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Critical properties of random-spin models from the e expansion
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In quenched random-spin systems, the renormalization group can be used to develop recursion
relations for the probability distribution for random potentials. Alternatively, recursion relations for the
average values of potentials and their higher cumulants can be obtained. In this paper, the above
technique is used to study phase transitions in quenched random n-component classical spin systems

using the e expansion to second order in e. It there are long-range correlations in the random
potentials (e.g., all potentials along a line are equal), there are no stable physical fixed points within the
& expansion. This is interpreted as a smeared transition. If there are no long-range correlations in the
random potentials, there is a sharp transition with pure system exponents if the specific-heat exponent
n of the pure system is negative. If a & 0 and n & 1, there is a sharp transition with new

exponents q = f(5n —Sn)/256(n —1) ]e and v = 1/2 + [3n/32(n —1)]e
+ [n(127n' —572n —32)/4096(n —1)']e'. For n = 1, there is no stable fixed point, which is again
interpreted as a smeared transition.

Compositional disorder can be divided into two
broad categories: quenched and unquenched or an-
nealed disorder. '~ In annealed systems, impuri-
ties or vacancies diffuse freely and reach equilib-
rium with respect to other degrees of freedom.
For sufficiently high concentrations of impurities,
phase separation can occur in these systems. In
quenched systems, on the other hand, impurities
are frozen in fixed positions; i.e. , they cannot
overcome potential barriers for diffusion at the
temperatures under study. These systems exhibit
the phenomenon of percolation at sufficiently high
impurity concentrations.

Phase transitions in annealed systems are rather
well understood. ' If the impurity chemical po-
tential is held fixed, the critical exponents of the
phase transition are the same as those for a pure
system. If, on the other hand, the concentration
of impurities is held fixed, the exponents undergo
a Fisher renormalization if the specific-heat ex-
ponent + of the pure system is positive.

Phase transitions in quenched systems are less
well understood. Mathematically, the free energy
for these systems is obtained by averaging the
logarithm of the pa, rtition function over impurity
configurations, F = —ks T((lnZ)). ' As an artifical
example of this operation, consider an ensemble of
Heisenberg models, each with different uniform
exchange J. As pointed out by Harris, an average
of the free energy over a probability distribution in
J of width 6J will lead to a transition smeared over
a temperature range of width &T- 6J. McCoy and
Wu have solved exactly a somewhat less artifical
random Ising model on a two-dimensional lattice.
They consider a model in which all horizontal bonds
have a fixed value J, . They then require vertical
bonds Z2(j) between rows j and j+ 1 to be equal but

allow J,(j) to be a random function of j with width
6Jz. They find a smeared transition with smearing
width &T- (6Jz)~. A common feature of these two
models is that they both have probability distribu-
tions with long-range correlations in the bond
strengths. Very little is known about the behavior
near phase transitions in models with more realis-
tic short-range disorder. Several options are
open. The transition could be sharp or smeared.
If it is sharp, it could be first or second order. '
If it is second order, the critical exponents could
be those for the pure system or they could be re-
normalized. (ff the exponents are renormalized,
there is no reason to expect that they will be
Fisher-renormalized. ) The only published at-
tempts to distinguish these cases" involve high-
temperature expansions and give inconclusive re-
sults.

The renormalization group has been extremely
successful in calculating critical exponents in pure
systems. A pure system is characterized by a set
of translationally invariant potentials. The renormal-
ization group develops recursion relations for these
potentials. Critical properties are determinedby the
fixed points of these recursion relations. In random
systems, the potentials become random and non-
translationally-invariant with a probability dis-
tribution P. Henormalization equations for the
probability distribution rather than the potentials
can be developed in random systems. The author
and Harris have discussed critical properties of
a two-dimensional random Ising model using the
above idea and the Niemeyer-Van Leeuwen" cluster
expansion. Critical properties of random systems
of n-component classical spins at dimensionality
d=4 —q can also be obtained using the Wilson-
Fisher & expansion. ' An outline of the results to
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first order in & have been reported elsewhere. ' '"
In this paper, we will present in detail the cal-
culations of critical exponents in random systems
to second order in q using the technique of re-
norInalizing the probability distribution.

Luther and Grinstein' ' have independently
studied the properties of phase transitions in
quenched random systems using a completely dif-
ferent renormalization approach than the one de-
scribed here. (To facilitate comparison with our
work, we have interchanged the role of their n and
m. ) They consider a model Hamiltonian for an mn
component spin at each lattice site with a quadratic
spin coupling that is rotationally invariant in the
complete gnat-component space and two quartic spin
coupllngs one of which ls rotatlonally lnva11ant in
the me-component space and one of which is rota-
tionally invariant only in each of the e-component
subspaces separately. This was first studied by
Brezin et al. Grinstein and t.uther show that the
analytic continuation of this model to m = 0 is equiv-
alent to a model for a random n-component spin
system. An elegant derivation of this equivalence
has been given by Emery. ' The renormalization
equations that result from the Grinstein-Luther
model are identical to those presented here to sec-
ond order in the & expansion. '7

The results of this paper are as follows. If there
are long-range correlations in the random poten-
tials such as in the model of McCoy and Wu, the
pure-system fixed points (Heisenberg and Gaussian)
are unstable with respect to creating a small
amount of randomness. In analogy with the exact
results of McCoy RndWu, we argue that this in-
stability is the signal of a smeared transition. If
the disorder contains no long-range correlations,
the randomness can be characterized by a single
variable ~, which behaves like a quartic potential
in the renormalization equations. ~ is directly
pl oportlonRl to the vRllRnce of fluctuations ln the
Eood transition temperature. In addition, one has
to consider the averaged two-spin and four-spin
potentials z Rnd u. As is usually the'case in sys-
tems with two quartic potentials, ' ' there are
four fixed points within the & expansion. There i.s
the unstable Gaussian fixed point, the usual Heisen-
berg fi.xed point, Rnd unphysical but always stable
fixed point with u* = 0 and 4*& 0, Bnd a random
fixed point in which both 4~ and u* are nonzero.
For n greater than a critical value n, (e), the Heisen-
berg fixed point is stable; for 1&n&n, (c), the
mixed fixed point is stable. We interpret this to
mean that for N&g, there is a, smooth second-order
transition with pure-system exponents, and for
1&~&n„ there is a smooth second-order transi-
tion with new exponents. n, (e) is determined to
second order in & by n" (N, (e)) = 0 where a" is the
speeiQC-heat exponent for the Heisenberg fixed

point. For g& I, the specific-heat exponent for
the stable fixed point is negative, in agreement
with heuristic arguments. For g = I, the situation
is not entirely clear; the mixed fixed point goes to
infinity and effectively can be ignored. The Heisen-
berg fixed point is, however, unstable. We would
like to interpret this as a smeared transition in
analogy with the instability induced by randomness
with long-range correlati. ons. The renormalization
group, however, is unable to make any definite
statement about systems that have no stable fixed
points, and other interpretations are possible.
Grinstein and Luther, ' for example, have argued
that the v=1 transition may be first order in anal-
ogy with the first-order transition that occurs for
la,rge n in the hypercubie model or that is believed
to occur in superconductors.

We begin with the reduced Hamiltonian in momen-
tum space:

v2(qi, qs)S(~i) S(q )

~
Cyan ceo g 44

v4(Qii Qa~ 'jb ~ 94)s(Qi) 'S(%2)~(Qs) 'S(q4) ~

(l)

where R~ represents a removal of all spin degrees
of freedom with 5 'A. & lql&A, b& I, and R, repre-
sents a change of scale

a-ba, s(i)-&s(&i) (3)

The operation R then generates a new probability
distribution P'(ILvI f) via

(4)

where the integral is over all degrees of freedom
in (v,). P(v,) can alternatively be described in
terms of its cumulants e~. The lowest-order cumu-
lants are (v, ) and (v, v ) —(v, ) (v ) where (v, )
= fv, P((v„j). Higher-order cumulants are defined

as usual. The recursion relation for I' can thus
be converted into a recursion relati. on for the cumu-
lants fc,f,

where S(q) is an n-component classical spin of
wave vector c[, and f;= fs~ dsq/(2v)s, where S~ is
a sphere of radius A. vz and v4 are arbitrary ran-
dom potentials for an inhomogeneous system. In
general, six-spin, eight-spin, ete. potentials v, ,
E= 6, 8, . . . should be included in the reduced Ham-
iltonian. The ensemble of the set of potentials
{v,), f =2, 4, . . . (j dependence has been suppressed)
is described by a probability distribution P((v,)).
The renormalization group operates on the poten-
tials (v,j of a particular member of the ensemMe
to produce a new set (v', J:

fv', )=ftgv, $-=ft, ft, fv,),
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(b)

(c)

(e)
FIG. &. Diagrams for v2(q, q') to second order in v4.

The double line is the propagator G~(q, q'). The dot
represents v4 and the cross sepresents Y.

( g=@.f, (6)

where R represents the operation of the renormal;-
ization group on fc4).

Our first goal is to develop recursion relations
for the potentials in a general inhomogeneous sys-

tern. To do this, it is convenient to divide v2(q, q')
into three parts:

V2(q q )=V2(q q )+V2(q q )+ Y(q q ) . (6)

v2~ (q, q') is zero unless both I q I and I q' I are
greater than b 1A; v2(q, q') is zero unless both
are less than b 'A; and Y(q, q') is zero unless I q I

&b 'A and lq' I & b 'A or vice versa. Y(q, q') cou-
ples spin variables that are eliminated by R, to
those that are not. Following the usual treatment
of the i expansion, we develop the operation R~
as a power series in v4. The diagrams for v2 to
second order in v4 and those for v4 to third order
in v4 are shown in Figs. 1 and 2. Weights for-these
diagrams are given in Table I. The double line
represents the inhomogeneous propagator G~(q, q')
which is the inverse of the submatrix V2~(q, q'); the
dots, V4(q„q2, q3, q4); and the crosses, Y(q, q').
These diagrams include all contributions from Y
for the given order in v4. To illustrate the use of
these diagrams, we show the recursion relations
for v2(q, q') to first order in v4 [Figs. 1(a) and 1(b)]

r
v ((q q)= b ( (v~(b'q b" )q+ v4(b' (b 'qt', q„q~)G (q, , q ) — b'(b'q q)G (q„ tb)Y(q~, b'q')),

"4)3a2 ~ 4g, '42

v2(q, q ) =
& V2(q, q')&+ bv2(q, q'), (6)

where the part of bv2(q, q') coupling Iql 6(b 'A, A)
to Iql 6(0, b 'A) is Y(q, q'), and where

( v2(q, q )& = (~+ f') 6(q+ q') (9)

in the long-wavelength limit. In this limit, we also
have

where the integrals are over I q I 6 (b 'A, A).
Recursion relations for (v2), (V4), etc. can be

obtained by averaging the recursion relations for
the general inhomogeneous potentials over I'. The
averaging process restores translational invari-
ance; so we can write

expand the renormalization equation in a power
series in ~v2 via the matrix equation

V2 = ((V2)+ bv2) =(V2) —(V2) 6V2(V2) +
(12)

Equation (12) is expressed diagrammatically in
Fig. 3. Here the single line represents (v, ) ' and
the && represents bv2. Equation (12) applies either
to the full matrix V2(q, q') or to the submatrix
vz(q, q'). In the latter case, of course, bv2(q, q')'

(c)
& V4(q1, q2, q3 q4)&=»(q1+q2+q3+ q4) ~ (10)

The spin renormalization coefficient f is chosen so
that the coefficient of q2 in Eq. (9) remains unity
after each iteration

g 1+fr /2-q /2

where q is the usual exponent describing order-
parameter correlations at the critical point. We
are interested in systems which are nearly homo-
geneous and in developing a perturbation expansion in
some parameter characterizing the small amount
of disorder. bv2(q, q') represents the deviation of
v2(q, q') from translational invariance and would
be zero in a homogeneous system. We, therefore,

cy,
'

FIG. 2. Diagrams for v4(q&, q2, qs, q4) to third order in
V4.
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TABLE I. Weights for diagrams in Figs. 1 and 2.

la
1b
1c

2a
2b
2c
2d
23
2f

4(n+2)
—1

—32 (n+ 2)

—4(n+8)
16(,2+ 6n+20)
64(5n+ 22)
32 (n + 2) (n + 8)

6

1d
13
1f

2g
2h
21

2)
2k
21

—8(n+2)
4(n+2)

—16(n+2)2

1
48(n+2)

-48(n+ 2)
16(n+8)

—8(n+8)
16(n+ 8)

+ n

(a)

(b)

is defined only for q, q'c(b 'A, A). Using the dia-
grams in Figs. 1-3, we can obtain recursion re-
lations for v2 and v4 in terms of the small parame-
ters &vs and v4. (These equations will, of course,
involve cumulants of dvs and v4. ) From these, we
can obtain recursion relations for bv, = v, —(v, ) for
l =2, 4. The recursion relations for the second
cumulants (5v, dv ) can then be obtained by taking
the product of the recursion relations for ~v, and
&v and averaging. This process can be continued
to obtain recursion relations for all cumulants.

The algorithm described above is, in general,
quite complicated. Fortunately, in the case of
greatest interest, of all the cumulants, only
(&vs &vs) is relevant. If the potential v, (x, x') dies
off more rapidly than Ix-x'I "~ for large separa-
tion of the spatial coordinates x and x', and
(&vs(R+ —,

'
p, R ——,

'
p) 5vs(R'+ —,

'
p ', R ' ——,

'
p ')) dies off

more rapidly than IR-R'I ", we have

(5vs(q„qs) &vs(q, , q4)) = &&(qt+ qs+ q, + q4),
(13)

where b is a constant in the long-wavelength limit
proportional to (5vs(x, x) 5vs(x, x)). Since vs(x, x)
determines the mean-field transition temperature,
~ is thus proportional to fluctuations in the local
value of the mean-field transition temperature.
When there are long-range correlations in ~v2,
Eq. (13) is modified. This will be discussed later.

We see from Eq. (13) that & has the same order
of relevancy as u in the & expansion. Any other
cumulants will be a function of more q's and will
be irrelevant just as the higher-order poten' .als
v6, v8, etc. are irrelevant in the homogeneous
problem. " This means that within the & expan-
sion, v4 can be replaced by (v4) wherever it ap-
pears and averages of products of 6m~'s can be
expressed in terms of products of (5v, bv, ). Dia-
grammatically, the last statement means that the
average of a string of &&'s is obtained by tying to-

FIG. 4. Example of diagrammatic averaging of a
product of crosses: (a) relevant contractions of four
crosses and (b) irrelevant contraction of four crosses.

(b)

(c) (o)

gether two &'s at a time in all possible ways. The
product of four &&'s is shown in Fig. 4(a). Figure
4(b) does not contribute because it is irrelevant.

To summarize, recursion relations for the
relevant variables z, u, and & are obtained by ex-
panding diagrams in Figs. 1 and 2 in terms of the
expansion of vs' shown in Fig. 3. (v, ) and (v4)
are then calculated by tying together all products
of &&'s in pairs and associating 65(q, +qs+qs+q4)
with each pair. From these, one obtains the re-
cursion relations for g and u. Recursion relations
for dvs are then obtained by subtracting (vs) from
v2. Finally the recursion relation for &v2 is
squared to obtain the recursion relation for ~.
The diagrams contributing to z, u, and ~ are shown
in Figs. 5 and 6, and evaluated with appropriate
weight factors in Table II. The circle represents
~, i.e. a contraction of two x's. The mass re-
normalization graphs, Figs. 5(f)-5(h) and Figs.
6(f)-6(k), can be ignored aspointedoutbyAharony '
and Bruce, Droz, and Aharony. (They are in-
cluded in Table II to provide a useful consistency
check for those who are interested. ) The recursion
relations for y, u, and & to second order in & = 4 —d
are thus

+ U V V V V +
FIG. 3. Diagrammatic expansion of the inhomogeneous

propagator. The single line represents the propagator
(u&)

' and the cross represents dv4(q, q').

(g)

FIG. 5. Diagrams for (v2). The dots represent u and

the open circles represent h.
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(15b)

y' = b "(r+ [4(n+2)u —&] A(y') —[32(n+2)u -8(n+2)u&+ & ]B(x)), (14)

u' = b' ~"(u —K~lnb(1+ —,
'

& lnb —e ink)[4(n+ 8) u —6un]+K4 ln b [16(n +6n+ 20)u —12(n+ 8)u 4+9ub, ]

+ K4 lnb (1+lnb)[32(5n+ 22)u' —48(n+ 5)u 24+ 2lu&3] $, (15a)

&' =b' 2"(&—K~lnb(1+ —,
' elnb —sin&)[8(n+2)u& —44 ]+K, ln b[56 —24(n+2)u& +48(n+2) u b J

+K4 lnb (I+Inb)[11& —48(n+2)u& +96(n+2)u 4]},

where

K-'= 2'-'ll'~' r(d/2),

q = —,
' K~[32(n+ 2)u —8(n+ 2)u&+ & ],

Qn+ 42x"=—e+, ~ +O(e ),8 jn+8j
(n+ 2) (13n+ 44) p

n+ 8 (n+ Sj

unphysical:

(23)

A(~)=
ll

(q'+r) ',
~)

+(r) (q 1 + r) '( q ~+ q2 I
'+ r) '(q 2 + r) '

Q2

(17a)

(1Vb)

where Jg= ft,-ted q/( 2v)" and the integrals in B(~)
are understood to be restricted to the domain I q~ I,
Iq2l, and Iq, +q2l &b 'A.

Equations (15) have the following fixed points for
the sharp cutoff employed here:
(i) Gaussian:

u =4 =0'

(ii) Heisenberg:

(18)

qA' 3(3n+ 14)&"=0, u"=
( )

1+
( )p

E +O E

(19)
(iii) unphysical:

U
Xff —~ 2 E+ 24 6. P

U 23 2Ag=-f+
~3 E

(24)

The stability of the random fixed point is studied

by linearizing Eqs. (15) about the random fixed

point and diagonalizing the 2&2 matrix of coeffi.-
cients. We quote here only the results to first
order in & as the expressions to second order in

e are extremely complicated and probably unin-

teresting:

yR O( 2)
(25)

n —4 2
X2 ——

( )
g+O(q )

The exponents q, v, and c. (calculated using dv

=2 —c,) for the three non-Gaussian fixed points are
listed in Table III. Note that X~ is equal to c."/v"

u'= 0, ~'= - X'(I+Q &)+ O(&'); (20)

(iv) random:
e A' 25n —248n+ 64

16K„(n—1) 128(n —1) .

(b)

8K, (n-T)

105n —364n + 992n —256
128(n —1)~

(»)
The fixed points are cutoff dependent. All cutoff

dependence disappears from the critical exponents
calculated from Eqs. (14) and (15), and these fixed-

point values for u and &, ~'3' Eqs. (18)-(21). Note

that Gaussian and unph„sical fixed points are in-
dependent of n. The exponents X„and X~ for the

first three fixed points 25 are
Gaussian:

(c) (d) (e)

Heisenberg:

(22) FIG. 6. Diagrams for u. The dots represent u and
the open circles represent A. To obtain the diagrams for
b, merely interchange the dots and open circles.
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TABLE II. Weight factors for diagrams in. Figs. 5
and 6. The column J.abeled 6 refers to diagrams for I
from Fig. 6 and the column labeled 6' refers to diagrams
for 6 from Fig. 6, with circl.es and dots interchanged.

g
h
i
j
k

4(m+2)
]

—32 (n+2)
—1

S(m+2)
—16(m+2)'

—1
s(a+2)

-4(m+ 8)
+6

16(n2+ 6m+ 2O)
—12(m+ 8)

Oi

64{5m+22)
—96(n+ 5)

42
32(n+2) (n+ 8)

—S(7m+ 2O)
12

—S(&+2)
5

—24(n. +2)
48(m+2)'
22

—96(n+2)
192(m+2)
8
48(m+2)
64(m+2)'

to second ordex' in &. Thus, the crossover expo-
nent to the random fixed point is rp'= n . The
Heisenberg fixed point is stable as long as X~ &0
(XH is always negative}. Thus, it becomes un-
stable at a critical value n, of the spin dimension-
ality determined by o."(n,) = 0. To lowest order in

q, ~, =4. For ~ &0 to first ordex in &.

The flow diagrams for the foux' fixed points are
shown in Fig. V. In giving physical interpretations
to these diagrams, it is important to remember
that 4 is by definition a positive definite quantity.
In this paper, we are only interested in phase
transitions that can be second order in the pure
systems; so we will restrict u to be positive. The
physical region in Fig. 7 is, therefore, quadrant
I. The flow lines form a ridge along u = 0 Rnd & = 0
making it impossible for a point that starts in
quadrant I to flow after. renormalization into the
other quadrants. Thus, the unphysical fixed point
is inaccessible to physical systems.

%'e now consider the relative stability of the '

Heisenberg and random fixed points. For g& g„
the Heisenberg fixed point is stable and the random
fixed point is in quadrant IV. Thus, when a" is
negative, there is a sharp phase transition in the
random system with exponents of the pure system.
When 1&m&m„ the random fixed point moves into

i%

I I
LJ

OC
q &le

FIG. 7. Flow diagrams for the four fixed points
represented by crosses. (a) n&n, the Heisenberg fixed
point is stable; {b) 1& g&n~, the random fixed point is in
the physical quadrant and is stable; (c) n&1, the random
fixed point has moved into the unphysical third quadrant
and there is no stable fixed point in the physical quadrant.
For @=1 the random fixed point is at infinity.

the first quadrant and becomes stable whereas the
Heisenberg fixed point is unstable. . Thus, in this
regime there is a sharp phase transition with re-
normalized but not Fisher-renormalized exponents.
Note that e~ is negative in this regime in agree-
ment with heuristic arguments. %hen n = 1, one
can return to Eqs. (14)-(16)and recalculate the
fixed point. It is easy to verify that there is no
solution corresponding to the random fixed point
(both 'El* and +* nonzero). This ls consistent with
allowing the random fixed point to go to infinity as
n tends to unity as indicated by Eq. (21). [It is
possible that Eq. (21) is the small-e expansion of
a function of the form g= (q/(n —1))f(e/(n —1) ) that
does not become infinite as m tends to 1. In this
CRse the 0 = 1 and the 8 = 1 VRlues of the fixed points
would differ. %e have no way of verifying this
behavior at the moment. ] Thus, there is no stable
fixed point in the physical quadrant for n = 1. We
will discuss this further shortly.

We now return to the question of what happens
when there are long-range correlations in the
random potential. Consi. der a partition of the d-

TABLE III. The exponents v, g, and n for the three non. -Gaussian fixed points.

Heisenberg Random

) (~2 ~ 23~+ 60) 2 q 3~ ~(127~2 572~ 32
4(n+ 8) S(m+8)3 ' 32{m —1) 40e6(n —1)3

Unphysical

Q
2

2(n+ S)

4 —n (n+ 2) (n2+ 30n+ 56)
2(n+ 8) 4(n+ S)3

(5n- S)n, 2

256(n —1)'

n(31~ —380n -128),,
8 (n —1) 1024 (n —1)3

—E
1

64

35 2
4 6+—6

i28
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dimensional space S, into p- and (d- p)-dimensional
spaces, Sp and Sg p. Let R = {R,R ) be any point
in S„with R'c S~ and R"cS~ ~. If n2(R+ x/2, R —xj2)
is independent of R for R(=S» then

&»3(qi, qa) ~~a(qs, q4)&

=A& {q',+q,') 5'(q, +q, +q, +q4) (26)

where ~~ and 6" are, respectively, p- and d-di-
mensional 5 functions and A. is a constant in the
long-wavelength limit. It is easy to verify that
under renormalization, A will grow as

(2'7)

'to lowest order in u. Thus, within the & expansion
there are only the Gaussian and Heisenberg fixed
points, and both are unstable with respect to long-
range disorder of the above type. This is the same
type of disorder considered by McCoy and Wu. 7

Since they found R smeared transition, it is appeal-
ing to identify the instability of the Heisenberg fixed
point with respect to disorder with long-range cor-
relations as a signal of a smeared transition.

In this context, it also seems reasonable to
identify the instability at n = l with a smeared
transition. In general, if there are no stable fixed
points accessible to an initial set of potentials,
independent calculations are needed to identify the
nature of any transition that occurs. In hyper-
cubic systems and superconductors, there exists
independent evidence that the inaccessibility of
stable fixed points corresponds to a first-order
transition. The starting point of the Grinstein-
Luther approach to the random problem is an ef-
fective translationally invariant Hamiltonian for
mn- component spins. Any phase transitions pre-
dicted by this Hamiltonian should, therefore, be
those of a homogeneous system. In particular, if
there are no stable fixed points, there should be
a first-order transition. Grinstein and Luther
then argue that the e = 1 instability could correspond
to a first-order transition. ' We feel that there
is no compelling reason for this to be so since the
analytic continuation to m =0 could lead to be-
havior not found for physical values of m. The
question of what happens at n= 1, therefore re-
mains open, though we feel we have presented
reasons why there might be a smeared trans-
ition.

The dividing line between the stability of the
random and the Heisenberg fixed point within the
& expansion is n" = 0. In three dimensions, the
best experimental value for o. (n=2) in three di-
mensions. .is negative. ' It is, therefore, unlikely
that the new random fixed point will be experi-
mentally observable. Even if o."(n = 2) is positive,
the crossover region from the Heisenberg to the

random fixed point is of order ~', which is ex-
tremely small if 4 is less than unity. The n, =1
instability may be observable in three dimensions,
and it would be vexy interesting to determine ex-
perimentally whether the transition is first or sec-
ond order. The instability in systems with long-
range correlations in the disorder has a larger
crossover exponent (y =X~ p) than the n= I short-
range instability and should be experimentally
easier to detect. It would, therefore, be of some
interest to find a material with such long-range
correlations in the disorder.

We close with some observations about the re-
sults we obtained in Bef. 13. There, we applied the
Niemeyer-Van Leeuwen cluster expansion to a
two-dimensional random Ising model and found the
Ising fixed point to be stable with respect to short-
range randomness. To second order in &, we find
in this paper that the crossover exponent to the
rRndom fixed point is equal to e". U this relatioIl
persists down to two dimensions, it would be in
contradiction with the results of Bef. 13 since
n =0 for the two-dimensional Ising model. There
are two possibilities. The results of Bef. 12 could
be wrong because we did not treat large enough
clusters. This is a very reasonable possibility
since dlsolder %'ould be R marginally lelevRQt
variable 1f the 1elRtlon Q = Q persists~ RQd p1e-
sumably very large clusters would be needed to
determine that q equals zero. Another alternative
is that the relation y = o."breaks down. This also
is a reasonable possibility. The heuristic argu-
ment that predicts y = n" assumes that the disorder
can be characterized completely by a Quctuating
local transition temperature. Between three and
four dimensions within the & expansion the disorder
is in fact characterized by a single variable ~,
which can be identified with Quctuations in the
local transition temperature. Below three di-
mensions, other disorder variables become rele-
vant, and a more complicated heuristic argument
may be needed. In view of these uncertainties, it
would be interesting to see if any exact calculation
of the size of the crossover regime similar to that
for an annealed system could be made for a
quenched system. This question is currently under
1Qve 8tl gati on.

The author is indebted to A. B. Harris for bxing-
ing this problem to his attention, for checking the
first-order calculations presented in this paper,
and for providing constant information about rRn-
dom systems. The author would also like to thank
K. G. Wilson for pointing out the structure of the
renormalization group in terms of probability func-
tions, G. Grinstein for communicating results
prior to publication, and A. Aharony for clarifying
the relation between the crossover exponent Rnd the
specific-heat exponent.
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Note added in Proof. Recently Aharony27 has
presented a general argument that the crossover
exponent y to the random fixed point is e in all

dimensions. Thus, the two-dimensional cluster
calculation of Ref. 13 is probably incorrect owing
to insufficient cluster size.
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