts a critical x,, where x,=1/K.
This transition is predicted® to occur as §— .

Economou ef al. have also shown?? that F(E)
predicts a critical concentration x,(F) below
which the impurity band exhibits an Anderson tran-
sition as 0 increases. Furthermore, they show
that for concentrations larger than the critical
value, F(E) predicts a persistence of extended
states in the impurity band even as 6~ «©, We de-
monstrate here that ¥ (F) exhibits considerable
lattice sensitivity and, further, that for each lattice
%.(F) has a value less than that predicted from
percolation theory consistent with the underesti-
mate implied in Eq. (3.8). The validity and limita-
tions of these remarkable successes will be dis-
cussed in Sec. VI.

For the sake of quantitative comparison, in Fig.

(5.3)
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FIG. 3. Comparison of the F(E) (dashed line) and the
Ziman (dashed-dot line) mobility trajectories for the
binary alloy (diamond lattice, x=0.10) including the ex~-
act band-edge trajectories (heavy solid lines) in the E-6
plane. The Ziman mobility trajectory predicts no Ander-~
son transition in the impurity subband even as 6 -, The
light solid line denotes the site energies €4(E> 0) and
€g(E< 0).

3 the trajectories of the band and mobility edges in
the E-0 plane for the binary-alloy case are shown.
The heavy solid lines describe the band edges and
the light solid lines define the site energies (€4 >0,
€3<0). The mobility edges are calculated for F(E)
(dashed line) in the single-site CPA for the diamond
lattice at x=0,.10. The mobility edge trajectory
predicted from the localization criteria of Ziman

is also shown (dashed-dotted line). We note that at
x=0.10 for diamond we are well below the critical
site-percolation concentration [x.(perc)=0.42] and
one observes an Anderson transition in the impurity
subband (E > 0) predicted by the F(E) criterion.

A curious feature of F(E) is that it predicts the
Anderson transition® at a finite 5,, whereas the
AT mobility edge (not shown) closes only in the
limit 6=, [L,(E) has no transition.] We should
point out that the AT mobility edges are only valid
for 6> 1.

To demonstrate the clear lattice dependence
which F(E) exhibits in the binary-alloy case, the
band and mobility trajectories for the diamond,
simple-cubic, and square lattices are displayed in
Fig. 4 for x=0.10, The most obvious qualitative
feature is the sharp dependence of the critical &,
for the Anderson transition on the lattice. Although
the diamond and square lattices have similar K
values (2. 88 and 2. 64, respectively) and identical
values of Z=4, we note in Figs. 4(a) and 4(b) a

D. C. LICCIARDELLO

AND E. N. ECONOMOU 11

significant difference in the shape of the mobility
edge trajectory. On the other hand, the L,(E) or
the AT criteria have no lattice dependence other
than through K and would therefore demonstrate
little distinction. Indeed, L ,(E) which depends on
Z only would yield identical results for the diamond
and square lattices.

Ingeneral, F(E)predicts higher values of 6 for the
transition for larger K and for larger concentrations.
Further, the general behavior of the mobility edges as
one increases the concentration above x,is inqualita-
tive agreement with those predicted from percola-
tion theory. This may be seen in Fig. 5, where
we plot the percentage of extended states in the
impurity band for large 0 as a function of the con-
centration in the three lattices, As we mentioned
previously, F(E) predicts a critical concentration,

f smpLE’

11/ cusic

I (e)
1.5} y 41.5
| .OF 1.0
05} 40.5

1 1 L

8 DIAMOND 8

A (b)
1.0f A 110
]

SQUARE
A (a) _| 0

0.5} —0.5

-2.0 -.LO O 1.0 2.0

E/ZV

FIG. 4. Mobility edge trajectories E (W) (dashed line)
predicted by the F(E) theory for the (a) square, (b) dia-
mond, and (c¢) simple-cubic lattices for the binary alloy
distribution with x =0.10, demonstrating the lattice sen-
sitivity of this localization criterion. The solid lines
represent the CPA band-edge trajectories in the E-6
plane.
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FIG. 5. Percentage of extended eigenstates in the |
A subband for the binary-alloy distribution in the limit 0
86—, Curves based on the F(E) method (F), the three-
pole approximation (3P), the el approach (Ga), and the E/ZV

percolation theory (PERC.) are presented for three lat-
tices.

below which the entire subband is localized for
6>6,. We compare in the same figure the corre-
sponding result from percolation theory. Notice in
Fig. 5 the remarkable similarity between the two
curves although x,(F)< x,(perc). However, since
F(E) underestimates the region of localized states
it therefore should predict the onset of extended
states at a lower concentration than the percolation
result. As may be seen from Table III (as well),
this is generally true for all lattices we considered
and further changes in x,(F) from lattice to lattice
are in such a direction to be generally consistent
with the lattice coordination, implying likely cor-
relation to the percolative limit. Thus the F(E)

TABLE III. Comparison of the critical concentrations
%, for a random binary alloy (see text), predicted by
various theories,

Abou~Chacra

Theory et al, Percola=-
Other (Refs. " tion
Lattice theories 16 and 28) F(E) 3P G'  (Ref. 24)
Square No other 0.38 0.17 0.27 0.42 0.59
theory
Diamond predicts 0.35 0.18 0.28 0.40 0.42
a
Simple critical con~ 0.21 0.12 0.21 0.25 0.31
cubic centration x,

FIG. 6 Comparison of the mobility edge trajectories
E (W) predicted by the three~pole approximation (dashed-
dot line) with the F(E) method (dashed) for (a) square or
diamond lattice with a rectangular distribution of site en-
ergies of width W and (b) simple-cubic lattice with a bi--
nary-alloy distribution of site energies with x=0.10. Sol-
id lines denote the CPA band-edge trajectories.

approximation to L(E) is seen to be in qualitative
and even semiquantitative agreement with what is
expected in the classical limit of the binary site

distribution. Moreover, this method has been ap-
plied to some real systems*®** with considerable
success.

In Fig. 5 we have also summarized results based
on the three-pole approach and on the G° approach
developed in Sec. IV. This figure shows clearly
that the 3P approach is an improvement over the
F(E) method and that the G0 method is the best of
all criteria, yielding results remarkably close to
the percolative predictions at least for the 3-D
cases. The G results shown in Fig. 5 as well as
those in Table III have been based on Eq. (4. 20).

It should be noted that x, shows some sensitivity on
the choice of {v;}. For example, for the diamond
lattice 0. 35< x,< 0. 40 for all choices of the set
{v;}. 1t is not clear why the square lattice shows
the largest deviation between the G° method and the
percolative predictions; however, the lower dimen-
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FIG. 7. Effect of rectangular site disorder on the den~
sity of states per site p(E) of (a) square, (b) diamond, and
(c) simple-cubic lattices for various widths W of the dis-
order.

sionality and the peculiar band-edge singularities
(see Fig. 2) are suspect.

Finally, in Fig. 6(b) we compare the three-pole
with the single-pole [i.e., F(E)] approximation for
the simple-cubic lattice at x=0.10. The effect of
the extra poles is to lower the transition signifi-

three poles, dashed to F(E).
B. Rectangular distribution

Results for the rectangular distribution are
shown in Figs. 6(a) and 7-10 and in Table IV. The
rectangular distribution, the one originally studied
by Anderson in his famous localization paper, * has
the additional interest that it has been examined
numerically for real, finite systems®®2! and there-
fore gives some reasonable handle on what is to be
expected. Unfortunately, however, for this case
there is no classical analog as in the binary alloy
distribution.

Before we proceed to describe the localization

TABLE IV. Comparisonof W,/V predicted from various theories for a rectangular dis-
tribution of site energies within the Anderson model.

Theory
' Lattice Anderson

Herbert and

Numerical estimates:

Ziman Jones F(E) 3P G' Ref. 20 Ref. 21
Square 28 22 XX 14 11,6 7.2 5—6 <11,2
Diamond 32 22 oo 14 11.6 8.2 ~15? oo
Simple 62 32.4 40,24, 20 22 19.8 14.5 - <24

cubic
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FIG. 9 Mobility edge (dashed lines) and CPA band-
edge trajectories in the W-E plane for a rectangular dis-
tribution of site energies of width W. The localization
results correspond to the Anderson (A), Ziman (Z), and
F(E) criteria for the diamond (D) and square (S) lattices.
The CPA (heavy solid line) and exact (light solid line)
band~edge trajectories are also shown. The numerical
estimates of Edwards and Thouless (Ref. 10) for the
critical W,/V are indicated.

results for this case, it is worthwhile to describe
the effect disorder of the present rectangular type
has on the density of states. In general, large
fluctuations in the site energies distributed con-
tinuously tends to broaden the spectrum and to
smooth out critical points in the unperturbed den-
sity of states.** Thus as the disorder becomes
extremely large, the spectrum tends to assume a
shape very similar to the shape of the distribution
itself. Figure 7 shows this phenomena quite clear-
ly for the (a) square (b) diamond and (c) simple-
cubic spectra calculated within the single-site CPA.
Notice that for large widths W of the site distribu-
tion, all the lattice-dependent structure is wiped
out and only a rectangularlike spectra remain.
Bishop has derived” an analytic expression for the
band edge within the CPA approximation.

The band and mobility trajectories are displayed
in Fig. 8 for the simple-cubic lattice (Z=6) and in
Fig. 9 for the diamond (D) and square (S) lattices
(Z=4). The localization results for the Ziman (Z),
Anderson (A), Herbert and Jones (HJ) (Z=6 and
E=0only), and F(E) are presented. The most ob-
vious feature of the theories is their significant
lack of agreement (with each other), although the
Anderson (best) estimate predicts a considerably
higher transition than the others. It is interesting
to note that F(E) and Anderson’s theory show a
sharp transition whereas the cruder but more
straightforward approach of Ziman leads to a more
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gradual transition. Further it is observed that the
F(E) theory comes the closest to the results from
numerical analysis on small finite systems.2%23! It
should be mentioned that the value of the critical
(W/V), for these lattices is still not certain since
the numerical work on finite systems is inconclu-
sive.

We also note that F(E) fails to produce any dis-
tinction between the square and diamond lattices.
This occurs because the large disorder at which
the transition takes place wipes out any lattice
dependence of the effective medium Z(E), as shown
in Fig. 7. Similarly no distinction certainly occurs
in L ,(E) where Z =4 for both lattices and a not so
significant amount for the Anderson theory (Kg~ Kp).
The close similarity of the mobility edge and CPA
band-edge trajectories in the limit W—0 is a con-
sistent property of all the criteria presented here;-
although the CPA band edge has no inherent im-
portance, it is expected that those states neglected
by the CPA are localized. On the other hand, as
we shall see, the results of the new criteria based
on L(E) show a marked distinction in the region
wz0.

Finally we point out that the Anderson transition
for the simple-cubic lattice shown in Fig. 8 occurs
at E #0 within the F(E) result., This result is a
unique property of the Economou-Cohen localiza-
tion theory and it would be extremely interesting
if one could check this point numerically.

In Fig. 6(a) results for the square and the dia-
mond lattices are shown based on the 3P approach.
For comparison the single-pole F(E) results are
also reproduced. The shape of the mobility tra-
jectory is altered also so that the transition is no
longer at E=0. We remark that the position of the
extra poles E, [see Eq. (4.24)] has little effect on
these results as long as E,, << ZV is satisfied.

Although the transition is lowered in better
agreement with the square-lattice numerical re-
sults, this approximation does not break the Z=4
degeneracy. Thus we obtain the same lowering in
both the diamond and square cases. In view of the
GY results (see below) for this case we think that
the lowering of the mobility edge trajectory around
the E =0 region is a spurious artifact of the three-
pole approximation.

In Figs. 10 and 11 we present results based on
the new G° approach. This method predicts (W/V),
=8.2 for the diamond, (W/V),=17.2 for the square,
and (W/V).=14.5 for the simple-cubic lattice (again
for E+#0). The result for the square lattice is in
rather good agreement with the Thouless and
Edwards numerical results for that case and further
is consistent with the recent upper limits evaluated
by Schénhammer and Brenig. Thus far these pre-
dictions represent the only known theoretical con-
sistency with these estimates. The theory again
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does not produce any large difference between
(W/V), for the two Z =4 lattices. On the other
hand, the present approach produces a marked
distinction in the shape of the mobility trajectory
near the band tails for the diamond and the square
lattice. The square band seems to favor more lo-
calization in the tail for W< W, than the diamond
[Fig. 10(b)]. One notices that for small disorder
the shape of the mobility edge trajectories are
similar according to their dimensionality (e.g., D,
SC)whereas for large disorder the ones with cor-
responding coordination number are similar (D, S).
This is, of course, what one might expect from
first-principles considerations. Thus, the first
such distinction for these lattices is suggested and
a real new possibility to check the underlying as-
sumption of L(E) is available, Note that, similarly
to the F criterion, the new G° method predicts for
the simple-cubic lattice that the Anderson transi-
tion occurs for nonzero values of E, i.e., not at
the center of the band. We were unable to locate
the physical origin of such a behavior and as a con-
sequence we do not know whether or not it is spuri-
ous. We mark in passing that using the single-site
self-energy predicted from the CPA does not influ-
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FIG. 10. Mobility edge trajectories (dashed lines) for
three lattices with a rectangular distribution of site ener-
gies of width W using the localization criterion L,(E)
given by Eq. (4.20). Solid lines correspond to the CPA
band-edge trajectories.
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FIG. 11. Mobility edge trajectories (dashed lines)
predicted by the L,(E) criterion [Eq. (4.20)] for the
square (S), diamond (D), and simple cubic (SC) lattices
for a Lorentzian distribution of site energies. Also shown
is the trajectory predicted by the F(E) method (top curve).

ence the Anderson transitions given here and as
Bishop points out, !” better approximations to the
self-energy Z(E) than produced by the CPA have
little effect on this class of localization functions.
The results for the rectangular distribution are
summarized in Table IV.

C. Lorentzian distribution

Results for the Lorentzian distribution are given
in Fig. 11, where the trajectories of the mobility
edges are presented for the three lattices; these
results are based upon the G® method. For com-
parison the results based on the F(E) approach are
also given. The critical values of I, are FC/V
=1. 64 for the square, I';/V =1, 84 for the diamond,
and T', /V =3.48 for the simple cubic. In order to
compare with the rectangular distribution we should
take into account that® 4T'—W and consequently the
critical values 4I'/V are 4T',/V =86, 56 (square),
4r,/V="1.36 (diamond), 4T',/V=13.92 (simple
cubic), values that are very close and systematical-
ly just below the corresponding values for the rec-
tangular distribution. The feature of Fig. 11 worth-
while mentioning is the behavior of the mobility
edge trajectory for the diamond lattice: For small
values of disorder it behaves almost like the simple
cubic. As the disorder increases diamond tends
to behave more like the 2-D square lattice. Again,
the possible explanation of such a behavior is that
for high disorder only the immediate environment
of each site is important while for small disorder
longer-range features are influencing the results.

The Lorentzian distribution is important because
the averages can be calculated exactly and thus no
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effective-medium approximation is involved., The
only remaining source of significant error is the
basic assumption of strong correlation. If one as-
sumes that correlations always overestimate the
results of randomness then the values of I', ob-
tained are essentially rigorous lower limits to the
exact values of I',. We are not able though to esti-
mate the magnitude of this expected overestimation
for the case of the Lorentzian distribution and thus
we do not know how much (if at all) below the exact
value for I', our result is. The approach based on
the convergence of the iteration procedure!® 28
yields results for I', that are by a factor of 4 or 5
larger than the ones shown in Fig. 11. Another
characteristic of the Abou-Chacra et al. ap-
proach!®?® is that the mobility edges move first
outwards from the center of the band and then in-
wards. This particular feature has been recently
attributed®® to a breakdown of the additional ap-
proximations employedin Refs. 16 and 28; an approx-
imate solution was obtained®® which shows that the
mobility edges move inwards into the band for
small values of I" for a Cayley tree. For large
values of I the results in Refs. 16 and 28 are al-
most® % exact for the Lorentzian distribution and
for Cayley trees. This does not imply, however,
that those results are good approximations to the
exact values in a veal lattice of the same connec-
tivity as the Cayley tree. Unfortunately no inde-
pendent data are available for the Lorentzian case
to serve as checks of the results discussed above.
Before we conclude this section we shall mention
a recent work by Bishop, ¥ who started with Eqs.
(4.5) and (4. 10) for L(E). At this point he approxi-
mated the real lattice under consideration by a
Cayley tree of the same connectivity K. We stress
again that, if this approximation was done at the
beginning of our theory, the result would be wrong,
namely, all eigenstates would be predicted local-
ized. On the other hand, the point at which Bishop
introduced his approximation allowed him to obtain
reasonable results because the quantities approxi-
mated, namely, GZ1™2'"") are mainly dependent on
the local environment. Bishop’s approach®® allows
explicit analytical results for L(E) as a function of
the lattice connectivity K, These results show that
the e method is extremely successful qualitatively.

VI. DISCUSSION

We have seen that the L(E) method coupled with
effective-medium theories for evaluating averages
is by far more successful than other approaches in
all cases where independent checks exist. It should
be pointed out that there remain essentially two
sources of }%ossible significant error in the new
improved G” method: (i) The assumption of strong
correlation, which was used to derive the general
expression for L(E), and (ii) the use of effective-
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medium theories (usually the CPA) to calculate the
averages involved inthe expression for L(E).

We discuss in this section these two points. It
has been shown® that the probability distribution of
In!T$" | approaches a Gaussian one with a mean
value (x{"’) = Ma, and a standard deviation o{*’
=B;M'2, This implies that the probability

0,[ e Maj-M8) ¢ [ Tj(M)t < gMaj+M; ] MT.:l ,
where z<g<1. Thus one can write | T{" |~ e,
The assumption of strong correlation demands that
essentially all T§" have about the same value so
that 3, IT{" |~} ;e"%. Remember, however, that
the probability distribution of T{" has long tails,
and, consequently, there will always be some dia-
grams (their percentage is negligible) with values
of IT{* | much larger than "%, The contribution
of these diagrams to the sum Eje"’“i is neglected
when one makes the assumption of strong correla-
tion. There is one case, however, when the con-
tribution of these “tail” diagrams may be impor-
tant: if a;—~ -, , ,e”% becomes so small that the
tail contribution may dominate. The most favorable
case for tail domination is when the probability dis-
tribution of €; consists of two widely separated
peaks, since then one can easily see from the defi-
nition® of a; that @, ~ - ~ and there is a negligibly
small fraction of diagrams making a significant
contribution, each in such a way that they dominate
the sum J,; T{"’. We consider below a specific
example of this.

According to our remarks there are probability
distributions py(€;) such that the assumption of
strong correlation is inadequate. For such pg(¢;)
the CPA approximation for calculating the quantity
a; fails too. The reason is that a; involves® loga-
vithmic averages which approach zero for the pg(¢;)
we consider; on the other hand CPA reduces loga-
rithmic averages to ordinary averages which re-
main finite for the py(¢;) we consider. Thus we can
conclude that there are py(€;) such that both the as-
sumption of strong correlation and the CPA fail.
For these py(€;) the assumption of strong correla-
tion severely underestimates the 3, T\, while the
CPA severely ovevestimates J, T{*’, There is con-
sequently a tendency for cancellation of the mis-
takes which probably explains the success of the
present approach. As a matter of fact in the ex-
tremely unfavorable case of a binary-alloy distri-
bution with 6 = « the cancellation of the errors is
almost complete as is shown below.

In the limit 8~ « the only way for an electron,
being initially in an A site, to propagate is by find-
ing paths of exclusively A sites. Thus in this case
the diagrams that contribute to A§"> are diagrams
passing exclusively through A sites. Hence the
true localization function should be of the form
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[AV¥| g¥(E~ e, )| 114, (6.1)

where g,(E=~€,) denotes a quantity like that defined
in Eq. (4.3) but with the average being a condition-
al one; namely, all the sites 1, Bg,...,n, should
be A sites and A, is the number of M-step self-
avoiding polygons passing through A sites only.
Further, if K" is the total number of M-step self-
avoiding closed diagrams and x¥ is the probability
that a particular diagram will step through all A
sites we then have

L(E= EA)

Ay =xYKH" (6.2)
and we obtain
L(E~e€,)=xKV | g (E~€,)l. (6.3)

On the other hand, the general expression (3. 4) for
L(E) gives L(E~€,)~ 0 as 6~ because all the G’s
approach zero. Consider

(6.4)

égi = exp[xlnG":!li L+ (1-x) h‘égi,s]’

where In G.i L=(In IG.”' Dav,7;=4 With a similar ex-
pression for G but

Gg... (E GA)

i, B 5-&6

and by substituting this in (6.4) we obtain

=(5)

This shows the failure of the general L(E) expres-
sion in this particular case.

Consider now the general expression for L(E)
but use the CPA to calculate the averages. Then
we obtain

G3

B‘O‘

L(E~€ )~ Lopp(E~€,)=KVgeopa(E~€y). (6.5)
But
ZepalE~€,)=xg, cpa(Ex€y)
+(1-%)85,cpalE~€,), (6.6)

where
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1
8s,cralE~€,) gt dt

Thus
chA(EzeA)f‘xKVlgA,qm(E“€A)t » (6.7

which is roughly the same as the correct result
(6.3).

This rather systematic cancellation of possible
errors introduced by the assumption of strong cor-
relation and the CPA demands that improvements
in the procedures for calculating averages should
be considered in conjunction with an effort to im-
prove the assumption of strong correlation. Other-
wise improvements in CPA may be proved counter-
productive.

VII. CONCLUSIONS

We have introduced in this paper a new refined
eriterion for localization, denoted as the feld ap-
proach. The G° approach employs the general lo-
calization function obtained by Economou and Cohen
on the basis of the assumption of strong eorrelation
among the diagrams contributing to the self-energy
Az. It also makes use of the coherent-potential
approximation (or, more generally, any effective-
medium theory) for the calculation of the averages
entering the general expression for the localization
function. By examining several particular exam-
ples, comparing with other approaches, testing
against numerical results and against limiting
cases where exact results are available, we have
demonstrated that the G° approach is far superior
than the other approaches examined in this paper.

The success of the G° approach was traced to a
rather systematic cancellation of the possible er-
rors introduced by the only two sources of possibly
significant mistakes left in the theory, namely, the
assumption of strong correlation and the use of
CPA for calculating averages.

Any further progress in the subject should re-
quire an improved way to handle the correlations
among the diagrams without omitting the self-ener-
gies in the propagators.
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