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Short-range order and the electronic structure of a one-dimensional liquid metal
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The energy spectrum of a one-dimensional array of 8-function potentials is studied as a function of
the degree of short-range order in the arrangement of the scatterers. The integrated density of states is

evaluated numerically and the results are used to compare alternate theoretical formalisms. In
particular, we consider Lax s quasicrystalline approximation (QCA) and the more recent self-consistent

approaches of Gyorffy and Schwartz and Ehrenreich. Surprisingly, we find that only the
non-self-consistent QCA yields a reasonable description of the electronic spectrum. The failure of the
self-consistent schemes appears to be due to an incomplete treatment of the multiple-occupancy

corrections.

I. INTRODUCTION

Recent authors have devoted considerable atten-
tion to the electronic structure of disordered sys-
tems. To a large extent, this research has been
concerned with the description of substitutional
binary alloys within the framework of the coherent-
potential approximation (CPA). ~ s The success of
the CPA in clarifying the qualitative features of the
alloy problem has prompted attempts by various
authors to develop generalizations of this approach
to the case of st~uctur&lly disordered systems and

in particular to the liquid-metal problem. While
several distinct approximation schemes have been
proposed4 ' there is at present no general agree-
ment as to their relative merits. The purpose of
this paper is to- describe a simple model Hamilto-
nianwhich has at least some of the features of a real-
istic liquid but which, nevertheless, is sufficiently
tractable that detailed calculations can be performed
with relatively little effort. It is hoped that this
model will provide a reliable mechanism for the
comparison of alternate theoretical formalisms.

It should be emphasized at the outset that there
are important differences between the liquid and

allay problems. In the alloy the atomic constit-
uents are arranged at random on a periodic lattice
and the disorder is substitutiona/. By contrast, in
a liquid the disorder is structural and the spatial
arrangement of the scatterers no longer exhibits
any long-range order. Despite this lack of long-
range order, it is generally assumed that density
correlations in the liquid play an important role
over distances on the order of several interatomic
spacing and, at the very least, that they prevent
any overlap of the atomic potentials. The existence
of this short-range order implies that care must
be taken in developing a self-consistent description
of the system. Specifically, suppose that the liq-

uid's average properties are represented by an ef-
fective medium. An incorrect embedding of the
atoms in this medium can lead, in effect, to a
spurious overlap of the scattering potentials and,
therefore, to serious errors in the electronic den-
sity of states. In the language of the alloy problem
(where the scatterers are also nonoverlapping)
these errors are avoided only by including what

.are generally referred to as multiple-occupancy
corrections. ' Physically, the part of the medium
belonging to a given site must be removed before
that site's atomic potential is embedded in the
medium. The multiple-occupancy corrections pro-
vide a formal link between the self-consistent de-
criptions of the liquid and alloy problems. " In-
deed, the essential feature of the CPA is the fact
that it'includes these corrections exactly and it is
this aspect of the theory that must be generalized
to the liquid metal.

The existing theoretical approaches to the prob-
lem of short-range order may all be loosely clas-
sified as single-site approximations in the sense
that the atoms surrounding a given site are rep-
resented only in terms of that site's average
environment. Formally each approximation scheme
then depends on just the average two-site distribu-
tion function g(x); all higher-order correlation ef-
fects are implicitly evaluated in terms of g(x). In
Sec. II we consider the properties of a simple one-
dimensional liquid. '~ N atoms, each of which is
represented by an attractive 6-function potential
are assumed to occupy a line of length I.. Short-
range order is built into the model with the assump-
tion that the probability for finding nearest neigh-
bors separated by a distance x is zero for x less
than a hard-rod length + and decreases exponential-
ly for x & +. ~ Given these assumptions, an analytic
expression for the pair correlation function g(x)
can be derived, and the implementation of the var-
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ious 81ngle-81te approximations 18 greatly 81mpll
f1ed. Mox'6 lmpoltRnt however 18 the fRet thRt
the electronic spectrum for this model can be eval-
uated exactly for a finite but large (N 1-0 ) linear
chain ." As the parameter n =sN/I is varied be-
tween zero and unity these exact results allow us
to monitor the effects of short-range order on the
electronic spectrum and also to test the validity of
the alternate approximation schemes. In the limit
a- 0' the average arrangement of scattering is
random {i.e. , there is no short-range order} and
the present model reduces to that discussed by
Klauder" and others. '"

In Sec. ID the results of three single-site approx-.
imations are compared with the exact machine cal-
eulRtlons. The Rppx'ox1mRte methods me. consider
are the quasicrystalline approximation {QCA) of
I ax' and Ziman '8 and the more recent approache
of Gyorffy5 and Schwartz and Ehrenreich. 6 The
@CA is a non-self-consistent scheme and is, in
some sense, analogous to the average t-matrix
description of the binax'y alloy. ~1'~9 By contrast,
the Gyorffy and Schwartz-Ehrenreich approaches
are self-consistent and were both proposed as gen-
eralizations of the CPA to the liquid problem. In
the random limit it can be shown that the Gyorffy
and Schmartz-Ehrenreich approximations reduce to
equations shown by Faulkner to be the CPA for
an uncorrelated liquid. However, since in this
Llm1t th6 atoms R1 6 Rllomed to overlap~ multlple-
oeeupancy corrections do not contribute, and the
fact that a given approximation scheme reduces to
the CPA does not necessarily imply that it mill
properly describe the effects of short-range order
in a correla. ted system.

The calculations presented in Sec. III indicate
that only the @CA provides a reasonable descrip-
tion of the alloy over the entire range of parame-
ters for which exact results are available. Indeed,
in the case of greatest interest, i.e. , when the
short-range order is most important, the quasi-
erystalline and exact results are essentially iden-
tical. The deficiencies of the tmo self-consistent
methods show up in the negative-energy part of
the spectrum. The states in this region are as-
sociated with atomic bound states and form a nar-
row tight-binding band. This is the energy range
in which the scattering is strong and in which mul-
tiple-occupancy effects ax e most essential. We
find, however, that both self-consistent schemes
seriously overestimate the width of the negative-
energy peak in the density of states, an error that
would appear to be due to a spurious overlap of the
atomic orbitals, i.e. , to a failure to pxoperly treat
the multiple-occupancy effects. (Note that, since
the @CA is based on a perturbation series in which
the atoms are embedded in free space rather than
the effective mediuIQ, multiple-occupRney corree-

$Q=P + s„x

and the individual atomic potentials are taken as

I)„(x)= —X5(x- x„), X)0.
An isolated potential of this form leads to a single
bound state at the energy Eo = ——,'X3.~'

1I1 addItlon to the 111ean 10111c dejlsity s =+/f', the
extent to which the average positions of the ions
are correlated must also be specified. In partic-
ular, we require the pair distribution function g(x).
A convenient feature of one-dimensional systems
is the fact that g(x) can be expressed in terms of
just the nearest-neighbor distribution PI(x). This
is seen most easily if me consider separately the
cases x & 0 and x& 0, Suppose that an atom is known
to be at the origin. The probability distributions
for the left- and right-hand neaxest neighbors are
p', (x) =p,(x) 8(x) and p, (x) =p,(x) 8(- x), respectively.
The left- and right-hand second-nearest-neighbor
distributions Rl'6 then

pa{x) = dx, p', (x)p1(x —x,)

dx, dx, p', (x,)p'I(x, )0(xI+x, -x), (2. 3)

and the combined probability for finding either atom
at x is simply pI(x)+pz(x) depending on whether
x &0 or x &0. In general,

p„(x}=
~ dx1p1(x, )p„',(x —x1)

~+ce

dx1 ~ ~ dx„P',(x,) ~ ~ .PI(x„)

x0(x +. ..+x -x)

and the complete tmo-particle distribution is given
by g(x) =g'(x) +g (x), where

g'(x) = g ) „'(x) =X'(- x) .

g'(It) =
l~

dxe-""g'(x) =g'(- k) (2. ea)

tions do not arise, and the resulting description
of the negative-energy states is not unreasonable. )

H. MODEL

A. Definition of the model

We consider a disordered one-dimensional array
consisting of N atomic scattering centers on a line
of length L. The one-electron Hamiltonian is
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P'.(k) = dxs *'"P.'(x) =P.'(- k),
«0

(2. 6b) dx x —n = —1. (2. 12)

we observe that Eqs. (2. 4) and (2. 5) allow us to
write g'(k) as

B. Exact results

Machine calculations for the present model are
based on the solution of the Schrodinger equation

=P', (k) [1-p', (k)] (2. 7)
+ —g 13(x—x )) 3(x; X) = Z3(x; Z), (3.13)

n

The nearest-neighbor distribution functions for the
hard rod liquid are given by'3

3(3x —a) —(x x —al)P', (x) =
&

exp —
&

(2. 8a)

8(+x —a) —(+x- a)
l (1- c() l(I —o.)

(2. 8b)

+soka

1 —e"4' + ikl(1 —n)
' (2. 10b)

A quantity of particular interest in the theory is
k(x) =—g(x) —n obtained by removing the uninteresting
asymptotic contribution to g(x}. k(x) approaches
zero for I xI » a and its Fourier transform is thus
well behaved near k= 0. Indeed, adding g (k) and

g (k) and subtracting the 5 function at k = 0 we ob-
tain

2 [cosk& —kl(1 —c() sink+ —1]
(1 —coska)4+ [sinks+ kl(1 —n)J'

Note that in the crystal limit o. = 1, k(k = 0) = —1,
in accord with the usual compressibility sum rule

FIG. 1. Schematic representation of the hard-rod
liquid. The "radius" of each rod is g a and the minimum
separation of the atomic potentials is a.

Here n denotes the length of the hard rod surround-
ing each site (see Fig. 1), / =L/N is the average
length per atom and, in the second equation, we
have introduced the short-range-order parameter

(2 8)

In the random limit, n-0' and there is no longer
a minimum allowed separation of the scattering
sites. In the perfect crystal, n = 1 and the atoms
exhibit perfect long-range order. Note that the
distributions (2. 8) are properly normalized and
are sharply peaked in the ordered limit n -1 .

Combining Eqs. (2. 6), (2. 7), and (2. 8) the Fou-
rier transforms P~(k) and g'(k) are given by

P~(k) =e ' '[1+ikl(1 —o.)] ~ (2. 10a)

and

"1 0

(independent of n). Thus

(2. 14)

(j (x„') (j'(x„)
6

0'(x.') f(x.)
(2. 15)

In additi, on, we require the transfer matrix T&,
which takes the wave function and its derivative at
the right-hand side of a potential into their corre-
sponding values at the left-hand side of the next
potential,

cosh(&d„) & ~ sinh(xd„)
e sin(«„) cosh(xd„}

(2. 16)

—rc sin(&d„) cos(~d„)

Here d„=x„„—x„and x = ( I E I') ~' .
The distances between the wells,

are random quantities assigned by the computer
with a probability distribution consistent with the
hard-rod nearest-neighbor correlation function
(2. 8).

The behavior of the exact integrated density of
states for the hard rod liquid is summarized in
Figs. 2(a) and 2(b). Results are shown for two
values of the density and three values of the short

where the positions of the potentials fx„f are deter-
mined by the statistical mechanics of a hard-rod
Quid.

The calculation of the energy spectrum of an
arbitrarily long chain of potentials is simplified
by the fact that the total number of eigenstates with
energy less than E can be determined (to within
+I state) by choosing arbitrary boundary conditions
at the left-hand side of the chain and integrating
Eq. (2. 13) through to the right-hand side. '4 The
number of states with energy less than E [i.e. ,
the integrated density of states n(E}] is just the
number of nodes of P(x; E). In practice the integra-
tion can be reduced to a process of multiplying
transfer matrices. The transfer matrix T6 which
takes the wave function and its derivative at the
left-hand side of the nth &-function potential into
their corresponding values on the right-hand side
is
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the appearance of Pseudo-band-gaps in the elec-
tronic spectrum. This structure may be viewed
as a remnant of the perfect crystal band gaps which
occur at the energies

E„=(nz/I ) (n= 1, 2, . . .).
The present results indicate the extent to which
these gaps survive in a system which has no long-
range order, but in which density correlations are,
nevertheless, important.

Turning next to the results for high density (e
= 1.0), we note that the negative energy part of the
spectrum has broadened considerably and has, in
in fact, merged with the positive energy continuum.
This broadening is due to the enhancement of the
bound-state overlap integrals. At positive energies
the spectrum is again free-electron-like for n
= 0.09 and 0. 50, and shows a pseudogap for n:
=0.91. Note, however, that, in accord with (2. 18),
the position of the gap has shifted to higher energies.

III. SINGLE-SITE APPROXIMATIONS

A. General equations

0.2 /
(b)

0

ENERGY

FIG. 2. Exact integrated electronic density of states
is shown as a function of the short-range-order param-
eter n and the density e: (a) a=0. 1, m=0. 09, 0.50,
and 0.91; (b) &=1.0, a=0. 09, 0.50, and 0.91.

range order parameter n. The density is most
conveniently measured in terms of a length scale
fixed by the decay of an isolated atomic bound-state
wave function":

q,(x)- e ""'.
Accordingly, we introduce the dimensionless pa-
rameter z=2n/X. Our unitsof energy are chosen
such that the bound-state energy Z = —(-,&)' = —1.0.

Consider first the low-density results (@=0. 1).
For all values of a there exists a well-defined
tight-binding-like band in the vicinity of Ep= 1 0.
As expected, the width of this band is sensitive to
fluctuations in the effective overlap of the atomic
orbitals and is greatest when the parameter n is
small. Note, however, that even in the case a
= 0. 09 most of this band's weight is contained within
a narrow region centered around Ep. At positive
energies, the qualitative behavior of the integrated
density of states is seen to depend quite strongly
on the value of the parameter e. For n =0.09 and
0. 50 the results are basically free-electron-like
and scale as E' . Increasing n to 0. 91, we note

The equilibrium properties of a liquid metal are
described by the single-particle Green's function

G( ) =(( -sc) '& = [-P'- Z-( )] ' . (3.1)

Here the angular brackets indicate an ensemble
average over the allowed configurations of the
atomic scattering centers, z denotes an arbitrary
(complex) energy, and the second equality defines
the electron self-energy operator Z(z). In terms
of G(z), the mean electronic density of states per
atom may be written

=n dx„o(x —x„, x' —x„),
~ 00

(3.3)

and the problem then reduces to that of developing
reliable approximations for the calculation of o„.
There is a class of approximations, generally
termed single-site &PPxoximations, that are all,
in some sense, based on the neglect of fluctuation
effects in the calculation of the average scattering
by a given site. These approximation schemes
have in common the feature that the electronic prop-
erties of the liquid are determined by three input
units: the atomic potentials e„(x), their mean den-
sity n, and the pair-distribution functions g(x).

The earliest of the single-site approximations is

The evaluation of Z(z) proceeds most. directly
within the framework of multiple scattering theory. ~7

In this approach Z(z) is calculated in terms of the
auxilliary operator 0„. Thus

z(x —x') nf dx„v„(x,=x')



Lax's quasicrystalline approximation (QCA). '7 In
this approach o'„ is determined by the integral equa-
tion

0'~ = t~ + t~ Go dX~ A 'fI t@ O~,
~ 40

(S.4a)

where Go(z) = (z —P ) ~ is the free-electron Green's
function,

«0& (1 v G )-lv (3.4b)

o„=t„+t„G dx h n ~ o (S.5a)

is the scattering operator for a single atomic poten-
tial in the vacuum, and k(n Im) =-k(x„—x } is de-
fined by Eq. (2. 11).zs Equations (3.4) are non-self-
consistent in the sense that the self-energy is
specified in terms of unperturbed Green's function
Go(z). They can of course be made self-consistent
by simply replacing G»(z) by G(z). Thus,

o„(x,x') = 5(x —x„)f(x' —x„; z) . (s. 1o)

Once the function f(x) has been determined, its
Fourier transform f(k; z) is directly related to the
quantity (k IZ(z) I k) =- Z(k, z) via Eq. (3.2).

The application of the QCA to the present model
is greatly simplified since the analytic form of the
unperturbed Green's function is known:

However, because f(k, k) is computed in terms of
G(z), the self-consistent result (3.8) contains se-
lected contributions of all orders in n. The extent
to which these higher order terms improve the de-
scription of the electronic spectrum can be checked
only by explicit calculations.

B. Sperific equations

Specializing now to the one-dimensional hard-
rod 6-function liquid, it can easily be shown that
the solution to the various single-site approxima-
tions are all of the form

f„=(1 —v„G)"& v„ (3.5b)

"du 8"
G, (~ x~) = —— = —e'"'&.

„2n' E —k 2z (3.11)

ls the scattering operator for a single atom embed-
ded in the effective medium described by G(z).
Equations (3.5) are equivalent to those originally
proposed by Gyorffy. Their present form is due
to Korringa and Mills. An alternate self-consis-
tent scheme was proposed by Schwartz and Ehren-
reich (SE). Their equations are

«'&(», x') = 5(x «„) ~«&(E)5(x' (S.12)

Here & =E'~' or sl El'~2 depending on whether E is
positive or negative. Thus, combining Eqs. (3.4b)
and (2. 2), the matrix elements of the atomic scat-
tering operators are given by

o„=v„+o„Gv„+o„G dx .k(n~ m)o„

= [1—(v„-o„)G]'v„,

(3.6a)

(3.6b)

7'0&(E) = —».[I +».Go(~ x~ = 0)] ' = —2Xz/(2rc —iX).
(S.13)

Substituting Eqs. (3.10)-(3.13) into (3.4a), we ob-
tain the following closed expression for Z(k, E):

o„=— dx„k(ni m)o (3. 7)

g(k, E) =n~'o&(E) [1-~«&(E)G,"(k, E)]-', {S.14)

where

In the random limit, k(n~ m)-0, the Gyorffy-
Koringa-Mills (G-KM) and Schwartz-Ehrenreich
equations both reduce to

G"(k, E) = dxe '~" G {)x))k((x()
m OQ

g(k, z) = nt(k, k) (3.8)
„2m
—Go (q, E)k(k —q) (3.15a)

and the self-energy is expressed in terms of the
forward-scattering matrix element of the self-con-
sistent atomic scattering operator. This result
ls to be compal'ed %'1th tile cori'espondlng limit for
the QCA

Physically, the random limit can only be attained
on the case of very low atomic densities. In this
connection, we note that the QCA result (3.9) is
just the first-order term in a perturbation series
expansion of Z(z) in powers n. " To lowest order
in n, Eqs. {3.8) and (3.9}are, of course, identical.

[g-(z+ k)+g-(x —k)] —[f(E- k')]-'.
(3. 15b)

Turning next to the 0-KM equations, we note that
the self-consistent scattering operators t„of Eq.
(3.5b) can again be written as in (3.12), but that
its single matrix element is now of the form

~(E) =-& [I+& G(~ x~ =O)]-', (3. 16a)

G(~x~ =0)= —[E-k'-Z(k, E)]-& . (3. 16b)
dk

The 0-KM self-energy is then given by
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Z(a, Z) =sT(z) [1—7(z)G "(&,E)1 ', (3.17)

G"(u z) = —G(q, E)~(&-q).
2m

(3.16)

x [I —n-' G"(u, E)]-', (3. 19)

G' '(k, E) = —Z(q, E)G(q, E)h(k —q) . (3.20)
m 00

C. Resets

To examine the relative utility of the quasicrys-
talline, G-KM, and SE approximations, ail three
were applied to the simplest case, that of low den-

sity (e =.1) and relatively bttie short-range order
(a = 0. 09). As indicated above, the single-site ap-
proximations are, at the very least, expected to
be valid in the low-density regime. In addition,
the fact that the parameter n has been taken to be
small guarantees that the spectrum is not compli-
cated by the correlation effects discussed in connec
tion with Figs. 2(a) and 2(b). It is of interest then
to note that, even in this simple case, there are
important differences between the three approxima-
tions. While all three reproduce the proper free-
electron-like behavior at positive energies, neither
of the self- consistent schemes yieMs a description
of the tightly bound negative energy states which is
as reasonable as that of the non-self-consistent
QCA. Indeed, the results plotted in Fig. 3 show
that the two self-consistent schemes lead to den-
sities of states that are spread over much too wide
a range of energies. This is most apparent in the
case of the 6-KM curves but is also evident in the
SE results. By contrast, the quasicrystalline den-
sity of states is confined to a narrow energy region
in the vicinity of Eo= —1.0. The most obvious
shortcoming of the QCA is the fact that it does not
properly describe the tails on either side of the
peak in the exact spectrum. As we noted earlier,
these tails are due to extreme fluctuations in the
effective overlap integrals and it is thus not sur-

Note, however, that in the present case it is not
possible to write G" in a closed form analogous to
the QCA result (3. 15b). Equations (3.16)-(3.16)
must be solved self-consistently, G "(0, G) being
computed at each stage in terms of Z(k, E) given
by the previous iteration.

Finally, in the case of the SE equations, insert-
ing the trial solution (3.10) into (3.6a) yields the
following self-consistency requirement:

Z(k, E) = -nl (1 + n' —E(q, Z)&(q, Z))27

x
D

v) 2
I-
I-

EXACT---- SE"——QCA--- GKM

a =0.09
e =0.10

0
-2.4 -2.0 -1.6 -1.2 -0.8 -0.4

ENERGY
0.4 0.8

FIG. 3. Three single-site approximations are com-
pared with the exact results in the case a=0. 09, &=0.1.
Only the negative energy part of the spectrum is shown.

prising that they are beyond the scope of a simple
non-self-consistent mean-field description.

The failure of the self-consistent approximations
in the strong-scattering regime is not entirely un-
expected. Indeed, similar behavior is evident in
Klauder's analysis of the random linear chain.
Klauder's approximation number five has been
shown by Faulkner to be the random limit of the
CPA. Nevertheless, it yields much too broad a
spectrum for the negative energy states. This is
a difficulty which may well be shared by all theories
which reduce to the CPA in the random limit. In
addition, Schwartz and Siggia have shown that a
self-consistent version of the average t-matrix ap-
proximation (analogous to Gyorffy' s self-consistent
version of the QCA) produces an excessively broad-
ened impurity band in the disordered alloy. In each
case, the embedding of an atomic potential in the
self-consistent medium allows an artificial overlap
of the original potential with those effectively rep-
resented by the medium, and thus leads to an over-
estimate of the average bandwidth. As we noted in
the introduction, this Rmounts to R fRllure to tleRt
the multiple-occupancy corrections properly.

Having estabbshed the inadequacy of the self-
consistent single-site approximations (at least with-
in the context of the present model) 1st us consider
the predictions of the QCA in more detail. In Figs.
4 and 5 the quasicrystalline and exact results are
compared over the entire range of energies. Re-
sults are shown in Fig. 4 for & = 0. I and two values
of n. Most interesting is the case n =0.91 where
the effects of short-range order are clearly in
evidence. Here the quasicrystalline and exact re-
sults are essentially indistinguishable. The QCA
predicts both the narrowing of the negative-energy
tight-binding states and the existence of the Pseudo-
band-gaps in the positive energy range. In connec-
tion with the latter effect, the curves shown in Fig.
6 illustrate that even the detailed structure in the
positive-energy density of states is reproduced by
the QCA. Finally, in Fig. 5 the QCA is compared
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with the exact results in the high-density regime
(& = l. 0}. In the random limit (a = 0.09}, the QCA

properly predicts the broadening of the negative

energy states although, as expected, the smearing
of the spectrum is underestimated. Increasing n
to 0. 91, the agreement between the quasicrystalline
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FIG. 6. Comparison of the @CA and exact densiti. es
of states in the vicinity of a Pseudo-band-gap. Results
are shown for + =0.91 and ~=0.1.

Two conclusions may be drawn from the results
presented in this paper. First, that the present
model provides an important test of the extent to
which a given self-consistent theory of the liquid
has treated correctly the multiple-occupancy pro-
blem. In this connection we remark that it would
be of interest to compare our results with those
obtained from Roth's effective-medium approxima-

and exact curves is again excellent on both the neg-
ative- and positive-energy sides.

IV. DISCUSSION

tion (EMA}. While the formal analysis of Yoneza-
wa, Roth, and Watabe ' indicates that the EMA
does include the multiple occupancy corrections,
its validity would best be tested by a comparison
with the exact results now available. Second, and

perhaps more important, the accuracy of the QCA
in the present case would seem to imply that further
calculations based on this method are warranted.
While it is admittedly dangerous to generalize from
one to three dimensions, we see no reason why the
QCA would fail to give reasonable results in the
case of a more realistic model of the liquid, for ex-
ample, the muffin-tin model discussed by Ziman. '8

Since the application of the QCA is relatively
straightforward, such calculations would determine
most directly the extent to which this approach is
capable of explaining the existing experimental data.
Thus, even if the multiple-occupancy problem is
eventually solved, the resulting self-consistent
equations may well be so complicated that their
application to realistic models would be impractical.
This is essentially the case in the alloy problem
where the most realistic models have been analyzed
only in terms of the non-self-consistent average
t-matrix approximations rather than the more ac-
curate, but less easily implemented, CPA. At
the very least, a consistent application of the QCA
would isolate those instances in which qualitative
discrepancies would suggest the need for a more
sophisticated analysis.
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