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We have studied thermodynamic and some dynamic properties of a one-dimensional-model system
whose displacement field Hamiltonian is strongly anharmonic, and is representative of those used to
study displacive phase transitions. By studying the classical equations of motion, we find important
solutions (domain walls} which cannot be represented effectively by the usual phonon perturbation
expansions. The thermodynamic properties of this system can be calculated exactly by functional

integral methods. No Hartree or decoupling approximations are made nor is a temperature dependence
of the Hamiltonian introduced artificially. At low temperature, the thermodynamic behavior agrees with

that found from a phenomenological model in which both phonons and domain walls are included as
elementary excitations. We then show that equal-time correlation functions calculated by both
functional-integral and phenomenological methods agree, and that the dynamic correlation functions

(calculated only phenomenologically) exhibit a spectrum with both phonon peaks and a central peak
due to domain-wall motion.

I. INTRODUCTION

In recent years, there has been considerable
interest in systems in which structural phase tran-
sitions apparently take place due to the instability
of some lattice displacement pattern, which takes
the system from some stable high-temperature
phase to a different low-temperature lattice con-
figuration. The dynamics of such systems is fre-
quently characterized by a vibrational mode whose
frequency decreases rapidly near the critical tem-
perature, as though the restoring force for that dis-
placement pattern softens, thus "soft modes. "
The history of this viewpoint is generally well
known, ' 3 particularly in the study of ferroelectrics,
though many other systems show the behavior in

some form or other. Peierls instabilities would
share some of the features, although significant
changes in the electronic properties occur simul-
taneously with the lattice distortion, and the cou-
pled problem is more complex.

While it is likely that such displacive transitions
are at least accompanied by soft modes, the theo-
retical interpretation is not altogether satisfactory
since formal analyses to date are all based on an-
harmonic phonon perturbation theory, using some
set of self-consistent high-temperature lattice
phonons as a basis. But at the transition tempera-
ture, the displacements relative to that lattice
become large and no perturbation scheme is ex-
pected to be satisfactory.

Computer simulations' have been carried out
to shed light on these matters; and, indeed, are
very informative. In addition to showing features
which are expected as some order parameter de-
velops a nonzero value, there are two other in-
teresting features: the appearance of clusters of

locally ordered regions, and the development of a
"central peak" near =0 in the dynamic response
function S(qo, ~). The central peak which accom-
panies the soft mode experimentally~ has received
a variety of interpretations, '7' which also remain
somewhat open to question.

We thought that it might serve a useful purpose
to see whether one could approach these problems
from other than a perturbation or mode-mode
coupling point of view, and the work here is a
first step in that direction.

To date, the development has been restricted
to a one-dimensional model, for which there can-
not really be a phase transition for f inite range
interactions. On the other hand, we have been
able to treat strong nonlinearity in some detail,
making contact with an exact (in principle) cal-
culation of the equilibrium statistical mechanics
using functional integral methods. Several in-
teresting features appear in the results, princi-
pally of an interpretive nature. The most impor-
tant result potentially is that the Fourier (phonon)
representation commonly used in perturbation cal-
culations is inadequate to discuss one important
type of excitation that can occur in highly nonlinear
systems, and which we refer to as domain walls. "
These were postulated by Takahashi' some time
ago on phenomenological grounds, and now appear
to us to be a natural consequence of strong anhar-
monicity in the statistical mechanics of this model
system.

The plan of the paper is as follows: In Sec. II
we present the model Hamiltonian, and discuss the
solutions of the resulting equation of motion for
the displacement field; from the small-amplitude
phonon modes to some limiting large displacement
patterns, including time-dependent solutions. In
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FIG. 1. Eigenvalue spectrum (schematic) of the trans-
fer operator, from Eq. (30), for temperature-dependent
effective mass m*=m(co/$ K& T ): (a) low temperature,
m* large; (b) intermediate temperature; (c) high tem-
perature, m* small.

Sec. III we use the functional-integral method to
calculate the partition function for this Hamiltonian,
adapting and extending the work of Scalapino, Sears,
and Ferrell, ' including the calculation of correla-
tion functions. In Sec. IV we do the statistical
mechanics of a random array of domain walls on
a background of small-amplitude phonons, and we
can make a complete identification with the func-
tional- integral result in the low-temperature
regime. In Sec. V we show that static correlation
functions can be calculated either way, and that
one is led to a model for dynamic correlations
which can yield a central peak in an appropriate
scattering function —because of the motion of do-
mains, not because of coupling to entropy fluctua-
tions or hydrodynamic modes. Conclusions and
discussion are contained in Sec. VI.

II. MODEL AND EXCITATIONS OF THE SYSTEM

A standard model Hamiltonian for a system which
might undergo a displacive phase transition' as-
sumes that the Hamiltonian is of the form

2

u ~

+Pm,

Here i, j indicate lattice sites; A, B, C;& are po-
tential coefficients; and u;, u; are displacements
and velocity of the displacing ion with respect to
some heavy ion or reference lattice. Typically,
A might be determined by attractive interactions
of the mobile ion with the reference lattice, B by
short-range repulsion of those near ions, and

C,, by interactions between the displacing atoms.
In the situations where this is presumed to repre-
sent a lattice which is unstable against a displacive
transition, A is negative, B is positive, and C,, are
positive. This Hamiltonian is a tremendous over-
simplification of any real three-dimensional sys-
tem, particularly of symmetry restrictions and
long-range forces, which are important in real
ferroelectrics. None the less, we find that even

in one dimension there are results which are in-
teresting and nontrivial.

Before proceeding with the analysis, we note
two approximations which are often made in dis-
cussing the finite temperature behavior of the
model system: (i) Hartree approximation:
(u;) =u; (u; )r usually(u ~~)r = IA f(T/T, ) in the
high-temperature region. This yields a psuedo-
harmonic Hamiltonian'2'0 (also derivable by low-
order anharmonic phonon perturbation theory) with
A* = lA f(T/To —1). This describes a stable lat-
tice for T & T„and vice versa below T,. Many
studies have been made with this effective Hamil-
tonian as a point of departure, but the approximate
nature of its basis should not be forgotten. (ii)
Mean-field approximation: Onedera" has studied
the statistical mechanics of this system with the
approximation u~ = (u)z, in —,

' gC;,.(u, —u~)'. This
suppresses all dynamic information which depends
on the details of interion displacements, and
amounts to a collection of anharmonic oscillators
coupled only by their me&n thermal displacements.
Thus, no phonons are considered, and interparticle
fluctuation effects are certainly omitted.

We have tried to avoid either of these approxi-
mations; and particularly in contrast to the analy-
sis in Ref. 1Q, we take A-=—tAI to be independent
of temperature, as in the original Hamiltonian,
thus not putting in the critical behavior artificially.
We do not attempt to employ renormalization meth-
ods to obtain an effective Hamiltonian.

The one approximation we will make is to assume
that the Hamiltonian (1) can be replaced by a con-
tinuum representation

H= — + —u(x) +—u(x) +
r dx p(x) A ~ B 4 mco du

l 2m 2 4 2 dx

(2)
where l is the lattice spacing and x, =jl =x locates
an element (ion) in the continuum representation.
This approximation limits us to displacement fields
which do not change radically over a lattice spac-
ing. In the above, c, is the velocity of low-ampli-
tude sound waves (phonons) which would occur if
A and B were negligible (i. e. , only interaction be-
tween displacing ions are important). We now pro-
ceed with the analysis.

Taking A=- ]At, B &0, the "on-site" potential
is a double well potential with minima at (see Fig.
1), and depth v(+uo),

(sb)

v(u+u, ) =-!IA I'/B+2IA l(u+u, )'/2+. .. . (3c)

Two different physical regimes of the parameters
occur under the names of "order-disorder" or
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"displacive"' systems. If the depth of the wells is
so great that an intersite ene'rgy mc 20 (2uo/I) ',
which is the interaction energy between nearest
neighbors displaced to opposite wells, is not great
enough to lift the particle over the barrier, then
only large thermal fluctuations at individual sites
can do it. Effectively, one has a collection of
weakly coupled anharmonic oscillators, randomly
displaced to Q —+ Qo, as one expects in a disordered
system. This order-disorder regime occurs for

;~AI'/B 4 ",.',/I

In the opposite limit to this inequality, there is
strong intersite interaction and extended lattice
modes determine the physics. Here the system
is said to undergo displacive transitions and

—.'~A~'/B 4 c', u'/I'

sgQ+A, Q+BQ tPscoQ = 0

We note that quite generally, if u=f(x vt), then-
f must obey

m(v~-c', )f"+Af+Bf'=0 .

Introduce the dimensionless variables

m(co- v )/~A = g~ (length squared),

f/u, = n,
(x-vt)/$=s .

The dimensionless form of the equation is

(Sa)

(9b)

(Sc)

d g
68

-~ +g —q3=0 (9)

Both static and time-dependent solutions may be
constructed from the solutions of (9). We discuss
first the limiting forms of solutions.

A. Small amplitude, q3 « q « 1

Solutions of g" + g = 0 are of the form

g = o. sin(s+ 8),

where e is the amplitude and 8 is the phase. Sub-

We will be concerned entirely with the displacive
case, that being more relevant to the soft-mode
situation,

Applications are made at high temperature.
and no essentially quantum effects are involved.
Therefore, w'e first consider the classical equa-
tions of motion and their solutions, then in Sec. III,.

the classical statistical mechanics of the system.
The equation of motion for the displacement field

u(x) which follows from (2) is

v g =cog — A~/m=&0', (i2)

which is also a dispersion relation. Of course,
since A is negative, the frequency co, will only be
real for finite q ~ (IA [/me~a). These phonons are
small amplitude oscillations about Q = Qo.

Another set of small amplitude oscillations can
occur if all particles are di.splaced and lowered
in energy to the bottom of one of the wells. Then
g= 1+y, where y is a small dimensionless dis-
placement. To terms linear in y, the equation of
motion is

~"-2&+0(~')= 0.
With a slight revision in the definition (Sa) the
solutions are small oscillations about + Qo of the
form

u = + uo+ o. u 0 sin(qx- &o, t+ 8),
with the dispersion relation

c q +2~A~/m=&o,

(Is)

instead of (12). The frequencies are real for (all)
q ~ 0. It should be noted that for N particles, this
state is very much lower in energy (VA 2/4B) than
the configuration vibrating about Q —0.

In the cases above, the nonlinear term g3 has
been omitted or linearized about g= 1. Thus, the
modes found can be superimposed in low'est-order
calculation of the partition function. But, of
course, as soon as the nonlinear terms are con-
sidered, the phonon modes are coupled to each
other; and the thermodynamics is quite nontrivial.
For the most part, Green's-function decoupling
approximations, or perturbation methods, have
been the only methods appli. ed to the interacting
phonon system. However, we pxoceed somewhat
beyond those formulations in the present case.

To do so, we now look at the solutions of (9)
in another regime, which we call the large am-
plitude strong anharmonic regime.

B. Large amplitude regime, q —q —+ l

Equation (9) is formally identical to that govern-
ing the order parameter in Ginzburg-Landau theory
for a one-dimensional (1 —D) superconductor. One
type of solution, for which 'g is not small, is g=+ 1
or —1 for all s. This is mostly an uninteresting
solution, the order parameter constant throughout
the system; but it is the lowest-energy state since
all particles are at rest at the bottom of a potential
well. The small oscilletions in the second case

stituting physical variables,

u= nuosin[(x- vt)/$+8],
which is simply a phonon with wave number q= 4 ',
frequency v/$, and phase velocity v (which is q
dependent) that satisfies the equation
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above are one kind of low energy excitation above
this lowest energy state.

But there are other, intrinsically nonlinear, field
patterns which are also important in the low-lying
excitation spectrum. More important, they cannot
be represented by any reasonable order of pertur-
bation theory based on phonons. Such field patterns
are well known in type-II superconductors. For
example, one simple particular solution of (9) is

rI = tanh(s/~2

This corresponds to a family of solutions in phys-
ical variables

7i= asn(bo) (2o)

where sn(bo) is the elliptic sine function. For bo
= 0, i.e. , s = (x —vt)/g = 0, g = 0, and sn is an odd
function of its argument. With a modest amount
of algebra, it is easy to find the small-amplitude
and large-amplitude limits. Equation (20) may be
written in further detail

1- 1 —2—

the notation being standard. '2 This is an elliptic
integral of the first kind, and generates the family
of solutions

g = u, tanh [(x—vt) //2 5 ], (IS)

a~=1 — 1—

b =1+ 1-

then

(
d'g—

i
= (a' —q')(b' —n')

der)

and p. is found from the elliptic integral

(1S)

where 5 is defined in (Sa). In this pattern, the
displacement is constant at —Qp over nearly all
the semi-infinite region (x- vt) & 0; it is + u 0 for
(x- vt) &0. The transition takes place through a
domain wall of approximate thickness 2+2 $, and

the wall moves with a velocity v. From the def-
inition (Sa), 5=(m/IXI)' 2 (c~~- v~) t, it is seen
that co is the upper limit on the drift velocity (per-
haps more precisely that ( must not be less than
a lattice constant).

The excitation energy required to produce this
pattern is localized in the domain wall; it will be
calculated in detail in Sec. DIIt. But it is apparent
that this kind of excitation is quite the converse of
phonon excitations where the energy is distributed
throughout the lattice. In one sense, phonons are
independent in q space while these domain walls
are independent in y space, their interaction fall-
ing off exponentially when separated by more than

a wall thickness. There is, however, the all im-
portant difference that the small amplitude solu-
tions above were approximate solutions of (9), while

(15) is an exact solution.
This last observation prompted us to see whether

we could connect the two types of solutions. This
, has been partly possible, as follows, in terms of
elliptic functions. Equation (9) may be converted

by quadrature into an implicit integral relation
between 'g and s. I et o =s/g2 and

&& sn 1+ 1 —2 — s . 2]

The elliptic sine is periodic in 4K, where K is the
complete elliptic integral of modulus k,

a 1 —1 —2 (dg/ds)~ 0

b 1+ 1 —2(d'g/ds) 2
0

(22)

The small-amplitude solutions are found in the
. limit (dg/ds)„0«1, where &=0, and 4IC= 2m. We
recover (10),

g= a sins .
But for large amplitude, K-1 then K-~ and the
period of the solution becomes very long (and not
related to any renormalized fundamental period).
In fact, if (d'g/ds) „0= (2) 't~ then one finds that
(21) approaches

'g = tanh(s g 2 )

and we recover the domain wall solution above.
In all of the above, the phase 8, a choice of origin,
has not been explicitly written in; but because the
Hamiltoniari is translationally invariant, it is
clear that this freedom exists. Also, since
s=(x- vt)/5, a whole family of stationary and mov-

ing fields is included in (21).
It would be nice, now given various dynamic

solutions of the equation of motion, to proceed to
express the Hamiltonian using them as a basis,
then do the statistical mechanics. This is what
is usually done with phonons, because a harmonic
Hamiltonian separates in mode space. Unfortunate-

ly, as is obvious from the nature of nonlinear sys-
tems, it is absolutely impossible to do the same
superposition by simply adding two solutions for
the displacement field. Indeed, the whole subject
of nonlinear oscillations in extended systems is
extremely complex; and we must admit to having
been unable to carry forward a rigorous program
to connect these exact solutions of the equation of
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motion to an evaluation of such thermodynamic
quantities as the partition function.

On the other hand, we believe that the analysis
above suggests certain features which should be
included in a proper phenomenological discussion
of the statistical mechanics —ai least in the low-
temperature region where low-energy excitations
dominate. Specifically, we believe that one will
see two different patterns in the displacement field;
one, small amplitude oscillation motions about the
potential minima u"—"+uo, and then the other, oc-
casional domain walls where the displacement
flips from one minimum to the opposite over a
region of length= 2+2$.

There will be a thermal mixture of these two
kinds of excitation. It is apparent that phonons
(extended) and walls (localized) interact weakly;
and if the density of walls is low, they interact
weakly with each other. Can one go from one
language to the other in a systematic way'? Again,
the complex physics of nonlinear oscillations in
extended systems (e, g. , laser oscillations) often
seems to allow the pumping of energy from a
number of weakly excited extended modes, via
the nonlinearity, into a local pulse or shock; and
our conclusion is that this happens here.

To test these ideas, one must resort either to
experiment or to some related theoretical calcu-
lation which can be carried out exactly. It is not
possible to find a real system which is accurately
represented in nature by our model Hamiltonian.
Computer simulations are of considerable use
in a quantitative way, and we will comment on
them in the concluding discussion. However, a
formally exact solution for the thermodynamic
quantities would be much more useful for cali-
bration purposes. Fortunately, using functional
integral methods"'" it is possible to evaluate
the partition function for this one-dimensional
model exactly —conditional on a knowledge of
solutions of a one-dimensional anharmonic oscil-
lator Schrodinger-like equation —which can be
solved numerically if necessary.

We carry out that exact calculation in Sec, III,
and then compare it in Sec. IV with the phenomeno-
logical thermodynamic behavior deduced from a
mixture of phonons and domain walls.

III. EQUILIBRIUM THERMODYNAMICS OF THE
ONE-DIMENSIONAL MODEL: "EXACT"

The classical partition function follows from the
Hamiltonian (2) as a functional integral in the field
variables u(x), p(x),

evaluated in terms of the eigenfunctions of trans-
fer integral operators. We have followed SSF
generally, except in two respects: (i) we do not
put an explicit temperature dependence into A,
e. g. , a( T- To), which in a sense puts in the phase
transition "by hand, " but take A = —lA. I constant;
(ii) instead of solving the anharmonic oscillator
Schrodinger equation numerically to determine the
eigenvalues of the transfer operator, we studied
the lowest states in a formal (WKB approximation)
way; this preserves subtle interpretive features
that can be easily lost in numerical studies.

In the classical approximation, for the given
Hamiltonian, the momentum and field displacement
integrations for Z factor completely. Z = Z~Z„,
with Z~ = (2vmKe T) ~' as usual for N particles.
We are left with the potential energy term Z„
[V((uj) j to compute. Dividing x into stations x,.
separated by /, one writes the partition function,
for nearest neighbor interactions, as

N

z„=~|II( d, -"'" "- '), (24)

J
du;, e ~~'"& ")-~ '+„(u;,}= e ~)) +„(u;) . (25)

The +„are distribution functions for the field am-
plitude u, which are not only useful to compute Z,
but also to compute expectation values of various
quantities, assuming that their properties are
such that the +„ form a complete set, i. e. ,

5(u —v) =++„(u)+*„(v) . (25)

Thus, supposing at first that at x y 0 y
= v, then the

integral Z„can be rewritten

r
Z„=Qe„(v) +du, e'~'"*'" =I '.e„(u,)

??

(27a)

(27b)

Next, integrating over all possible initial and final
displacements v, u„.„and replacing N by I./?
yields

where f (u;, u, ,) is that part of the potential de-
pending on u, and gg;, . The integral may be evalu-
ated exactly in the limit of a large system using
the eigenfunctions and eigenvalues of the transfer
integral operator

Z= I5(u)5(p)je (23)
Z ~ e -(L /l )g 6~

u

Scalapino, Sears, and Ferrell '0 (SSF), and Kac and
Helfand' have shown how this expression may be

Obviously, as L-~, Z„ is dominated by the low-
est eigenvalue e;0,
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Z e -(L /l )86 p
Q

(29)

A variety of results were obtained by SSF from
numerical evaluation of the solutions of their
version of (30). More insight can be gained, at
least for low-temperature region, by an inter-
pretive examination of the low-energy solutions
of (30), as a function of temperature. The potential
is shown in Figs. 1(a)-1(c), with an indication of
the way in which the energy levels might be dis-
tributed for low, intermediate, and high tempera-
ture. For low temperature, the effective mass
m* is large and the eigenvalues begin near the
bottoms of the wells, split into pairs by "tunnel-

ing —in the sense of this effective Schrodinger
equation. At high temperature, m* may become
so small that the lowest eigenstate e'p lies well
above the potential hump. This does not provide
an exact criterion for obtaining a true phase tran-
sition, but it does suggest that below some inter-
mediate temperature the thermal distribution is
such as to find the displacement pretty much near
+up, while well above this temperature the dis-
placements range over the whole region in the
lowest eigenfunction +p(u}.

An examination of computer solutions would

provide further detail, if done with high precision.
However, in the lower-temperature regime, ap-
proximate solutions can be constructed, as for
standard quantum-mechanical double-well prob-
lems. To a first approximation we have harmonic-
oscillator states in each well, for which the

This procedure and calculations of moments or
correlation functions are discussed further in the
references cited.

The burden is now transferred to finding solu-
tions of the transfer-operator equation. These
are found' from the solutions of an equation which
is Schrodinger-like (of course, quantum mechanics
is not really involved}. Applying the method of
SSF, we find the effective oscillator equation, in
which h=1,

c sp+ u + u p p p g(u) =~g g(u)~
2 mcp du

(30)

where sp is a zero of energy from normalizing
certain integrals and plays little role in the ther-
modynamics. Note one important difference be-
tween (30) and SSF equation (2. 23); we maintain
the strong temperature dependence of an effective
mass m* on temperature, as defined by

d 1 d
2P mc du 2m* du

or
m* = m(CPp/1'KSPT') .

(doubly degenerate) spectrum

~.=(~+ 2)(2IA I/m*) '"
= (u+-')(fK. T/c )(2 IA I/m) '" .

(Sla)

(slb)

The potential near the minima is V„p=-, (2lAI)
x (u -up) . This double degeneracy is split by

tunneling

(32)

Thus, the two lowest levels have eigenvalues
[from (sla) with n= 0]

~ )1/2 " g2 1/2P

ep„=— „ I

1+-', exp —u, m*
2 m*)

(s4)

with

4p,.= (1/&2)[@p(u- u, ) ~@p(u+up)1, (s5)

where +p (u) is the n= 0 harmonic-oscillator state.
For low temperature, but finite, the "tunneling"

splitting of the lowest oscillator level as given by

(33) may be very small, but upon taking the ther-
modynamic limit I.// = N- ~ only the lower of the

pair of states survives. We have the series of
equations using (29), (slb), (32),

Z„=exp[- (I /l ) P (sp+ Ep —fp)],

F = —K~ T/n(ZpZ„) = Fp +F„,

Fp ———p NK~ T 1n(2vMKT),

2|At sp tp

(s4)

Upon substituting and collecting terms after some
algebra

+ = +osc + jotunn (37)

+ ln

(sea)

where t„ is the matrix element connecting the nth
states in opposite wells. Taking the lowest states,
~= 0, as lying on either side of a potential hump
of height AP/4B and average width up, a WEB
approximation yields

E, u, A.
' me2&'/2

t = —'ex p

2 K~T B 2l )
E() A.
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P'me' '"
x exp

might (a) replace tanh y by y if ly! &I, and by +I
otherwise, (b) considering only low-energy excita-
tions, assume that the slow moving walls, v «co,
dominate; then $ = (0 independent of v. With these
appr oxlmatlons

The terms in (88a) are shown in Appendix A to
be the free energy of the phonons specified by (13)
and {14). What is E,„„?We show in Sec. IV that
it is just equal to the free energy of a thermo-
dynamic distribution of domain walls, together
with the phonons. Thus, this detailed functional
integral calculation shows that two qualitatively
distinct low-energy excitations are present, par-
ticularly at low temperature.

IV. STATISTICAL MECHANKS OF DOMAIN WALLS

Let us assume the viewpoint that the domain
walls can be considered as weakly interacting
elementary excitations if, say at low temperature,
they are distributed at random in low concentration
along the one-dimensional model system. %e then
compute the thermodynamic properties, and com-
pare the result with the exact calculation in Sec.
III, to see whether this view is plausible.

The point is that if separated by much more than
a wall thickness, the strain and kinetic energy
fields do not interfere between domain walls. Ac-
tually, there are some interesting kinematic re-
strictions, in that domain walls of the same sign
cannot be adjacent to each other nor pass through
each other while walls of opposite sign can pass
through each other and annihilate. For the present,
we assume that the density of walls is so low that
these finer details will contribute only an "ex-
cluded volume'* type of correction to an otherwise
dilute gas.

To proceed, we need the excitation energy as-
sociated with the wall, which from (1) comprises
kinetic and potential energy terms. These are to
be evaluated for the field given by (15) and (16).
The potential energy, relative to the lowest energy
where u =+ u 0 is given by

E„-2v 2(g, /I)(A'/2a) (1 -~),
2 2 0 Qo 3 PlD 3

m~n=m(2+250/l){u', /2$', ) . (43)

The statistical problem is then that of a "gas" of
"quasiparticles" having the above potential and
kinetic energy, distributed in a one-dimensional
volume.

The partition function is that found for placing
these particles on a line. So that they may be con-
sidered distinguishable, we divide the line into
n, segments having thickness of a domain wall
4 =2+ ), then n, =I./4. The partition function is
then

tw f2~

Zn = Q ) exp( —P m vv2n/2)
ne

n IX, , 8 -~ "~~OP
n. !{n,—n.)!

where B is an appropriate phase space normaliza-
. tion. In the approximation that Z 18 dominated by
the mostprobable n, which if 8 ~~DP «1 is also
the average n„=n, e ~ », then the expression
can be evaluated to yield

The factor 7/60 from integrations will be neglected.
Each of these expressions is easily interpreted,
defining b, = 2/2 $0 as the thickness of a domain
wall. The number of particles in a wall is
(2/2 $0/I ), with mean potential energy approxi-
mately (A /2B)(relative to the ground state). Sim-
ilarly, the kinetic energy may be associated with
a kinetic effective mass of the domain wall mD
given by

Z = ——(u -uo)+-(u -uo),

" dx
DP

2KKjy T
ZD —ZDK~DP- B m

- (45)

DECO dQ I

and the kinetic energy by

(40)

The same result can be obtained more elegantly
using a grand canonical distribution. From (45)
the free energy is

27K+ g
I"D =. ET lnZD = —K~ T n~ 1+ 2 ln

PPl D

with u=u, tanh[(x- vf)/$2 5]. These integrals appear
to be intractable, but in fact can be carried out ex-
actly. However, for interpretive purposes one

=-++7 1+ 2 ln g ~ Dp ~

2nK~T'!
220 Bm

(47)
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We now compare this with the "tunneling contri-
bution" to free energy found from the exact func-
tional integral calculation as given by (38b). In-
serting the definitions for $0, ED&. from Eq. (41)
(but neglecting, —

0 compared to unity), and uo, we
find that (38b) may be rewritten

Z,„,.=-m, T(t/SJX"„)e-s» '"sr . (48)

A. Equal-time correlation functions-low temperature

Remarkably, except for a prefactor of the order of
unity, I'D —= I',„„„. Thus, a qualitatively important
part of the exact free energy is associated with the
excitation of domain walls.

We take this agreement between the phenomeno-
logical statistical mechanical model and the exact
calculation as confirmation of the proposal in Sec.
I that when nonlinearity plays an important role,
both phonon and localized domain wall excitations
are to be found in the thermodynamic behavior. Of
course, the phonon free energy varies slowly (lin-
early) with T in this classical approximation, while
the free energy and concentration of domain walls
drops rapidly (exponentially) with decreasing tem-
perature. However, as we will see in Sec. V, a
number of experimental quantities can depend
strongly on the presence of domain walls.

V. APPLICATIONS OF THE PHENOMENOLOGICAL MODEL

u(x)u(0) = u()(- 1)"~'") (52)

At low density of domain walls, a Poisson distri-
bution should apply, and

P(n (x) ) =
I (n )"~/n !] e "~,

where n (x) = (x/&) e» from (44). The average
value of the correlation function is

(u(x)u(0)) = uo((- 1)" '"') (54)

((- 1)"~'"))= (- 1)' e "~+ (—1)n e-"w

+ (- 1) — e " + ~ ~ ~
2 (n.)'

2f

(( 1)nM(x)) e-an~

whence, where t) =2v2 $0,

(55)

but, of course, does not ever become infinite for
any finite temperature, for a one-dimensional sys-
tem. So much for the functional integral result for
the equal time displacement-displacement correla-
tion function.

Can the phenomenological domain-wall model be
. used to calculate this correlation function? Con-
sider the following model: At x=0, u=uo, except
for small phonon oscillations, but between x=0 and
a finite value of x there may be n (x) domain walls,
At each wall u=+uo flips to +uo. Thus, the corre-
lation function

As discussed by Scalapino, Sears, and Ferrell, '
the two-point equal-time correlation function may
be written
I

(u(x)u(0)) = u)) expl - (2x/&)e»],
(u(x) u(0)) = u)')e "'",

(58)

(57)

(u(0) u(x) ) = Q e-"' -""""'
~

(o
~

u
~
n)

~

', (49)

where again the e„and states In) are those of the
eigenfunctions of the transfer integral operator de-
fined for the functional integral in Sec. III. If we
include higher oscillator states in the sum, we can
find the correlation function characteristic of pho-
nons about ~uo. But a much larger displacement is
associated with a jump from —uo to +uo, at low

temperature, sum (49) is then dominated by the
lowest pair of tunneling states. It is straightfor-
ward using (33) and (35) to find then that

(u(0)u(x)) = uo e '0'"" ' = u() e "' ~,

with X, being identically the same correlation length
given by (51) from the functional integral calcula-
tion. (The exact result differs by —,. )

This result is one more indication that the do-
main-wall model is both formally and practically
valid for obtaining information about thermody-
namic averages in the low-temperature regime.

B. Dynamic correlation functions

For scattering experiments in which some probe
excites a displacement u(0, 0) which in turn induces
emission proportional to u(x, t), a relevant quantity
ls

where the correlation length is found from (33) to be (u(0, 0)u(x, t)'& (58)

eel) P/EcT (51)
and its Fourier transform S(q, w),

in the low temperature region where the tunneling
approximation holds. At higher temperature, when
the lowest eigenstates of (30) are above the saddle
point between wells, one expects an algebraic de-
pendence of X, on temperature. Thus, below some
intermediate temperature, the correlation length
begins to increase dramatically (exponentially);

S(q, (u) =-, ' dxdt e'"" ""(u(0,0)u(x, t)). (59)

This correlation function description is an ideal-
ized model of real photon or neutron scattering.

We have not yet been able to make an exact cal-
culation of this dynamic quantity in the spirit of the
functional integral for equilibrium quantities.
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Therefore, we now rely completely on the domain-
wall model (again for low temperature).

Considering a particular point x, then the phe-
nomenological picture we have is that for a while
u(x, t) is approximately + uo + (2 cos(dot, then along
comes a domain wall flipping the displacement to
—~+ n' cos&pt, and so on. Here, ~ cos~pg is a
small amplitude oscillation with (do = (2 l A I /m)'/ .
These domain walls have random spacings and ran-
dom velocities, according to the distribution dis-
cussed in Sec. IV. Some important features of the
frequency spectrum ean be found as follows: As-
-sume that over a correlation length X„we can ap-

proximate (u(0, 0)u(x, t)) by (u(0, 0)u(0, t)), then

~(q, (d)~ i, dt e '"'(u(0, 0)u(0, t)),
o.(q)

4)o

)v (O

u(0, (d) =— dt e '"'u(0, t).
2w

(61)

This Fourier transform in our model becomes

with ol(q) an approximate spatial transform over a
correlation length. But by the convolution theorem,
the ~ transform of the correlation function is just
the power spectrum (u(0, (d)u*(0, (d)), where

e-ia)tq e-ice(Cygne-4q) ] ~ 8-&(&-ep)(f')+y-&))
u(0 (d) = '

(+ u()) +~ e """o"(
2' —'E(d 27T - t ((d + (do)

t("'&p) (f;t+j-tt)
+ +5 (tl) MP) &~

2m —t((d'+(do)

where the t,. are the random arrival times of the domain walls. As usual, the average of the sum of ran-
dom phased terms in u(0, (d) is negligible, but not so for (u(0, (d)u (0, (d))=X((d), which is found to be

u o [Sln(d(t( —t(41)] ~(2 [Sill((d —(do)(t( —t(41)] [Sill((d + (do) (t( —t(41)]
2

' + 2 2 + 27r D, e, ((d (do) n.w. & ((d + (do) n. w.

The average is to be carried out over the distribu-
tion of arrival intervals (t„,—t, ) domain walls.
Tllis dlstrlbution ls calculated as follows: (1) At
x =0, walls move in from right and left. (ii) The
number reaching x =0 from one side between 0 and
t and having velocity v is the number lying in the
interval L = v t. Thus,

N& (t)=
~

vtn„(2/) d6,
4p

(64)

where )2„(2})is the average number of walls per
unit length having velocity 2}. From Sec. IV,

BBO/4 Wv4)) v /-22
'lo (66)

N(t) = —e o 2}e &" dl}=-NB -m 2 2

24 p t'D

tj& = (2/gbm()) e

(iii) The probability P(t) that no domain wall has
yet reached x=0 up to time t obeys

whence

(66)

The number arriving from both sides between 0 and
t ls

and this is the probability distribution to be used
for the intervals in (63).

%e then must calculate quantities like

6V tg g, sin t 2t~
ta (0 1+4(d tg

D
Pii

From (68), in the spirit of (60), we find

~ 2&i(q) 2 4@q4(d)~ 2 uo1 4 2 2
~ +44) tg)

4+4(& —&n} tl 4+4(~+~a)t/)
i

Here n is a mean-square thermal amplitude of the
phonons with frequency (do (as specified by q).

%e see that the spectral function contains not
only the expected peaks at the phonon frequency Mo,
but also a "central peak" whose height increases
exponentially with inverse temperature as t& in-
creases. This central peak is a manifestation of
the strongly nonlinear domain-mall-type of dis-
placement field, not of coupling to entxopy or hy-
drodynamic modes.

It is tempting to say that this "central peak" is
that seen in computer simulation experiments, '
or in actual neutron scattering experiments. How-
ever, me can only say that it is provocative, for
several reasons. On the one hand, one might argue
that a phase transition takes place in this one-di-

. mensional model at T, =O, since there correlation
lengths become infinite; if that is so, the central
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peak is appearing above the "transition. "' Qn the
other hand, if one could solve the analogous three-
dimensional model, and obtain finite T„ it may
well turn out that the tunneling approximation given
here for one dimension may be applicable only to
the low-temperature regime T«T„ in that case,
the relevance of domains to the experimental cen-
tral peak, T ~ T, would be uncertain. Of course,
it is the region 7.' & T, where the "centx'al peak"
question is most interesting. '

VI. SUMMARY AND DISCUSSION

We have studied thermodynamic and some dy-
namic properties of a one-dimensional model sys-
tem whose disylacement field Hamiltonian is
strongly anharmonic, and is representative of those
used to study displacive phase transitions. - By
studying the classical equations of motion, we find
important solutions (domain walls) which cannot be
represented effectively by the usual yhonon pertur-
bation expansions. The thermodynamic properties
of this system can be calculated exactly by func-
tional integral methods. ' No Hartxee or decoupling
approximations are made nor is a temperature de-
pendence of the Hamiltonian introduced artifically.
At low temperature, the thermodynarnie behavior
agrees with that found from a phenomenological
model in which both phonons and domain walls are
included as elementary excitations. We then show
that equal-time correlation functions calculated by
both functional integral and phenomenological meth-
ods agree, and that the dynamic correlation func-
tions (calculated only phenomenologically) exhibit
a spectrum with both phonon peaks and a central
peak due to domain-wall motion.

Much remains to be done to examine the extent
to which the ideas discussed here apply to real
systems, and how they relate to or are in contra-
diction with conventional theories. Nonetheless,
it seems that such features as clusters (i.e. , re-
gions bounded by domain walls) which appear in
computer simulations of model systems, the "cen-
tral peak, " and the consistency of exact and phe-
nomenological thermodynamic calculations is en-
couraging. However, we also must note that the
lack of any general methodology for discussing the
finite-temperature behavior of extended nonlinear
systems pxesents a formidable obstacle to the pos-
sible extension to higher-dimensional systems, or
to do exact dynamics at finite temyexature.

Finally, we record a few speculative ideas,
which may be worth further development. First, if
these domain walls are present in the low-temper-
ature phase of psuedo-one-dimensional crystals
which have undergone Peierls transitions, the
Peierls energy gap in those walls could go to zero,
the material becoming locally metallic. One could
then have a distribution of conducting sheets (walls)

The density of states in q space is I./v, whence the
density of states in & is

dn I
d&o mo (&u —2I Al /m) ~

It may be rewritten in terms of N= I./I, and a Debye
normalization

J~max dn
d(d = N

=(3IAI / m) ~+

leads to

dn E (d

d(o geo (a)' —2 I A I /m)" ' (A4)

G)m zz = 2
i
A

i
/m + v co/I

The free energy per oscillator is

(A5)

in the classical limit KT» @co. The total free en-
ergy is then

in an insulating matrix; the low-frequency electri-
cal properties and optical properties would not be
simply related, as in a homogeneous medium.
Second, there is the question of whether a soft
mode going to zero frequency is the exact condition
for a structural phase transition. This question
cannot be answered properly until adequate dynam-
ic extensions of the analysis here can be made.
On the other hand, the functional integral analysis
is suggestive that there is a temperature range in
which the collective dynamic behavior will change
from that of oseillations in either of two wells to
that of a single nonlinear oscillator, whose period
becomes very long in the transition region. In our
model, this would occur in the region of Fig. 1(b),
when the effective mass m*= m(co/I Z~T ) is such
that the lowest eigenvalue of (30) lies near the sad-
dle point of the potential. Thus, while it is not cer-
tain that a phase transition will occur exactly at
the temperature where the soft mode frequency
goes to zero, it is very likely to be nearby.
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APPENDIX: PHONON FREE ENERGY FOR VIBRATIONS
IN WELL

The dispersion relation (14) is

(Al)
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~cEs ~ ScoE„)'=KsT A7~
d

ln~ T ~

n 4 k a
(A6)

Substituting from above, after some tedious alge-
bra, we find

F,„NET 2IA i l „,-1 1,mr Co,

S(2 IA I m + r~gao Ea

E~Te

In the bmit l- 0, which is in the spirit of the func-
tional integral method used, (n'es/i)» 2 lA I/m and
sec '- &r; so

+ln 0
~

The first term identifies with the lowest oscillator
level in the functional integral, while the logarith-
mic term is given by (25) and the s, term of (34),
when h = 1, yields

-KsT(lnZ'-Npss) =NKs Tln(cs/2mKs Tf). (AQ)

Note added in Pmof. We can now relate this
problem to several of the mathematically similar
situations in both magnetism and y4 field theory,
as we shall discuss in a separate Comment. Com-
parison with 1-D computer simulation has been
possible, and following formal methods developed
in these related areas we have carried through
exact 2-D, and mean-field 2-D and 3-D solutions.
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