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As a first step towards understanding many-body effects on the properties of conduction electrons in a
metal, an often used model is that of an electron gas against a uniform, neutralizing positive
background. Most treatments of even this model problem make simplifying assumptions about the
correlations between electrons in order to get solvable equations. In particular, the correlations between

antiparallel spins are often neglected since they make the many-body equations nonlinear and, therefore,
difficult to handle. On the other hanci, these correlations may be expected to influence strongly many

properties of the system, particularly those that depend on high momentum transfers. This paper
attempts to remedy this shortcoming in the application of many-body theory to an electron gas by
seeking a variational treatment of the full nonlinear equations and derives expressions for the dielectric
function and the paramagnetic spin susceptibility which express a wide range of electrical and magnetic
properties of the system. Our results show, on comparison with previous treatments neglecting
antiparallel spin correlation, that inclusion of these correlations has the expected effect of enhancing the
spin susceptibility and lowering the compressibility of the system. Further, our technique of working

consistently with the complete defining equations may find applicability in a wider class of problems; a
specific example is the charged-boson system.

I. INTRODUCTION

An electron gas with a uniform neutralizing posi-
tive background has been the subject of intense in-
vestigation for the past 40 years or so. There are
baslcaQy two reasons for this~ (i) lt provides a llse-
ful insight into the properties of simple metals and

(ii) it is a mathematical model on which many ap-
proximation schemes such as Hartree-Fock (HF),
random-phase-approximation (HPA), etc. , may
all be carried out analytically in great detail. Fur-
ther, a good knowledge of the uniform system is
of great value in the developmer|t of the density-
functional formalism of the inhomogeneous electron
system. For a review of these aspects, one may
refer to the book by Pines and Nozieres. ' It has
become increasingly clear, however, that these
approximations fail to include some significant
characteristics of the system which strongly influ-
ence the mechanical and magnetic properties of the
electron gas. The HPA is suitable mainly for low-
momentum transfers or, correspondingly, Bt high
densities (higher than those that obtain in metals),
mhere the interaction between electrons is relative-
ly less important than the kinetic energy. The HF
approximation and "generalized RPA" include only
one type of exchange correlation between the elec-
trons, called the Pauli correlation, which applies
to the ease of electrons mith parallel spins. A

particularly significant drawback of all these ap-
proximation schemes is that they treat inadequately
the correlations between antiparallel spins. These
are very important for large-momentum transfers,
corresponding to small interelectron separations,
since electrons with antiparallel spins can come

close together; electrons with parallel spins are,
on the other hand, kept apart by the Pauli principle.
The antiparallel spin correlation mould, therefore,
be expected to influence crucially the Coulomb re-
pulsion between electrons at small separations.
The neglect of this correlation shows itself in one
form through a serious inadequacy of these approx-
imations which has long been recognized, namely,
that the pair-distribution function which should be
manifestly positive definite, does instead become
negative for small interparticle separations over
the range of metallic densities. Another feature
pointing to the same inadequacy is that the HF ap-
proximation and the generalized RPA make identi-
cal predictions about the mechanical and magnetic
stability of the system whereas one might expect
these to be different, since the sum of the parallel
and antiparallel density correlations contribute to
the former (depending as it does on the over-all
density of the system) whereas the difference of
these densities is relevant to the spin and magnetic
properties of the system.

In recent years, Singwi and his co-workers have
addressed themselves to these problems through
an Anggtz about the structure of the two-particle
distribution function in terms of the one-particle
functions and have then sought a self-consistent
solution for the pair-distribution function. Though

this procedure has partially remedied the situation,
it has remained an ad Itoc procedure with as yet no

many-body theoretic derivation or justification of
the Ansatz. Neither has there been any alternative
scheme within many-body theory to remedy the de-
fects. The purpose of this paper ls to provide such
a scheme.
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In the many-body scheme, the effects of interac-
tion on the various properties of the electron gas
are discussed in terms of the Green's function for
the electron propagator and appropriate vertex
functions describing the basic interaction between
electrons. The properties of interest are given as
integrals over these vertex and Green's functions.
The RPA and HF approximations result from a
scheme which leads to linear integral equations for
the vertex functions which are solved to various
levels of approximation. Bajagopal and his co-
workers ' have looked at a more general, so-caQed
"ladder-bubble" scheme which retains consistently
all contributions that explicitly involve the potential
to the zeroth and first orders, and they have set up
more general nonlinear equations for the vertex
functions. A linearized version of these equations
leads back to the BPA and HF treatments. The
antiparallel spin correlations first appear essen-
tially in such a nonlinear way and, it might, there-
fore, be expected that the ladder-bubble equations
will, in fact, carry the crucial elements we are
looking for. So far, however, these equations have
proved too difficult to handle and all treatments
have restricted themselves to linearized versions
of them. Even the linearized equations, in their
full complexity, can only be handled numerically
or by variational procedures that have been devel-
oped for this purpose. ~ ' There have been suc-
cessful applications of such variational procedures
both in this problem of the electron gas and in the
closely related one for the linearized Boltzmann
equation for a Fermi liquid. However, the vari-
ational methods, even in their most general formu-
lation' till very recently, have been restricted to
linear equations and have proceeded by guessing a
functional and then establishing that it is indeed a
variational estimate of the desired quantity. Very
recently, a new, unified, and simple method of
constructing variational principles (VP's) has been
given which applies to linear and nonlinear equa-
tions alike. This procedure opens up the way to
handling the full nonlinear equations of the ladder-
bubble scheme and we show that, indeed, a proper
treatment of the ladder-bubble equations gives us
results in the right direction regarding the proper-
ties of the electron gas discussed above.

The arrangement of this paper is as follows. In
brief in Sec. II, we present the general method
for constructing VP's in the context of linear inte-
gral equations and show that it leads in a direct
fashion, with no ingenuity or guessing, to the ex-
pressions that have previously been derived in this
context. The aim of this purely pedagogical sec-
tion is to introduce the general method to those un-
familiar with it in a situation uncluttered by the
many terms and indices specific to the nonlinear
problem that we are ultimately interested in. Also,

x=(4, y),

where g obeys an equation

(2. 1)

(2. 2)

with 6 some linear operator and P a known function,
we can follow the procedure of Ref. 6 by writing

X. = X) —(Lg, 4g —4 &gg), Xg-=8-, gg), (2 3)

where g, is a trial solution of Eq. (2. 2) and I, is a
trial approximation to a "Lagrange function" I

this material helps motivate certain choices of
trial functions that we make later in Sec. III. The
main body of the paper starts in Sec. III which de-
velops for the nonlinear-case VP's for the dielec-
tric function and the paramagnetic spin suscepti-
bility, two functions of special physical interest
in that they contain information about the electrical
and magnetic properties of the system. In Sec. IV,
the variational expressions are examined for dif-
ferent starting choices (trial functions) for the ver-
tex functions like, for instance, the solutions of
the RPA. These choices lead to expressions for
properties like the compressibility and spin sus-
ceptibility of the system, expressions which are
of the form derived in the HF and generalized BPA
schemes. However, whereas these earlier
schemes indicated the appearance of singularities
in the compressibility and paramagnetic suscepti-
bility (hinting at a phase transition) at a certain
value (same for both properties) of the charge den-
sity, the singularities now appear shifted and in
opposite directions. This might be taken as an ef-
fect of the antiparallel spin correlations whose
contribution to these properties would be expected
to have opposite signs. Another satisfying feature
of the variational solutions we present is that work-
ing consistently with the Green's function and the
vertex functions in the same order of approxima-
tion (the ladder-bubble approximation) leads natu-
rally to the occurrence of "renormalization" terms
which make all the integrals finite —these renor-
malizations have previously been derived, with
some ingenuity, in the HF approximation.

The procedure we follow of working with the lad-
der-bubble equations with no commitment to the
specific structure of the vertex and Green's func-
tions till the very end (in our choice of trial approx-
imations to them) makes it equally applicable to
both statistics. Thus, though the accent through-
out the paper and particularly in the evaluation of
integrals at the end is on the many-electron sys-
tem, the main results are equally applicable to a
system of bosons where similar nonlinear equa-
tions describe the behavior of a charged-boson gas.

II. VARIATIONAL PRINCIPLES FOR INNER PRODUCTS

If we seek a VP for an inner product
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G(k+ q)&.(k, q)G(k)d'k
Xzzkg / (2»I)'

(2. 7)

where G(k) is a one-particle Green's function (as-
sumed known), k and q are four vectors, and
1",(k, q) is a, vertex function satisfying, in the linear
approximation,

V(k -k')G(k'+ q)1',(k', q) G(k')d k'

which incorporates the defining equation (2.2) as a
constraint. The function L is defined through the
process of making X„ in Eq. (2.3) a variational
estimate, that is, by setting terms linear in t)P
=-

P» —|1) and 5I —= I
»

—I equal to zero. This leads to

(2. 4)

If 6 is symmetric, it follows that

(2. 5)

Though not necessary, a natural trial choice for
I» is then P» and we have the VP from Eq. (2.3):

X. = (0, P»)+ ((t)», 4) —(y», It»)+ (y„ey») . (2. 6)

Such variational functionals have been set up in dif-
ferent ways by Bajagopal and co-workers3~3' for
calculating various response functions of the elec-
tron gas in a linearized model, by Wilkins and his
co-workers for various transport coefficients, and
in a general context in Ref. 5.

Thus, the paramagnetic spin susceptibility of an
interacting electron system is given by (in units of
e'/4»»»'e')

the external force term X(t) is t/cosh2t, f(t) =») +f
and the kernel E(t), arising from the collision in-
tegral, is ~f/sinh2t. n is a ratio of two angular
averages of the collision probability. Equations
(2. 11) and (2. 12) are again of the general form,
Eqs. (2. 1) and (2. 2), and the variational expres-
sion that follows from Eq. (2.6) is the one consid-
ered earlier by Wilkins and his co-workers. It
may be mentioned that exact solutions of these
transport problems were also found independently
by Brooker and Sykes and by Jensen et gl. and
the variational bounds are in excellent agreement
with these exact results.

III. NONLINEAR VERTEX EQUATION

A. Definitions and background

The full equations for the vertex functions of a
many-electron system are in the form of an infinite
hierarchica1 set of equations. When one retains
all contributions from terms that explicitly involve
the potential up to the first power, one gets the
closed set of equations of the ladder-bubble scheme
which are coupled non-linear equations for the
Green's function G(k), and the spin-susceptibility
and density vertex functions, I', (k, q) and I'(k, q),
respectively. The equations are

)'():, g) = —1 —» i )'(q) 5)'(0', t))d).
"

-» V(k-1')f" (k', q)1" (k, k'-k)dk', (3.1)

I,(k, q) = —2»G(k+ q)l".(k, q)G(k). (2. 10)

Likewise, the linearized Boltzmann equation of
a Fermi liquid at low temperature is of the form

&(t) =f(&)Q(t) —«f'I" (t - t')9(&'), (2 11)
wOO

where f is an energy variable and q(t) is related to
the deviation from equilibrium of the distribution
function. For the thermal conductivity g,

dt q(t)X(t),
4 wOC»

(2. 12)

(2. S)

V(k - k') is the symmetric momentum-dependent
interaction potential. The problem is of the gen-
eral form presented above and the VP given in Ref.
3 follows:

tX,.(q)], = [X.,(q)] —' (2»)) '&'k I (k, q)

~ I'«k, @+1-s Vk-O' Gk'+q

x )'„().", q) G()t')d a'(» w) ), (R. )))

with I, a trial approximation to a function given
essentially as in Eq. {2.5), that is,

x (t)) = »if I'(0, q)»).'; (3.4)

whereas the spin susceptibility is given in similar
fashion by Eq. (2.7). The dielectric function e(q),
another important characteristic of the system, is

&,(k, q) = —1 —i V(k —k')1",(k', q) 1 (k, k' —k) dk',

(3.2)
k'

G-'(k) =k, — -» V(1 '-k)G(k')1'(k, k'- k) dk';
(3.3)

for compactness, we have introduced the following
notation which we follow throughout this paper:

@(k, q) = G(k+ q)e(k, q)G(k), »fk=-»f'k(2v) '.
For the cllal'ged system of interest to us V(q)
=4»»e /q, the Coulomb potential. Note the absence
of the "bubble" term in the equation for the spin
vertex function, Eq. (3.2).

As is well known, physical quantities of interest
such as those that characterize the response of the
system to external fields are intimately related to
the correlations in the system described by the
above vertex functions. Thus, the density-density
response function x(q), is defined by
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defined by

~(q) =[1+V(q)X(q)] '. (s. 8)

treatments, we note that the vertex function I' is
often cast in an alternative form A given by

The familiar approaches to obtaining y, X„, and
e have consisted, first of all, in linearizing (and,
simultaneously, decoupling) Eqs. (S.1)-(8.3) by
replacing &(k, k' —k) in these equations by —1, the
first term in the right-hand side of Eg. (S. 1), and
then proceeding as if G were a known function
everywhere it occurs in Eqs. (3.1) and (3.2). We
considered in Sec. II such a procedure for ob-
taining y«. In the simple HPA, one goes further
by dropping all together the final terms in the three
equations which depend on V(k-k'). A complete
solution can then be obtained in the form

A(k, q) =-1 (k, q)~(q).

The corresponding verte~ equation is

A(k, q) = —1 —i I!

. "V(k'- k)
„e k' —i,')

&«(k', q) A(k, k' —k) dk',

with, correspondingly,

G '(k)=G '(k)

G(a')A(O, a'- a) u'.
J e{u'-u)

(3.10)

(s. 11)

(3.12)

1"sza(&i q) = [1+2V(q)f(q)1 (3.6)
The dieleetrie function is given by an equation of
the form

where f(q) is defined by

I(q)=i G (k+q)G (k)dk, G (0)—= (k —ka/2m) 1. (3.7)
2;V(&) l! A(y q) dy (S.18)

Note that I'Rr„(k, q) is a function of q alone. As a
consequence, we have

X (q) = 21(q)r„,„(q), (S.8)

~RpA(q) =1+2V(q»(q) =-ill'BpA(q) (3 9)

On the other hand, retention of the linearized
terms in Eqs. (S.1)-(3.3) is the content of the HF
and generalized HPA models. There are two ver-
sions of this, one employing —1 in place of
1"(k, k' —k) in these equations and the second which
uses instead the HPA value for this function. Be-
cause of Eq. (3.9), the second version can be in-
terpreted as differing from the first in that it em-
ploys a screened potential, V(k —k') je(k —k'), in
place of the unscreened potential. In either ver-
sion, note that the Green's function is more com-
plicated than the Go(k) used in the RPA though it
may still be regarded as a known function where
it appears in Eqs. (S.1) and (3.2). (We note that
the terms HPA and HF have been used in different
ways in the literature. Our usage, as indicated by
this paragraph, is to have them represent a natural
sequence of linearization procedures of the many-
body equations. This usage differs from the one
in Hef. 1. In particular, our HPA is a much sim-
pler approximation than the HPA of Hef. 1 which
eox responds to the next level of sophistication
which we call the HF approximation. )

Before seeking VP's for y, X„, and & without
making these simplifying approximations of earlier

I

This is the usual alternative formulation of the
dielectric response of a system expressed not with
respect to the externally applied potential but with
respect to a screened effective potential felt by the
particles. Thus, Eqs. (3. 11) and (3.12), which
are similar to (3. 1) and (3.3) except that they in-
volve the screened potential, may be interpreted
as representing all contributions that arise from
terms up to the first order in the screened poten-
tial. We choose in what foDows to work with the
functions l but it is evident that all the steps can
be immediately carried ovex' to a descr lptlon in
terms of ~.

B. Variational principle

The methods of Hef. 6 allow us to construct VP's
fol' )( [once a VP fol' X 1s kllow11 a VP fol' & follows
immediately from Eq. (3.5)] and g„even though
the defining equations of the system are nonlinear
and, in fact, with no more difficulty than in the
linear case considered in See. II. Though the ex-
pressions look longer and more cumbersome now,
they are just as simple and natural as those in Eqs.
(2.3)-(2.6). The basic philosophy is that we begin
by writing a functional in terms of trial functions,
I'„ I „, and G„ that will coincide with the quantity
of interest when the trial functions are replaced
by their exact values and which incorporates the
defining equations of the system, Egs. (8.1)-(3.8),
as eonstxaints with the help of Lagrange functions.
%'e therefore, write

y„(q) =2f &,(0, q)dk- dudq'I. „(k, q, q') &,(k, q')+1+2', V(q') r, (y', q')dy'
Ne

+i V k-O' I"~ 0', q' ~f. k', k' —k dk' — dkIgq k, q Gq k Go k +i
t

Vk'-k Gf. O' I" 0 k' —k d&' —I
1

(S.14)
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where we have used Eqs. (3.1), (3.3), and (3.4), and

[y„(q)]„=2i r)(k) q) dk -dk L„{k,q) rd)(k) q)+ 1+i V(k k-')rd)(k', q)r, (k, k' —k) dk' —
~

dkdq'L4, (k) q, q')

I', j'g, q' +1+2iVq' l", k', q' dk'+i Vk —k' ~& k', q' l
& k, k' —k dk'

k

dkI5, k, q C~ k Go k +i 'Vk' —k G~ k' ~~ k, k' —k dk' (3.15)

where we have used Eqs. (2. 7) and (3.1)-(3.3). We note that the density-density response function is de-
fined through I' and G alone, whereas the spin susceptibility requires knowledge of all the three functions
I'„F, and G. This is easily understood because the spin properties of the system will depend also on the
total density (parallel and antiparallel spins) of the system and hence the corresponding vertex function I'
will feature in their description, whereas l", plays no role in quantities such as X and q. Thus all three
defining equations (3.1)-(3.3) have to be incorporated as constraints in writing Eq. (3.15), whereas Eq.
(3.2) need not be considered in writing down Eq. (S.14).

The defining equations for the five I agrange functions follow in a straightforward manner [almost by in-
spection of Eqs. {3.14) and (3.15)] on setting equal to zero all terms linear in 5I'—= I', —I', 5l', —= 1 „—r„
and 5G=- G, —G in Eqs. (3.14) and (3.15). Some fairly routine steps of interchanging variables of integra-
tion and simple algebra leads to

L, (k, q, q') =2ic(k+q') C(k) 5{q -q')+W(k, q, q'; L„L,),
L,(k, q)=2i[r{k-q, q)+r{k, q)]+a(k, q; L„L,),

I,(kq) =k)G(k, +q,)G(k) i fV(k ——I) G(k' +q) G(k) I,,(k', q) V(k', I —I') dk',

L (k, q, q )= iL {k,—q) V(q )r (k+q, q)+a(k, q, q'; L„L ),
L,{k,q) = 2i[r, (k- q, q) + r, (k, q)]+f3(k, q; L„L,)

(S.17)

(s. is)

(3.»)

dk I, k, q Vk —k+q, k-q, q 1 k, k —k -q +Vk -k f', k, q 7 k, k-k
We have defined the functions

(s.20)

d(k, q, q; I', I ) = —)I V(q ) 6 (k +q ) 6(I)fI ' (I, q q ) dk —IfV(k —I) q (I +q ) G (k)I:(I,q, q )I'(I, I —I ) dk

-i Vq X'k+q, k -k 1~ k, q, k -k d k —k —iJ& k, q G k C k+q Vq

B(kq; I;, I&)= —JI;(kq) V(k.-I ) f'.(k, k, —I )dk -k( ldk 'dq V'(q )I&(k,'qq )[V(k-q', q )+V(kq ))

-i dk dq I) k, q, q Vk —k+q I' k-q, q I' k, k —k —q + Vk —k k, q I" k, k —k

These two sets of coupled equations, one of I-,
and L~ and the other of L» Lk, and L, play, re-
spectively, roles in determining the electrical and
magnetic properties of the system. Though they
appear formidable and do not immediately admit
solutions as was the case in Sec. II, all that we
require as inputs into the variational expressions
are some trial solutions of them; fairly tractable
choices of such trial functions can be ]ustlfled with-
out difficulty within the context of our analysis. A
natural starting point would be to take the solutions
which follow from the linear approximation as the
trial choices. Thus as a zeroth ol der tl lal
approximation L,', ', to I,, as gl.ven m Eq. (S.18))
we can pick the solution developed in Eq. (2.10):

L&', )(k, q) =-2ic, (k+q) r„(k,q) C,{k). (s.21)

That this choice is reasonable is confirmed by re-
caU.ing that our analysis is in the ladder-bubble
scheme so that one can consistently drop all terms
that explicitly involve the potential to higher than
the first power. The corrections to L~„' are pre-
cisely of such a form as can be seen by substitut-
ing L~+) into the right-hand side of Eq. (3.18) to
get the next order of approximation, I 3~,

" say. The
additional terms that appear involve higher powers
of the potential and since the trial Lagrange func-
tions are ultimately to be used in the variational
expressions where they appear multiplied by terms
which are already of 0(V) (even with the simplest
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possible choices I', = —1, I"„=—1), such zeroth-
order trial approximations are entirely adequate.
Exactly similar situations obtain for the other
Lagrange functions and, in each case, by inspec-
tion of the first terms on the right-hand side of
Eqs. (3.16)-(3.20), we can write

V& (k k): V(k k)/&sp~ (k k), (4.2c)

Contrasting Eq. (4. 1) with ( 3.8), we observe the
corrections" in the variational estimate for X as

compared with the RPA value; the corrections are
of first order in the screened potential. Corre-
spondingly, the dielectric function is improved
from its trial RPA value in Eq. (3.9) to the varia-
tional estimate given by Eqs. (3.5) and (4.1):

LP, '(k, q, q') = —2iG, (k+q)

x I', (k, q) G, (k) 5(q —q ),
Lz~~ (k q) = —2i[1",(k —q, q)+I;(k, q)] I",(k, q),

(3.22)

(3.23) e„(q) = [1+2V(q} I(q)] [1+2V(q)[I(q) —J(q)]) ', (4. 3)

L4'P (k, q, q ) = —iL,',"(k, q) V(q ) I;,(k +q, q),
(3.24)

L,",&(k, q) = —ai[f'„(k —q, q)+r„(k, q)] r„(k,q)
(3.as)

We note that of the five trial Lagrange functions,
one L«, is of O(V), even in the zeroth-order ap-
proximation; hence, it contributes to the variation-
al results only in O(V') and can be dropped entire-
ly from our analysis. Physically, what this indi-
cates is that even though magnetic properties of
the system depend on the overall density since the
I'; equation involves 1, we can proceed to consider
the I' as a given function for this stage of the analy-
sis since variations in I' (handled by the Lagrange
constraint L,) introduce errors of higher order
than are of interest.

IV. VARIATIONAL RESULTS FOR THE DIELECTRIC
FUNCTION AND SUSCEPTIBILITY

In Sec. III, we have formally constructed the
variational principles for y and X„by setting up
the well-defined problem that trial solutions of the
original ladder-bubble equations (3.1)-(3.3), and
of an adjoint set of equations (3.16)-(3.20), are
to be used in evaluating Eqs. (3.14) and (3.15) and
we have developed the appropriate trial Lagrange
functions in terms of trial estimates of the original
Green's and vertex functions. We now proceed to
apply these results with simple choices for such
estimates as, for instance, the values of these
estimates given by standard approximations like
the RPA.

Consider first the simple RPA results in Eqs.
(3.6)-(3.9). Substituting I", = r»„(q) and G, =Go
into Eq. (3.14) and using Eqs. (3.22) and (3.23) we
get

q„(q) = ar„,„(q)I(q) —ar'„,„(q)[z, (q) +d, (q)], (4. 1)

where we have defined

J(q) -=J', (q) +z, (q) . (4.4)

Likewise, for the magnetic properties, on using
r„=r, gpss=-1, we have

[X.,(q)). = —2[I(q}+d(q}). (4. 6)

The above expressions are already interesting be-
cause they make contact, in certain interesting
limits such as static low momentum transfers
(q, =o, q-0) with previous results derived by a
variational formulation of the HF approximation
or by moment-conserving schemes' even though
we have not as yet used the full power of the varia-
tional scheme by having open parameters in terms
of which a stationary value is sought. We have
merely frozen the trial choice to be the RPA value
and then we observe that whereas

limq e„~„(q)=sve I(0), (4. 6)

we obtain

Iim q'~„(q) = Sve'I'(0) [I(O) —Z(O)] -',
qwp

(4. 7)

"d'k F,(k+-,' q) —F,(k ——,
'

q)
s

~ (av) qo-Q q/m
(4. Sa)

which agrees with results previously derived in
-more complicated approximations. " The above
expressions, which give the compressibility of the
system, can be put in a standard form by evaluat-
ing the integrals. I and J coincide with functions
defined in Ref. Sd, where they have also been
evaluated for a certain choice of the screened po-
tential. A slightly simpler version, employing the
unscreened potential in J instead of the screened
one, has been given in Ref. Sc; the integrals can be
cast in the form

where we have defined

Jq(q} = —) tdk dk Go(k+q) Go(k) V, (k —k)

x Go(k +q) Go(k ),

&p(q) =- —' ~dkdk GO2(k)[Go(k —q) +Go(k+q)]

x V, (k —k) Go(k'),

(4. aa)

(4. ab)

" d'kd'k F,(k+-,'q) —F,(k- -,'q)
s(») q, -% q/m

X V(k -Kj„, F,(k'+-.'q) -F,(k'--,'q)

q, -k' ~ q/m
(4. sb)

& ( ) = —
l

"d 'k d'k' F,(k+ ,'q) —F,(k ———,'q)
(»)' q, -% q/m
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~T~= ~

~ = &&z& &o= 1
k~ 9m' ' S (4.9)

/ 1F,(k +-,q) —E,(k ——,q)x V(k —k)

(4. 6c)
where Eo(k) is the usual Fermi function. These
integrals have been evaluated" in the q-0 limit.
In terms of the usual definitions: k„, the Fermi
momentum; n, the electron density,

where

&(q) =- &g(q) + a, (q),

(4.15a)

&,(q) = — 'ldkdk'G, '(k)x(k'-k) v, (k'- k)

and the 4; are similar to the integrals J; defined
earlier:

g, (q) —= —
I dk dk Go(k+q) Go(k) &(k —k)

x V, (k —k) Go(k +q) Go(k ),

they lead to the following familiar values for the
compressibility: x [Go(k —q) +Go(k+q)] Go(k ) . (4.15b)

limq 'ERpA(q) =q Tp
a 0

lim q'e„(q) = q Tp(1 —nr, /m)
'

(4 ~ 10)

(4 ~ 11)

We vary Eq. (4. 13) with respect to & to determine
the best" value and this leads to the following in-
tegral equation:

r, (k, q) = ~(q)rap„(q), (4 ~ 12a)

(4 ~ 12b)r.t(k, q) = &(q)r.,RPA (q) = - v(q),
where X(q) and p, (q) are scaling" factors which will
be determined by demanding stationarity of the
variational expressions. From Eqs. (3 ~ 14), (3 ~ 22),
and (3 ~ 23), we now obtain in place of Eq. (4 ~ 1),

x„(q) =4x(q) r„,„(q)I(q) +2&'(q) r „',„(q)

x(l (q)[1+2 V(q)I (q)] —a (q)}, (4. 13)

and from Eqs. (3.15), (3.21), (3.24) and (3.25),
we get

[x„(q)1.= -4v(q) I (q)+2u'(q)II(q) —&(q)] . (4. 14)

q 0

The characteristic denominator in Eq. (4 ~ 11) is
responsible for the familiar mechanical instability
that develops in the many electron system in ap-
proximations beyond the RPA.

We emphasize the natural occurrence of the
combination J, +J2 in the variational estimates, a
feature of great importance because, as is well
known, these integrals are separately divergent
and only their sum is finite. This "renormaliza-
tion" has previously been derived in the HF ap-
proximation by cleverly manipulating the energy
denominators in G„~.' We note that even with the
simplest trial choices of Igpg and G„ the renor-
malization occurs naturally in the variational formu-
lation through the incorporation of the proper equa-
tion for G, Eq. (3.3), as can be verified by tracing
J, back to Eq. (3.23).

The above results have made contact with pre-
viously well-known results derived in an entirely
different way. We can immediately proceed further
by allowing some flexibility in the choice of the
trial functions. The choice we make of taking
1', (k, q) and r.,(k, q) to be similar to the RPA val-
ues in being functions of q alone but allowing the
form of these functions to vary has been used be-
fore in the linear approximation. ' We write

I (q) + &(q) rRp„(q)(I(q)[1+ 2 V(q)I(q)] —g(q)}.

—,'x'(q) r„,„(q)J(q) = o. (4. 16)

J(q) -=J(q)fl(q)[1+2V(q)l(q)]j ',

g (q) —= 8 (q) (I(q) [1+2 V(q)I(q)] }
(4. 18)

Similarly, varying Eq. (4.14), we determine p. (q)
to be

g(q) =I(q)[I(q) —g(q)] '. (4. 19)

Substituting Eq. (4.17) in Eq. (4. 13), we obtain

J(q) J(q)x„(q) =4I (q) ([1-g (q)]/[1 —8(q)]' —2J'(q)]

—[[1-8(q)]' -J(q)}

x[[1—3 (q)]' - 2J(q)}"').
Likewise, Eq. (4. 19) in Eq. (4.14) gives

[x..(q)].= —»'(q) [I(q) —&(q)1
'

(4. 2o)

(4. 21)

These variational expressions for the density-den-
sity correlation function and the spin susceptibility
are more accurate than the ones derived earlier.
They also contain as a special case results pre-
viously derived in the linear HF approximation,
which can be recovered by the following replace-
ments that are obvious from inspection; replace
gaby J and set J equal to zero in Eqs. (4.17), (4. 20),
and (4. 21). We get as a result

X„p(q) =2I (q)(J(q) -I(q)[1+2V(q)I(q)]} ', (4 22)

x,„,„(q)= —»'(q)[I(q) —J(q)1 ', (4. 23)

,and, therefore,

Solutions of this integral equation [8(q) involves &

under an integral] are then to be used in Eqs. (4. 13)
and (4. 14). We will not attempt a full solution of
this integral equation here but 'freezing" the de-
pendence" of 8 on &, we solve Eq. (4. 16) as a
quadratic equation and get

J(q)&(q) =1 —4(q) —[[1-8(q)] —2J(q)}', (4. 17)

where we have defined
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e„r(q) =1+2V(q)I'(q)[I(q) —J(q)] '. (4. 24)

iimq'~„, (q) =8''I'(0)/[I(0) -J(0)]. (4.28}
q~ 0

These expressions demonstrate compactly the con-
tribution of the antiparallel spin correlations to the
compressibility of the system. Since 8 & Z as we
will shortly argue, we note that the contribution
adds a positive term to the characteristic 1-nx, /II
denominators given by earlier schemes, that is,
the antiparallel correlations seem to lower the
compressltH11ty of the system. Also» the compl ess-
ibility does not become infinite at r, = II/oI = 5.5

but at a larger value, that is, lower density. The
influence of the correlations on the spin suscepti-
bility is, on the other hand, in the opposite direc-
tion with the denominator in EIl. (4. 21}being small-
er than in the corresponding result, EIl. (4.2S), of
linear approximations. These conclusions are in
keeping with the simple physical picture that inclusion
of correlations between antiparallel spins will tend to
push them apart, thus lowering the Coulomb repul-
sion and, as a result, the total energy-the system
becomes more bound, more stable, that is, less
compressible. On the other hand, the paramag-
netism is likely to be enhanced when antiparallel
spins are kept further apart.

We have tried to express our results so that they
appear very similar to the results of mell-known
linear approximations; this should facilitate quan-
titative comparisons between them si.nce the inte-
grals have either already been evaluated or are in-
timately linked to known expressions. We make a
few further comments on this matter. The ex-
pression for &(q) given in EIl. (4. 1V) can be sim-
plified on recalling that Z( )qI/( )qis known in the
Il-0 and q-~ limits (both with qo=o). Thus J(q)
is seen to vanish as q when q- 0 and vanish as
1/q when Il-~. '" d lt may be expected, there-

These linear results agree precisely with Ref. 3.
The difference between the more general results
in Eels. (4.20) and (4.21) and these can be re-
garded as a contribution from the antiparallel spin
correlations which are contained in the former.
Note, as expected that the &„(q) that follows from
EIl. (4.20) in (S.5) differs substantially in its form
from [1'„(q)j„,whereas the results for X„»(q)
and e„F(q) are very similar which is an expression
of their neglect of antiparallel spin correlations.
The same conclusions follow from examination of
the low-momentum limit of these properties of the
system. %'e have, after some algebra, from Eqs.
(S.5), (4.1V), and (4. 2O),

8ve'I'(O)
I(o) —J(o) —8(0)$1 —[8(0)/J(0)]'j '

(4. 25)

fore, that J'(q) is small everywhere and, therefore,
1-g(q)» J'(q). This allows us to conclude from
EIl. (4. 1V) that

&(q) = [1 —3 (q)]
' =1+4(q) = 1+2(q) . (4. 2V)

Therefore, &(q) which is, approximately, "
&(kI )J(q), is greater than Z(q). We further note
that since Z(q)/I(q) is proportional to nI;/II in both
the extreme limits, '" '~

A.(kI„) has the structure:
1+cnI;/II, where e is some positive constant.
Thus, EIl. (4.25) becomes

limq'~„(q) =qTF[1-n I/ I+I2 (e nr, / )II'] '. (4. 28)

Similarly, from EIl. (4.21), we have

[X„(0)]„=-(mk /lr )[1-Ixr, /Ir —e(nI, /II) ] '. (4.29)

The value of the constant c remains to be deter-
mined but me note that it follows from the values
of the mell-known integrals 4 and I at k~. Ex-
pressions sixnilar to EIls. (4. 28) and (4.29) have
been derived' on the basis of the interpolation
schemes between high and low densities and it is
satisfying that the above analysis of the ladder-bub-
ble scheme leads to formally similar results. Table
I summarizes previous results in the literature in
terms of our terminology on the structure of the
singularities in electrical and magnetic properties.
The second entry in the table is the xesult of
the variational solution of the linearized vertex
equation mith the Thomas-Fermi screened poten-
tial, 4IIe /(q2+qTlx), in agreement with those quoted
in Ref. 1 when the antiparallel spin correlations
are completely neglected. Only the third entry
(Ref. 1, pp. SOV-S09) in this table brings out the
different effects of antiparallel spin correlations
on the compressibility and static spin susceptibility. l~

A comparison of these with Eels. (4.28) and (4.29)
shorn that our results are at variance with these.
ln Eels. (4.28) and (4.29) the value of e will depend
on the form of the potential used and its evaluation
with screened potentials could be very cumber-
some; because of the nature of the integral equa-
tion for X in EIl. (4.16), it could also very well in-
volve terms in 1n(IxI;/II). What we have argued is
that except for such weak dependences e is es-
sentially a constant, that it is positive, and that
the nature of the results in Eels. (4.28) and (4.29)
with contributions of opposite signs to electrical
and magnetic properties is physically reasonable.
The last entry in the table gives the standard form
for the compressibility and spin susceptibility in
terms of parameters familiar from the Landau
theory of FerI111 llIlulds [Ref. 1 pRx'tlclllRx'ly Eels.
(5.2V) and (5.28)]. These parameters, I"I and I I

with 1 = 0 and 1, are related to the symmetric and
antisymmetric combinations, respectively, of the
strengths, f I Rlld fI, of the iII'tel'RctloI1 between



A. H. P. HAU AND A. K. BAJAGOPAI

I, Singojal"ity structure of the compressibility, lim& 0 g &(g), and spin susceptibility, X~~(0), in,

different approximation schemes. ~ and t'„which axe defined in Eq. (4. 9), and E) are standard quantities
from the theory of Fermi liquids.

Appx'oxlmatlo D

(1) Linearized vertex equation. with
unscreened Coulomb interaction.

Compressibility

1-0.~,/7t

Spin
susceptibility

(2) Linearized vertex %'ith screened
Coulomb (Thomas-Fermi screening)

(3) Perturbation- theory-second-order
scattex'lDg contx'lbut1ons to aDtl-
parallel correlations (Sawada-Hrueckner)

e ~, o.~. er./~ Q &g C &8 ~ 0&8/7rI+ ln 1 — ~+ 1D
1+~x~/g I +~~,/g

& ———' 1+ — lnx

(y ++S)g + & P 8) (~+ye}g~&ys) i

parallel and antiparallel spins (Sec. 1.2 of Ref. 1).
The HF Rnd RPA schemes correspond to taking
zero for the Fermi liquid parameter for antiparal-
lel spins so that Eo =Eo and, as a consequence,
these schemes give an identical structure for elec-
trical and magnetic properties (as borne out by the
first entry in the table). On the other hand, our
results take into account the antiparallel spin con-
tributions and thus give different values for Eo and
Eo. In fact, comparing the last row of the table
with the denominators in Eqs. (4. 21) and (4. 25) or,
alternatively, Egs. (4, 29) and (4.28), we have

~(0) ~(0) A) '
(1 E+)(0l + E y)

= 1
( ) ( )

1

(4. 80)

(4.81)
[As discussed before, replacement of 8 by J' in
these equations leads back to the HF and RPA re-
sults. Note that Z(0)/I(0) = ny, /v ]The ab. ove
equations make contact between the integrals in
this paper and the standard E, parameters. Nu-

merical evaluation of c ean thus be used to obtain
the values of Eo and E~o. We note that our remarks
about c being positive are reinforced by these equa-
tions because it then follows that E~ &E', and this is
generally true as illustrated by sample results in
Table 1.1 of Ref. 1 (for 'He at 0.28 atm, E;=10.8,
Eo = —0.67). We also note that in the theory of
Fermi liquids, the E, parameters are expressed
as integrals over functions which obey eomplieated
integral equations similar to the vex'tex function
equations we have considered. Thus, our varia-
tional proeeduxe could be applied directly to these
equations to obtain variational expx"essions fox' E,.
Comparison of such results with the results in this
pRpex' would be of interest but we defex' this to R

later date. The advantage of the vertex function
formulation is, of course, that our results are not

restricted to the zero-frequency long-wavelength
limit (though our discussion in the last few papers
has been mainly concerned with this limit simply
because of the availability of other results to com-
pare with) but are more generally valid.

%'e eonelude with some remarks about the rele-
vance of these results to the properties of simple
metals. The inadequacy of the model of the elec-
tx'OQ gRS with R unlfox'XQ posltlve bRckground Rs R

model of metallic behavior has been attributed to
shortcomings in its description of both many-body
effects and solid-state effects. This paper has ad-
dressed itself to the former and has shown that in
a consistent many-body theory, the effect of anti-
parallel spins that is usually neglected by conven-
tional approximations can be incorporated and that
it influences the properties of the electron gas in

the expected direction. Specific solid-state effects
like that of an effective mass for an electron due

to its interaction with the lattice and that the posi-
tive background is not uniform but localized at
lattice sites may also be expected to be important
for the description of any real metal; in fact, semi-
empirical interpolations have been used to argue
for cox'rections to the compressibility and spin sus-
ceptibility that are very similar to Eqs. (4.28) and

(4. 29) though, interestingly with a negative coef-
ficient in place of the positive c [see Ecl. (5.176)
and Table 5.2 of Ref. 1]. There has also been a
suggestion recentlyl3 that the lack of translational
invariance for any real metal leads to important
changes in the properties of the system. Thus, a
complete theory of metals involves many compli-
cRted contrlbutlons, some of which may Rct ln op-
posite directions. What is hoped is that the ap-
proach of this papex', giving a systematic way to
handle all the many™body effects, will be a useful
guide in unravelling the various complicated con-
tributions into classes of distinct physical origin.
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