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Correlation energy and van der Waals interaction of coupled metal films
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We derive a general expression for the density response function of two films separated by distance d
in terms of the response function of the isolated films. Using the random-phase approximation and a
semiclassical infinite-barrier model, we then calculate the total correlation energy of the system and
hence the van der Waals interaction of the coupled films. Both of these quantities can be written in
terms of the zero-point energy of the normal modes. Explicit calculations of the van der Waals

interaction indicate that the dominant contribution is from the surface plasmon modes. The connection
between the surface correlation energy and the work done against the van der Waals force is discussed.
In the infinite-barrier model these quantities differ by a cleavage energy whose dominant contribution
comes from the particle-hole modes and which forms half the surface correlation energy.

I. INTRODUCTION

The main aim of this paper is to present a the-
ory of the attractive interaction between two metal
films separated by a distance d which does not de-
pend on the assumption of a local frequency-de-
pendent dielectric function (as in the Lifschitz ap-
proach). ' In general, the treatment of nonlocal re-
sponse in an inhomogeneous system is extremely
difficult, and we are reduced, for calculational
purposes, to a simple model which regards the
film surfaces as infinite plane barriers from which
the electrons reflect specularly like classical par-
ticles. While this may seem a rather crude mod-
el, it is the only one for which a closed-form solu-
tion for the density response function can be ob-
tained, even in the random-phase approximation
(RPA). For this reason its conclusions have a
special significance, and from them we can draw
qualitative information concerning the important
processes which enter into, for example, the sur-
face correlation energy and the van der Waals in-
teraction. Specific to these two cases is our con-
clusion that while particle-hole excitations domi-
nate the former quantity, surface-plasmon excita-
tions dominate the latter.

The system we consider is depicted in Fig. 1.
The metal films are represented by two jellium
slabs each consisting of a gas of electrons and a
positive background which cuts off sharply at two
parallel planes separated by distance L. In a re-
alistic model the electron density might be as in
Fig. 1(a), while in the infinite-barrier model
[Fig. 1(b)] it, too, cuts off sharply at the surfaces.
The distance between the closest edges of the posi-
tive backgrounds of the two films is denoted by d
and the coordinate z is taken to be the normal to
all the four surfaces, each of which has surface
area A. » L . If the distance d is large enough so
that the electron tunneling from one film to the

I
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Here v(r) is the Coulomb interaction and )f„" is the
density response function of the total system at
separation d, with coupling constant A.e . The con-
tour encloses the positive real &-axis in a clock-
wise sense and clearly picks up contributions from
the poles of y „" which occur at the normal-mode
frequencies of the coupled films. If g~ satisfies
the RPA integral equation

y„'(r, r, ~) =X (r, r, &u)+X dr~ dray~(r, r» +)

x v(~i ra)Xg (r2 r &)

it can readily be shown, using an eigenfunction
method similar to that first employed by Feibel-
man, that the total exchange and correlation ener-
gy can be written

S~
(d) = —Z [ '(') — 'o(')] .

Here &o'(i) are the normal-mode frequencies at
separation d and &~0(i) the corresponding quanti-
ties for X=0, i. e. , poles of X~. The result (1.3)
holds in the RPA for any system, whether homo-
geneous or inhomogeneous.

The van der Waals interaction energy is def ined
by

other is effectively zero, we may regard the films
as isolated but coupled by the electromagnetic
fluctuations which occur in each film. The inter-
action energy between the films is then of the van
der Waals type. In the infinite-barrier model
there is no electron tunneling and the van der Waals
region extends down to d = 0.

Whatever the density profile, the relevant part
of the exchange and correlation energy is given by
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E „(d)=-E„(d) —E (d- )

and so is given by

E~(d) =
2 2 (~l(f ) +~'(f ) -» z(f )] .S~

(1.4)

(1.5)

ly extended to cover finite temperatures. For ex-
ample, (1.2) gives the free energy due to interac-
tions if we replace the zero-point energy @u;/2 by

ksT ln(2 sinhk~; /2kzT) .

We have noted explicitly that the modes can be
classed as symmetric ((x)f) or antisymmetric ((x)~)

about the plane z =0, and have denoted by &o~(f) the
normal modes of a single isolated film of thickness
L. Equation (l. 5) is a natural generalization of
the ansatz of Van Kampen, Nijboer, and Schram,
who showed that a similar formula (but including
only dispersionless surface plasmons} led to the
Lifschitz result for E~(d).

While (1.5) is a formal solution for the va. n der
Waals interaction, it is not very useful unless one
knows the form of the normal-mode sum and can
compute the normal-mode frequencies. For a re-
alistic model of the surface this is prohibitively
difficult and we will use the infinite-barrier model
which has been extensively studied in recent years
(see, for example, Refs. 6-S). In Sec. II, we
derive a closed expression for the density response
of the coupled films using the RPA and discuss the
normal modes of the system. In Sec. III, we then
derive and evaluate a simple expression for Ev„(d)
and demonstrate explicitly that it can be written in
the form (1.5). We find that even at small values
of d, where one expects short-wavelength modes
to be important, the van der Waals energy is domi-
nated by the surface plasmons. This conclusion
is noteworthy since it implies that a good estimate
of the van der Waals energy for any model of the
surface accrues merely from a knowledge of the
surface-plasmon dispersion relations for coupled
and uncoupled surfaces.

In recent years several attempts' ' have been
made to estimate the surface correlation energy
via simple normal-mode formulas. In Sec. IV,
we show that these formulas, which involve only
plasmons, in fact estimate not the surface corre-
lation energy but the work done against the van der
Waals force. These quantities are shown to differ
by a cleavage energy Ec„, which supplies about
one-half of the surface correlation energy and so
is as important as the work done against the van
der Waals force. Furthermore, we show that the
surface-plasmon contribution to Ec~ is large and

negative, more than canceling the surface-plasmon
contribution to Ev„(d= 0). The surface energy is
therefore dominated by particle-hole modes and not

plas mons.
For the most part, this paper is a natural devel-

opment of two earlier' '" papers on the surface
energy and the reader is referred to these for more
detailed discussion of certain points. We might
also remark that our ground-state results are easi-

Other expressions in this paper involving the zero-
point energies of normal modes can be similarly
generalized to give the interaction free energy of
coupled films.

II. DENSITY RESPONSE FUNCTION FOR
COUPLED FILMS

Consider two films S~ and S& each of thickness
L and cross-sectional area A, separated by dis-
tance d (see Fig. 1). If a small external field
6U„,(k„, z, &) is applied to the system, the result-
ing density fluctuation in S~ is given by

- g/2

6nz(k„, z, (u) = dz if' z(k„, z, z', (o)
-L -d/2

I,+ g/3
x6Ue«(k((x z x (x))+ dz

4/2

x Xz,z (k„, z, z, (())5U",«(k(), z, (()) .
(2. 1)

Here ~ J. and y~ & determine the response in S~
to the external field in S~ and S~, respectively.
For brevity, we drop the parametric dependence
of all quantities on the frequency (+) and the wave-
vector parallel to the surface (k„). For d &6, the
sole source of the coupling between the films is
the electric field set up by the charge fluctuations.
Thus we may write in place of (2. 1)

- g/2

&~r (') «xr (g, * ') (x &'.„(=z ')
-L- g/2

@~i g/p

where }fz(z, z ) is the density response function of
a single isolated film. In order to avoid the con-
tinual appearance of d/2, we translate all coor-
dinates in Sz (Ss}by d/2 (- d/2) so that (2. 2) and
its equivalent for 6nz(z) take the form

FEEÃ/i FÃÃPz
L L L g I L I

I l I I

FIG. l. Electron charge-density profile of two films,
each of thickness L. A realistic model is shown in (a)
while the semiclassical infinite-barrier model is shown
in (b).
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&n„,(z)=J az' &r„z(z, t.")(»&'.;,"(*')
-I,O

k=- (k'„+ k,')'",
~(k) =-4~/k', (2. iS)

+ -1)))(( -&))) I&( ( I2 3)
II

I,O

VR, I, «8 55R,L(Z)
O, -L

(2. 4)

Equations (2. 3) and (2. 4) can now readily be trans-
formed into simultaneous algebraic equations for
o~ L whose solution is

(IR,I, =(I/F")(fz„R+& ""rI,„,RIB I) (2. 5}

I&(1 —(1 &- 2)dr&))r ) (2. 5)

L, O L, O

IR, =- «dz'XR, (z, z') e ' '"5IJ',„,'(z'),
O, -I O, -L

(2. V)
3 I,O LO

r, , = " ««'X„(R z')e-' '"e-' '*'
O, -L O, -L (2. a)

Using (2. 5) in (2. 3) and comparing with (2. I) we
obtain the exact results

Fe
RA(id

0 0

Xz,z(B z ) = Xz(z z )+
Il

xxg(z; zl) e""""2)X,(za, R'),

2me'
Xi,R(z z')=

k F. e "'" «1 «BXi(z zl)
II ~L 0

1( l (SE)&)apl)
X (Z Z )

(2. 9)

Note that the zeros of F"(k„,(d) correspond to
poles of the response function and are therefore
the normal-mode frequencies of the coupled films.

In order to proceed we require an approxima-
tion for the density response function of an isolated
film. This can be determined analytically only
for an infinite-barrier model and on the assump-
tion of classical specular scattering at the boun-
dRrles. This model hRs been extensively discussed
in the literature and we remark only that, in spite
of its simplicity, it exhibits the full spectrum of
density fluctuRtlons RssoclRted with'R bounded elec-
tron gas. Indeed, it is the only analytically solu-
ble model which does so, Within this model, the
double cosine Fourier transform B of XI, R(B, z ) is
given by"

g) SBA
I, ,R(kll & ) 2 L ~ )) kR sl,R(k )

The cosine transform variable is k, =n1)/I with
g=0, 1, 2, . . . , and the notatj. on go=1- q5„0 takes
into account the proper weighting of the 4, =0
Fourier component. The functions XB'"(k, &u),

sB'"(k, a&) are the density response and dielectric
functions for R homogeneous system of the same
composition as SI,R. In (2. 11) the notation S (A)
lmpHes summation ollly ovel' evell (odd) multlples
of II/I, and in (2. 10) the function D (D") is to be
used if k„k, are both even (odd). If k, and k,
have different symmetry, then Xz „(k„k,) = 0.

Applying the double cosine transform to (2. 9)
and using (2. 10), we obtain as our f i.nal result

e k'ii 8
Bm I I

&& 1)(k)I)(k')XB(k, (d)XIB(k', &O),

(2. i2)
c e' u„e '"" 1

X, ,(k„k,') = ", ~ —;e(k)1(k')

&&XB(» ~)XB(k, ~),
whj. ch, together with

1 1
I R( ))& ) 2DB (k ) 2DB (k )

(2. iS)
determines completely the density response of the
coupled films in our infinite-barrier model. In
(2. 12) the notation D~I, R(k„, ~) implies taking DI, R
(DRI, „)if k, is even (odd).

We con.elude this section with some brief com-
ments concerning the normal modes of the system.
In the limit d- , all coupling between the films
vanishes and the normal modes correspond to
poles of XI, „(k„k,), which occur' only at the
zeros of D~~'R (k„, ur). For any finite d, however,
one can show that XL L and yL & are not singular
at the zeros of Bz~~ but at the zeros of

r"(k„,~)=I-e ""r,(k„, ~)r, (k„, &). (2. i4)

The equation 1"(k„, &o) = 0 therefore determines all
the normal modes of the coupled films. An inter-
esting special case is the limit d- 0, L- , where
(2.14) reduces to 1 =DR+Dl, or

X~,R(k. k. )=2 5' XB' (k ~)L,Z
20'

(k) (k&) XB (k& +)XB (k & +)
4~ D 8&B(k )

(2. io)
where

If sB =1(single metal-vacuum interface), (2. 15) re-
duces to the dispersion relation, of surface plas-
mons first obtaj. ned by Rltchie and Marusak and
Wagner. If both films are of the same material
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(2.14) can be factorized and one obtains uncoupled
dispersion relations for the modes symmetric (+, )
and antisymmetric ((d ) about z = 0,

Gl'lffin) Kranz) Rlld HRl'1'is (GKH)]. As wa, s
first shown by Peuckert, in the limit of large I,
(3.3) can be written

F.{k„,(()~) =1+e " I'(k„, (()~) =0 (2. ie)

(2. 1V)

E (n(}) =SE +4Eg+ n ~ n

where

SV dkZs= .
(2 )3 2

. lnss(k) (())

(3.4)

(S.5)

Notice that in the limit d 0 the symmetl lc modes
satisfy

I) '(k,„~,)+a"(k,„~,) =0 . (2. ie)

This equation may be rewritten

(2. iO)
with n=0, 2, 4, ..., which is the dispersion relation
Qf the symmetric modes of an isolated film of thick-
ness 2I.. In our model, therefore, the symmetric
modes of the coupled systems becQme degenerate
with those of a fj.lm of thickness 2J as d 0. Thj.s
is not so for the antisymmetric modes of the cou-
pled system, as we dis'cuss in Sec. IV.

E (d)=E,.(d)-E..(-). (3.7)

Using (2.12) in (S.2) one can show, after a little
algebra, that

[E"„,(d)-E'„,( )j=- —, 1 [i-e-'~'r', (k„, )]

is the volume energy of one film and

E — — — - - lna P ~ + —in/

(3.S)
is the surface energy per surface. Other terms
in the series (3.4) are of relative order 1/L.

%e now consider d fj,njte and note the definitjon
of the van der %aals energy

We now assume that Sl and S~ ax'e identical in
composition and use the result (i.1) to obtain for
the total exchange and correlatj. on energy of the
two films at sepax'ation d ~

D»n(n)=- nZf n -, f n»D»»n(n), (3.1)

Nggkg

(S.2)

Hex'e the prime Qn the double sum indicates that

k„k, must be either both even or both odd multi-
ples of v/I . We now use the result (2. 12) of our
model calculation to evaluate E„c(d) explicitly.
For d- the couplj. ng vanishes and X~ z, is given
by (2. 10). Using this in {3.2), we find

z» ( )=nZf . Q}nn (n, tn)
2F Ir

+(nD»(n„, )tn+ }»D(»,n)»): ;, (n n}

This is just twice the total exchange and correla-
tion energy of a film of width I. [see E(l. (3) of

E"„,(d) =
~ Q a,e(k)gll, „z(k„k,)

kg

2 2 2 J'

a,a„.1}(k)1)(k'))ill„z(k„k,')
Ag jkg

D,„(n) ,'Zf,"=
, (—}.r:(n„.).}.r (n, „, )).

(S.3)
The van der %'aals energy is thus completely de-
termined by functions F~(k() (0) wllose zel os Rs
we have discussed, occur at the normal-mode fre-
quencies Qf the cQupled systems FQ]lQw ing an in
tegratj, on by parts we have

n~fn (r n ""r n
r'-)

(3.9)
so that, as in GKH, the contour integral may be
performed once we locate the zeros and poles of
1'",(k„, &u) on the positive real axis.

Our classification of these singularities is iden-
tical to that employed by GKH. Each pole of K"„

. along with its associated zero, can be traced back
to a specific pole of the bulk dielectric function
ss(k„, k„(d). For each value of k=(k'„+k', ) I',
cs(k, ro) has a fixed number of poles (which we
label q„) occurring at the particle-hole fre(luencies
(do(k„}k„q„). Each pole has its a.ssociated zero,
&os(k„,k„q„), occurring at the normal-mode fre-
quencies of a homogeneous electx'on gas. ' Dj.rect-
ly from its definition (2. 11), one can see that Ds

(I) ) haspolesat the frequencies &os(k„, k„q„)for
k, even (odd). Each pole has its associated zero
(of lolaer frequency) &o~(k„, k„q„)at the normal-
mode frequencies of a film of thickness I .

%e are now in a position to discuss the analytic
structure of F~. From (2. 13) and (2. 14) we note
that 1'f(k„, ~) has poles at the zeros of D (sk„, &o),
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namely, a=a&z(k„, k„q„), and zeros whenever
(2.17) is fulfilled, namely, at the normal-mode
frequencies ~f(k„, k„q„)of the coupled films. The
solutions of (2. 17) corresponding to the single-
plasmon zero q~ in a~ are shown graphicaQy in
Fig. 2. Each of the zeros of g~ gives rise to a
simjlar structure and it is clear that in the limit
L- ~, y~(k„, ~) like D(k„, u&) has a branch cut ex-
tending along the positive real axis. Quite gener-
ally, for a given (k„, k„q„), one has

& My & QP~ & g ~ (s. io)

Performing the contour integral in (3.9) gives

Evw(d)=
2 ZZI. ~'(k„k. , q„)

II ~g

+ (o"(k„,k„q„)—2(u~(k„, k„q„)], (s. ii)
and we have reduced the van der %aals interaction
to the difference in zero-point energy of the nor-

20mal modes at separation d and at separation
As remarked in the Introduction, (3.11) i.s not re-
stricted to the infinite-barrier model but depends
only on the RPA. While our derivation of (3.8}
was for the classical infinite-barrier model, this
equation is, in fact, valid for any model of the
surface, the appropriate functions Y",(k„, &o) being
given by (2. 16) and (2. 8).

Equation (3. 11) may be separated into surface
plasmon, mixed plasmon, and particle-hole con-
tributions as follows. The total plasmon contribu-
tion originates from the single term q& in the q„
summation. It can be separated off from the re-
mainder since over a wide range of k„, k, (i.e. ,
for k &k, , the critical wave vector), the plasmon
zero of q~ is split off from the particle-hole zeros.
Inspection of Fig. 2 shows that for k, ~ 2@/I, ,
whatever the value of d,

~y(kN y kg y qs) ~E(k1 0 kg t qs) I/~ ' (3.12)

These modes correspond to density fluctuations
which extend throughout both films. They have
frequencies close to the frequency of plasmons in
a homogeneous system and give rise to the mixed-
mode contribution to the van der %aals energy,

EM~M(d) = —Z Q [(u,'(k„, k„q„)
7r. I 0 ' 31'/L

+~"(kii ~ k. ~ qs) - »z(ku ~ k. ~ qu)) ~ k ' k. ~

(s. is)
The remaining plasmon modes (those labeled by
k, =o, v/I) can be shown to correspond to charge
fluctuations localized near the surfaces. They
form the symmetric and antisymmetric surface
plasmons for the coupled films and have frequen-
cies ~~(k„) which depend strongly on d. In the
limit of large I., they give rise to the surface-
plasmon contribution to the van der Waals energy

lO =0 l I

I IQ =0
A

I

I4) I I

I I

I I I

(UF I

JJ.
I I I

I I

I I

I I I

l.& N. . I. .

I I I

0 2

PIG. 2. Graphical solution (schematic} for the disper-
sion relations of the plasmon modes of bvo coupled films,
as given by (2.17). The normal modes of an isolated
film are denoted by co~ and correspond to singularities
of the left-hand side of (2.1V). The modes are labeled
by k~ =N~/I and their spacing is of order 1/I for n&2.

dQ $ y$] 1 «2sff Pa 8 og

(s. is)
where 0=-a&/s~, 8—= k„/k~, d= dk~. The res—ult is
given by the full curve shown in Fj.g. 3. For com-
parison we plot the Lifschitz formula, ' which fol-
lows from (3.15) on the assumption that the bulk
dielectric function is independent of k„, in which
case one has

P(k )
1 —~s(~)
1+ss((u)

(3. 16)

Since the region k„g 1/d dominates the k„sum, the
Lifschitz approximation is clearly asymptotically
correct. As d becomes smaller, this local ap-
proximation begins to break down because modes
of shorter and shorter wavelength are becoming

~vw(d)= ',"f ",'"" [d(a„)+td'(0„) —a~sp(a„)],

where up~(k„) = &,"(k„)= ~"(k„}is the surface-plas-
mon frequency at wave vector k(J for a half space.
Equation (3.14) is the ansatz of Van Kampen,
Nijboer, and Schram, who showedthat for large d
(where only small values of kI contribute to the i.n-
tegral) it is equivalent to the Lifschitz formula. '
The remaining contribution to the van der %aals
energy arises from all terms in (3.11) with q„
+q„. The modes involved originate from particle-
hole zeros of q~ and we therefore refer to this con-
tribution as the particle-hole contribution.

A direct numerical integration of (3.8) is
straightforward using the equivalent form

(4 & S)2/S
svw(d) = '2~ Evw(d)-
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eV
electron

—.)0

=-0.3I/ 2
d

by inserting the dispersion relations of the collec-
tive surface-plasmon modes in (3.14). For this
reason, the "hydrodynamic" model employed by
Heinrichs (see also Davies and Ninham ), when
supplemented by an appropriate cutoff wave vector,
gives a semiquantitative estimate of (3.8) for all
d, in spite of its complete neglect of the particle-
hole modes.

—.15-

I

I

I

2

= 2
S

dkF

FIG. 3. Van der Waals interaction between tw'o metal
surfaces as a function of the separation d (in units of
k~ ). Dotted line is Lifschitz approximation (no disper-
sion). Full line is infinite-barrier model, calculated
from (3.15). For a more realistic model the interaction
at small d {dk~ & 4) is modified due to the mixing of the
electronic charge of the two films.

important. The divergence of the Lifschitz formu-
la as d-0 is a result of the neglect of the electron-
gas dispersion at larger values of @, .

We might remark on why the corrections to the
I ifschitz result are so large even for relatively
large values of d (see Fig. 3). In the local ap-
proximation, the surface plasmons have no dis-
persion, and correspond to g-function charge
sheets localized at the surface planes. This is
true no matter what the wave vector. On the other
hand, the inclusion of dispersion in infinite-bar-
rier models leads to essentially exponential charge
fluctuations whi. ch have a center of mass located
at some point zo inside the metal films. Thus in
the infinite-barrier model the surface charge-
density fluctuations interact as though the films
were a distance (d+2zo) apart, leading to a rela-
tive correction factor ' of order —4@0/d. How-
ever, a realistic model will lead to much smaller
values of so than the infinite-barrier model (pos-
sibly even with a, changed sign). For this reason,
one should view (3. 15) as a lower bound for the
magnitude of the van der Waals interaction energy.

In order to estimate the relative importance of
plasmons and particle-hole excitations we have
evaluated the surface-plasmon contribution (3.14)
at d=0, where the relevant dispersion relations
are readily obtainable from (2. 17). The result is
E ~~ (d = 0) = 0.105 eV/electron versus Ev„(d= 0)
= 0.117 eV/electron using (3. 15). This shows that
the surface-plasmon excitations dominate the van
der Waals energy for small as well as large d and
that the mixed plasmon and particle-hole modes
give rise to a relatively small correction. This
result, which is presumably true for all models
of the surface, indicates that a good estimate of
the van der Waals energy can be obtained merely

IV. CONNECTION BETWEEN VAN DER WAALS
AND SURFACE ENERGY

In Sec. III we showed that in the limit of d-,
and for L large, the total exchange and correla-
tion energy of the system is given by (3.4). Com-
bining this result with the definition of the van
der Waals energy (3. 7), we have

E„c(d = 0) = 2Es + 4Es + Ev„(d = 0), (4. 1)

Rewriting (4. 3) in the form

2Es ——Ec z,
—Evw (d = 0), (4. 4)

one sees that the surface energy is the sum of the
cleavage energy (namely, the energy required to
isolate one-half of a film from the other) Plus
the work done against the van der Waals force in
separating the isolated films to infinite separation.
In the infinite-barrier model, these two contribu-
tions to the surface energy are quite distinct. ~s

In order to understand the physical origin of
the cleavage energy, we return to a normal-mode
analysis and note first that the total exchange and
correlation energy of an isolated film of thickness
2L may be written"

I

Exc = ~ ~ &uz (kii, kg, q„)
aL @ M V' aL2-

ki}y Q kg tt&/ 2L

-&o (kii, kg, q.), (4. 5)

where v~ are the normal-mode frequencies of
a. film of thickness 2L. Second, the total exchange
and correlation energy of coupled films each of
thickness L is

SmE„c(d) = —~ Q [(o' (k„, k„q„)
iit &n kg=no'/ L

namely, that the total exchange and correlation
energy of the coupled films at zero separation
equals that at infinite separation Plus the work
done against the van der Waals force in drawing
the two films apart. 'This is not the exchange and
correlation energy of a single film of thickness
2L, which would be

&xc -2&a+2Es ~ (4. 2)

The difference between (4. 1) and (4. 2) will be
referred to as a cleavage energy

EcL ——E„c(d-0) —E„c—2E s+Evq, (d-0}. (4. 3)
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Finally, we observed at the end of Sec. II that
at zero separation the symmetric modes of the
coupled systems are degenerate with those of a
film of length 2L, that is,

TABLE I. Cleavage energy EcL, van der baal. s energy
Evw(0}, and surface correlation energy E& as a function
of g&. The values for E& are taken from Ref. 14. Units
are eV/(surface electron).

-Evw~0}

(d,'(0„,nm/Z, , q„) = (u~~ (k„, 2nv/21. , q„), (4. 7)

where n is any positive integer. Thus from (4. 2),
(4. 5), and (4.6), we have

0.108
0.067
0.050

0.118
0.068
0.048

0.227
0.136
0.098

., ((:„,nw/mt„q. )j) . (4.8)

—a l &J (@()- 4& m~ (4()]}g (4 9)

where ~~ is the bulk-plasmon frequency and ~ ~
is the maximum bulk-particle-hole fx equency. "
This quantity can be easily calculated and is large
and negative. Although E«(0) and EcL have large
surface-plasmon contributions, these tend to can-
cel each other when inserted in (4.4) and one finds
the surface-plasmon contribution to Es to be36

a f. (dg ((~'(() &max(~(()l }y (4.10)

One sees that the cleavage energy is the total
change in the zero-point energy of the antisym-
metric modes of a film on introducing a plane
barrier at the film center (z =0). That only anti-
symmetric modes are involved is due to the specu-
lar scattering boundary condition which we have
assumed. For a. symmetric mode, the electric
field driving the electrons is symmetric with re-
spect to reflection and the electron trajectories
in the two halves of the film are mirror images of
each other. The introduction of a plane barrier at
the film center does not change these trajectories
as long as the scattering is specular. For an anti-
symmetrie mode, however, the electron trajec-
tories are not mirror images of each other and
the introduction of an impenetrable barrier dis-
turbs the system and alters the mode frequencies.

The normal-mode formula (4. 8) can, as usual,
be separated into surface-plasmon, mixed-plas-
mon, and particle-hole parts. In the limit of
large I, the surface-plasmon contribution is

which is identical to E(I. (20) of GKH. Equation
(4. 10) gives a negative contribution to the surface
correlation energy which is much smaller in mag-
nitude than the surface-plasmon contribution to
Ec~ and E~(0). In fact, the surface correlation
energy is dominated by the particle-hole modes
and the plasmon contribution can almost be ne-
glected. "

Some recent estimates of the plasmon contribu-
tion to the surface energy"' are actually esti-
mates of —Ev„(0) As (4..4) demonstrates, this is
not the surface energy. The reason mhy these
authors appear to give a. sensible estimate of E~
is illustrated i.n Table I, where Ec„and —Evv((d = 0)
are explicitly tabulated. One sees that for all
y„EcL and —Ev„(d= 0) each contribute about one-
half of the surface energy. Thus, incorrectly as-
suming the work done against the van der %aals
force to be the surface energy only leads to an er-
ror of a factor of about 2. In. our opinion, hom-
ever, the decomposition of Es into cleavage and
van der Waals parts is unnatural in that neither
has a mell-defined meaning outside the semiclassi-
cal infiriite-barrier model.

V. SUMMARY AND CONCLUDING REMARKS

%e have presented a theory of the van der %'aals
interaction betmeen tmo metallic films using a
model mhich includes the complete spectrum of the
normal modes. In particular, me have shomn that
Ev„(d) is given by a natural generalization of the
ansatz of Van Kampen, Nijboer, and Sehram' even
mhen. a complete nonlocal RPA description of the
dynamics of the bounded electron gas is used in-
stead of a, local approximation. We fin.d that mhen
the correct dispersion relations are employed the
surface-plasmon contr ibution dominates the van.
der Waals energy For a g. iven value of d, Ev(/((d)
is sensitive to the dispersion relation for k(, $1/d,
and it is easily seen that a proper account of the
dispersion is necessary mhen d becomes compara-
ble with X~r (Thomas-Fermi wavelength). The
only previous discussions ~ 3 of the effect of dis-
persion on the van der %aals interaction are based
on a plasmon-pole approximation. The main limi-
tation. of our calculations is that they are based on
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the semiclassical infinite-barrier model.
In Sec. IV we made a detailed study of the re-

lationship between the van der Waals energy and
the surface correlation energy. It was demon-
strated that the latter is not equal to the work done
against the van der Waals force in increasing d
from 0 to , but that there is an extra contribution
(Ec„)which can be thought of as a cleavage energy.
Explicit numerical calculations show that the con-
tribution of E~L to the surface energy is roughly
equal in magnitude to the work done against the
van der Waals force. The cleavage energy arises
because the antisymmetric modes of a film of
thickness 2L are different from those of two ad-
jacent films of thickness I. Thus the act of erect-
ing a plane potential barrier impenetrable to elec-
trons costs a certain amount of energy and this
must be added to the work done against the mutual
attraction in order to arrive at the surface energy.
The surface-plasmon contribution to E|-L was found

to be negative and slightly greater in magnitude
than the surface-plasmon contribution to E~(0).
This explains why surface plasmons, though they
dominate the van der Waals energy, make a rela-
tively small (and negative) contribution to the sur-
face correlation energy. In our semiclassical
RPA model (see Refs. 8 and 15), Es is dominated

by the zero-point energy of the particle-hole modes.
In Sec. IV, we remarked on some of the defi-

ciencies of the infinite-barrier model we employed
for the surfaces and emphasized that our numeri-
cal results for the van der Waals attraction form
a lower bound. The most important physical de-
ficiency of the infinite-barrier model is that the
electronic charge is not allowed to relax outside
the background. The consequent piling up of nega-
tive charge at the infinite barriers is responsible
for the strong linear dispersion of surface plas-
mons predicted by the model, as well as for the
relatively large asymptotic corrections to the
image potential and the van der Waals energy.
In a more general model, one would expect much
smaller corrections. As we have noted in the
Introduction, the normal-mode formula (3.11) is
valid for any RPA model. This fact, coupled with

our conclusion that only the surface-plasmon modes
are important, enables one to estimate Evw(d) for
any model and for any separation from a knowledge
of the dispersion relation of the surface plasmons.
For example, the recent calculations of Feibel-
man, 2 who used a self-consistently determined
surface potential barrier, imply a negative long-
wavelength dispersion. Using this result in (3.14)
would lead to negative leading-order corrections
to the asymptotic Lifschitz force (i.e. , increased
attraction). At smaller values of d, plasmons of
larger wave vectors begin to play a role and there
is some evidence that in this region the dispersion

relation is less sensitive to the details of the sur-
face. This suggests that as d becomes smaller,
Ev„(d) tends to approach our infinite-barrier-mod-
el results (see Fig. 2). Of course, in a more
general model it makes no sense to speak of a van
der Waals interaction if the distance d is so small
that the electron densities overlap.

Experimentally there seems little hope that di-
rect measurements can be made of the van der
Waals attraction between two metal surfaces with
a separation small enough to make corrections to
the I ifschitz theory significant. On the other hand,
similar effects might be usefully studied through
physisorption of inert-gas atoms on metal sub-
strates. For example, the equilibrium position
of a He atom physisorbed on a simple metal is
about 5 A from the surface. At such distances,
however, it is misleading to include the effect of
electron gas dispersion without using a more re-
alistic model of the metal surface. '

As it was introduced in Sec. IV, the cleavage
energy is a feature of the infinite-barrier model.
A contribution to the surface correlation energy
of this type is always involved, however, when an
electron gas is separated into two parts, though in

general both symmetric and antisymmetric modes
will have shifted frequencies. For a more general
model, whe. re there are also kinetic, electrostatic,
and exchange contributions to the cleavage energy,
the separation of the surface correlation energy
into cleavage and van der Waals parts is probably
not useful.

In concluding, we note that Harris and Jones'
have argued that the surface correlation energy
should be relatively insensitive to the surface de-
tails. While this might be true if plasmons formed
the dominant contributions, it is not so clear in
the light of the conclusion of the present paper (and

of GKH) that only the particle-hole modes are im-
portant. We feel that further progress concerning
this question must await a better treatment of the
particle-hole modes in a bounded system. One
interesting calculation in this regard would be the
evaluation of the total surface correlation energy
to second order in the Coulomb potential for a re-
alistic model of the surface. Pines and Nozieres
have developed a theory of the bulk correlation en-
ergy by treating the short-wavelength contributions
to second order. A similar approach might be
fruitful in dealing with the surface correlation
energy.
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