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Estimate of integrated s-wave Raman scattering intensity from the 2'I', ultraviolet
absorption line shape in liquid helium*
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We show in a unified model that the shift and width of the ultraviolet absorption line shapes in

liquid helium are related to the integrated Raman-scattering cross sections. This relation is used to
estimate the magnitude of the integrated s-wave scattering by use of the observed ultraviolet spectrum.
We find 0;25 5 &, /u„& 3.4 The model gives standard results for d-wave scattering. We discuss some
other possible uses of the model.

I. INTRODUCTION

The only observed optical properties of liquid
helium are light scattering, which has recently
attracted a great deal of experimental and theo-
retical attention, ' and ultraviolet bght absorption
on which, to our knowledge, one theoretical~ and

one experimental' paper have appeared. We direct
attention here to a unified model which describes
both phenomena in a single framework. This
framework leads to certain connections betwee~ the
intensity of integrated second-order (Raman} scat-
tering and the width of ultraviolet absorption lines.

Physically, this connection exists because the
possibility of Raman scattering and the shift and

width of the uv absorption line both arise from the
fact that the excited electronic state of a given heli-
um atom can be transferred to another atom in the
liquid via a hopping process. (A more detailed
physical picture of this hopping in the case of Raman
scattering appears in Appendix A. ) The mecha, —

nism of this hopping process is either the classical
dipole-dipole interaction or a, quantum-mechanical
effect such as the overlap of the atomic wave func-
tions of the helium atoms.

Gur interest in studying the relation between the
Raman scattering and absorption arose partly be-
cause the dipole-dipole interaction cannot account
theoretically for the observed uv absorption line-
width or peak position, whereas the dipole-dipole
interaction is used exclusively in existing theories
of Raman scattering. The present theory is partly
an attempt to account for this apparent contradie-
tlon. We find thRt the uv absorption shift RDcI width
e~n in fact be used to estimate the expected s-wave
Raman scattering intensity. Gur model gives a
range of values several times larger than the ob-
served upper limit on the s-wave intensity ai the
two-roton peak. We argue that this implies that
the s scattering at higher frequencies is considera, -
bly larger than in the two-roton region. A large
part of the numerical uncertainty in our prediction
arises from uncertainties in the exact uv shift,
width, and line shape. These may be overcome by

a more complete analysis of the available uv data.
Gur prediction is useful because the s-wave scat-
tering intensity is very difficult to calculate from
first principles and the present study provides a
means of estlmatlng lt by use of data from ultlR-
violet absorption measurements.

Gur results account for the apparent eontradie-
tion discussed above in the following way. We argue
that only the first excited electronic state contrib-
utes to the s-wave Raman intensity. Since the
Raman scattering is proportional to n~, where no
is the polarizability, and the first excited state is
lesponslble for Rbout 3 of Qo, the s-w'Rve intensity
includes a, factor of (~)4 =~8, with respect to the d-
wave (dipole-dipole) intensity. This accounts for
pa, rt of the difference between the s- and d-wave
intensities, while allowing the s-wave effects on
the first excited electronic state in uv absorption
to be large. Another useful feature of our result
is that the explicit connection between the Raman
scattering intensity and uv line shape is independent
of the difficulties recently encountered in properly
calculating the Raman intensity.

In the following sections we first describe the
model and then compare its predictions with pub-
lished experiments on uv absorption. In Sec. IV
we derive an expression for the Raman scattering
intensity and in Sec. V we estimate the integrated
s-state scattering intensity. Section VI is a dis-
cussion. Calculational details appear in appendices.

II. MODEL

The model is an extension of one used in refer-
ence 2 to study ultraviolet absorption. The Hamil-
tonian is
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Here Ro describes the motion of the helium atoms
in the ground state and E~ is the energy of the Pth
excited atomic P state of an isolated atom. The
operators c I~ = (c*;~~, c';~t, c+~) produce a p-state ex-
citation transforming bke x, y, or z on the ith atom
when they operate on any state of the system in
which all the helium atoms are in their ground
states. Xp is the matrix element of the dipole op-
erator between the ground and excited P state. We
will take the e's to be boson operators, as is possi-
ble if only a few atoms in excited electronic states
are present. 3'~ The matrix TPP describes the hop-
ping rate. Because the e's transform as vectors,
T~&~& has the general form'

v",,'=('/'(((„)(s "," —()+(", (R,l(. (2,)

In Ref. 2 we kept only the d apart of this and used
the approximation valid for large x

be associated with a site i or j, TPP& may depend on
the positions of atoms other than i and j in the liq-
uid. We ignore this effect and present an argument
justifying this in Sec. VI.

(e) We restrict attention in (1) to P states because
states of other symmetry are not involved in optical
processes to the order to which we are working.

III. MOMENTS OF THE ULTRAVIOLET ABSORPTION LINES

Here we cite the results of Ref. 2 with minor ex-
tensions. A new feature is the inclusion of both s-
and d-type hopping terms [cf. E(I. (2)]. We have
directly from Ref. 2 that the nth moment MP„of the
pth absorption line defined as

J p (E —Ep)"A (E)dE
(2)

tg'(~) = I/~'. (2a) (M'„)""«n~',«( E, E, ,(,-~ E, E...~-
We demonstrate below that previous treatments of
Raman scattering are special cases of our model
[E(I. (1)]. In these special cases,

t =0, t", (r)=c(~)/~',

where c(x) is independent of p and P', approaches 1
for large x, and is cut off in some phenomenological
way at small x. We also discuss in a qualitative
way the expected exact forms of HAPP and HAPP . Gen-
erally it is a very difficult problem in molecular
quantum mechanics to calculate these functions
from first principles.

The following comments need to be made about
the vabdity of the model:

(a) The c;~ can only be regarded as boson opera-
tors if the occupancy of excited electronic states is
much smaller than the total number of helium atoms

¹ This condition is well satisfied in the experi-
ments to be discussed.

(b) The form of (1) implicitly assumes that the
excited electronic states are well localized and ean
be meaningfully associated with sites i. This is
certainly true for the first excited P state of the
helium atom but requires further justification for
the higher electronic states. We discuss this point
further in See. VI.

(c) The Hamiltonian manifests the Born-Oppen-
heimer approximation in that the first two terms,
describing electron dynamics, contain the nuclear
coordinates only through TPP& . The van der Waals
interaction between helium atoms in their ground
states is contained in Ro. If a large number of
atoms were electronically excited by a radiation
field, the van der Waals interaction would be modi-
fied. We neglect this effect for the reason rnen-
tioned in (a).

(d) For highly excited P states, even if they can

M'„=
~ X,~'"((Fg"')„

in which

PP TPP, ~ TPP ~5k~(R~(-R~
'n-1 'n

and ( ~ ~ ~ ) is the cumulant average over atom posi-
tions. In particular

(I('I, = x, 'p Jrl'r(sx'/r' —()t~/(r)e"'(!(r),

(6a)

( )M. =(lx. l'~ J~'«"(~((;(~). (6b)

where we can take the limit k-0 in (M f), because
t~~(x) is not expected to have long-range parts. In
Ref. 2, Eq. (6a) was evaluated using the form (2a)
for t~~~(x) with the general result

(M', )„=-—,'~p~z,
~

', ( t)

where p is the liquid-helium number density.
The derivation of (7) given in Ref. 2 is indepen-

dent of the behavior of t~~~(r) at small r For the.

MP= X 'p d'rg ~ TPP r ""e'" (4)

where g(x) is the pair correlation function for heli-
um atoms in thermal equilibrium, k is the wave
vector of the light, and z is in the direction of
propagation of the light. A(E) dE is the absorption
rate in the energy range E to E+dE. As was shown
in Ref. 2, the limit in (4) must be treated carefully
when the d part of (2) is inserted for [T ~(r)]*'. In
general we have by inserting (2) in (4) that

M~~ = (M~))~+ (M~), ,
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2~P, statev of helium, we estimate IX~I~ from the
atomic oscillator strength

5E( ——(M i),„~= 0. 212 eV . (9)

using E~ = E —Eo = 21.4 eV a.nd find (taking P = 1 for
the 2 'P, state)

(M,')~= —0. 066 eV,

whereas the experimental shift estimated from pub-
lished data is'

(M,'), = 0. 278 eV.

The result (10) indicates that, even for the lowest-
lying P state, t,(~) makes substantial contributions
to the line shift. This provides part of the motiva-
tion mentioned in the Introduction for investigating
and estimating the contributions of t, (r) to the
Raman scattering.

We next review the expression from Ref. 2 for
the second moment of the absorption line and com-
pare it with the experiments. One has from Ref. 2

that

I]= ix~1'(o'/&) f& ~i &'~~ d'~ ((." ( „~„r) (((r,„-r;)g (r;, r )]~"""'"(T"(r„)~ v"(r;,&]'*

+ l&~l '(p'/iV) d'&& d'~2[T "(r») T "(r»)1'"g2(~») .

In (11) the correlation functions are defined by

3' '* f{r» . 'a)&n(rs» rn)d 'rs d ~n~

M; = {MP„+2{M',)„+(My„.

g {f(R;„",R;„))=p" (12)
&f~"'t &n

where the prime on the sum on the left-hand side of (12) means that terms with any pair of f 's equal are to
be omitted and f is an arbitrary function. The definition (12) is equivalent to that of Ref. 2 except for the
factor p" on the right-hand side. The g„(r„.. . , r„) used here are dimensionless, and ga(x)=g(x).

Inserting Eq. (2) in Eq. (11)we have

( '&, =l .l'('»f ",f ",f "( ("» '&- (» ) (" )] "'"'"'( (g) !'( )]-

+
I &pl (p /X) d'r, d r2[T~~(r») ~ T~~(r»)]""g,(r»), (14)

where p, , v take the value s, d. T~~ is the first
term in Eq. (2) and T'„' is the second term in Eq.
(2). The first term in Eq. (13) was evaluated in
Ref. 2 using Eq. (2a) for t~{r) with a, step-function
cutoff and using the Kirkwood superposition approxi-
mation for g, (r„r~, r, ). The result was

(M,')„,=ll. splx, l'. (15)

To compare this with the experiments on 2 I'& line,
one must determine the experimental second mo-
ment with respect to the unshifted atomic frequency
E~. Since the experimental data have not been ful-
ly analyzed, we cannot compute this moment di-
rectly. We relate it instead to the line width 8'~

by

I (E —E, —5E,)2A(E) dE
~~

fA(E) dE

The factor X~ reflects the fact that the ratio between
the width and second moment depend on the exact

line shape. Simple models for the line shape give
2& (]('~) & 20 as reasonable bounds for this factor.
Note also that the values of 8" and the line shift
&E, used below are somewhat uncertain since they
are based on an analysis of the data using a, Lorentz-
ian ansatz for the absorption line.

It is easy to show using (13) and (16) that

(M', ) = (W'/q~)2~ (M',)'. (17)

Using the measured values 8'~=0. 43 eV and M,'
=0. 212 eV for the 2'P, state and 2&()(')2&20 gives

O. 232& {M')'~'& O. S76 ev.
On the other hand, again using the atomic oscillator
strength for the 2 P, state, we have from (15) that

[(M,')„„]'~'= O. O5S eV

Comparing (18) and (19) one sees that the inade-

quacy of the dipole-dipole part of T~~ in accounting
for the second moment is quite marked. This
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might have been anticipated from the form of Eq.
(11) and the analysis of Ref. 2 because it turns out
that the long-range part of the dipole-dipole inter-
action does not contribute to (11), while it does
contribute to (4). Thus the second moment is de-
termined largely by short-range interactions be-
tween an excited and a ground-state atom. These
short-range interactions, arising partly from wave-
function overlap can be expected to have a substan-
tial s-like part.

The total intensity of the second-order inelastic
(Raman) light scattering in liquid helium will be
shown in Sec. IV to be bilinear in T and of a form
similar to (14). If the uv width has substantial s-
like contributions, we might then expect the Raman
intensity to have s-like contributions. This conclu-
sion is verified in See. V.

14 was made, so that the consequences we find
were not pointed out. In this section we treat the
electromagnetic field oQtskf8 the sample of liquid
helium semiclassically (this is entirely adequate
for the experiments in question ) but we give a
fully quantum-mechanical treatment of the polar-
izability of the liquid helium in contrast to Refs. 10,
11, 13, and 14. In Appendix A we obtain the same
results by quantizing the electromagnetic field in-
side and outside the sample and using the Fermi
golden rule in third order. The latter approach'6
is in some respects simpler, but it obscures the
question of which effects are really quantum me-
chanical.

To calculate h; (R, a&„) we use the fact that the
intensity I," (R, v„) of scattered light at the point R
is14e 17

IV. RAMAN SCATTERING INTENSITY

Here we derive an expression for the Raman-
scattering extinction coefficient h; (R, &u„) defined

h; (R, &o„)=I- (R, v )/Io,

where I; (R, e„) is the light-scattering intensity per
unit volume of sample, per unit solid angle, per
unit of light frequency emitted in the direction R at
frequency &„and with polarization e„. Io is the in-
tensity of incident light. This quantity has been
calculated many times before '4 for Raman scat-
tering in bquid helium. The difference between
earlier treatments and the present one is that we
use the Hamiltonian (1) and thus treat the electronic
excitations explicitly within our model.

In the treatments of Refs. 10 and 12-14, the elec-
tronic exeitations are taken into aeeount implicitly
through the polarizability in a semiclassical model.
As we will show, this approach, in general, gives
complete results only when V is of form (2b). We
have argued in Sec. III, however, that there are
experimental grounds for believi. ng that T contains
substantial parts of an expbcitly quantum-mechan-
ical nature which are not of this form.

In H, efs. 9 and 11 the electronic excitations were
treated explicitly. In the first of these, the dy-
namics of the liquid was treated in an unrealistic
approximation. In the second previous work treat-
ing the electronic excitations explicitly, '~ an ap-
proximation equivalent to that of Refs. 10, 13, and

I; (R, (o„)=
( )~

(iE'; (R, (o„)i ), (21)

where E';„(R, &u„) is the time Fourier transform of
the component of the electric field of the scattered
light in the direction of the unit vector i„. 27 is
the duration in time of an incoming pulse of light
and 0 is the volume of the sample scattering the
light. The average ( ~ ~ ~ ) is a statistical average
to be taken over the states of the sample. Solu-
tion' ' ' of Maxwell's equation gives the following
result for the time Fourier transform E(R, ~„) of
the total electromagnetic field at a point R far from
the sample:

E(R, ~„)=E,(R, &u„)+E'(R, ~„),
where

(22)

dt & @fe&t ' y3+ ~-5(u&/c)B«x" '
p

(23)
Here Eo(R, &o„) is the time Fourier transform of the
electric field of the incident pulse of light. In (23)
the integral on r' is over the sample volume, so
P(r', t'), the polarization at point r ' and time t ',
should be treated as an operator. Taking the dot
product

E,'- (R, ~„)=e„~E'(R, &u„)

we have for the important factor in (21) the expres-
sion

where we have assumed that ~ is much larger than
any correlation times involved in the expectation

t

value. We have written k =(&u„/e)R, which is the
wave vector of the scattered light. In (24),
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P(r, t) = P (Xp c~p+Xpc;p)&(r —r,(t)) .
i9P

In the presence of an external field E,(r, t), Eq.
(1) becomes

pp'.$C= Epc'xp C. —~ dip ~ T g. ~ d.p,
i9P p, p' && j

where

—~ Eo(r{) t) (Xp c{p+Xpcip) +SCo,
i9P

(26)

Ko(r, t) = Eo cos(k, ~ r —{oot ) .

P", (r, t) =k„P(r, t),

where we take P to be an operator since it refers
to processes inside the scattering volume. We have
used k„(1—RR) = k„. To complete the derivation
we must find P(r, t) in the presence of an external
fieM Eo(R, t). Within the model described by Eq.
(1), the operator P(r, t) is

E(q) = Q np({oo)np, ({do)k„~ T '(q) ~ io.
P9P'

(36)

Here the spatial Fourier transform of TPP (r) has
been defined as

Inserting P'o'(r, t) in (24) gives the usual result
for Brillouin scattering:

k';" = p({o„/c)'no({oo)(ko i„)'S(ko —k„, {o„—{oo) . (34)

The only interesting feature emerging for Brillouin
scattering in this treatment is that the frequency-
dependent polarizability appears. In practice this
is not important for liquid helium because Ep-20
eV and k{oo- 1 eV, so that (34) reduces to the usual
expression. Putting (32) in (24) we find an expres-
sion for the Raman-scattering extinction coefficient

k';"(R, {o„)= ( p'/2 z)((d„/c)' Q E(q}E(q')
a9 a'

xSz(q —k„, ko —q, k„—q', {o„—{oo),

(36)
where

The equation of motion of c;p is

'P = —i(ape, p+ (iXp/k)Eo(r„ t }
T"'(t()=J d'~e "T"(r)'' (37)

f'

P gg PP'. d
L {PE

' 0] (27)

where {op =Ep/h. We now take into account the fact
that {dp» l T;, l'/k» (frequ. encies of atomic motion)
to approximately solve this equation. (A{op" 2Q eV,
T- 0. 1 eV while the energies of nuclear motion are
1Q ' eV. ) The solution of (27) is given in Appendix
B. This result, inserted in the expression (25) for
the polarizability gives

P(r, t) =P"'(r, t)+P'"(r, t)+ ~ ~ ~ (28)

where

P'"(r, t) = no((do)QEo(r{, t)6(r r{(t)), -

~Ep trp t'
no({oo) = 2~ Ez @z

p p

where

where G„(q) is the spatial Fourier transform of
[c(r)/r'](3rr 1), whe—re c(r) is a short-distance
cutoff function such as R(l'r-al') [cf. Eq. (2b)].

If we insert the following expression for T,

TPP (r) = [c(r)/r'](3rr —1), (38a.)

in Eqs. (33), (36), and (37) we obtain

E(q)=gnp(~o)np (~o)~. G&(q) ~o

S,(k„k„k„{d)
1 +00

{Pk{( )Pkk( )PkZP {k{+kZ+kkk-) '
w c(o

Equation (35) is the same as the expression obtained

by other authors ' for the scattering intensity. In
these treatments E(q) is replaced by

E'(q) = n', [k„G„(q).~o ], (38)

Eo = S(do (31) = no({oo) kn ' G({(q) '
&o ~ (38)

P' '(r, t) = gnp((do)

where

x TPP, 'np, ({do) E,(r, , t)6(r —r, (t)) (32)

I'Xp l~Ep
np({oo) = 2 Ez @z' ~

p 0
(33)

The successive terms in (28) represent increasing
powers of lTPP&' l/Ep. no({do) given by (30) is the
dispersive form of the polarizability.

so (39) is the same as (38) with no replaced by
no((do). The appearance of the factor no({do) is due

to the assumption in (38a) that TPP'(r} is indepen-
dent of p and p'. While this is certainly true for
large distances, there is no reason for it to be so
when r is small.

We now investigate the contribution Tpp (q) to the
form factor (36). The possibility of an s-like con-
tribution to the scattering has been discussed on
symmetry grounds by lwamoto' and by Cowley and

Woods. ~ To express our result in the language of
reference 13 we write (taking ko-O, k-0 and as-
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suming that Et » Eo)

H(q, , q„&)=(X /2&)S4(-q& q» q &)

f.,(q)=xZ .(~)~, ( )[T"'(q)]
Qop p

and have

(4O)

(41)

In Eqs. (52) t,(r), tt(r) are defined by Eq. (2).
Equation (47) then becomes

Q4
f.(q)f.(q')H. (q, q', ~),

47tN q ~t

6 4

f.(q)f.(q')H. (q, q', ~),
5 4'~~;

(53)

(54)

where

(d

C n ere
(42) in which H, t(q, q', ur) are defined through the rela-

tions

H(q, q', ~) = Z y'(q)y'"(q')H&'™(q, q', ~),

(44)I j)«6((o) = X5 ()5«()+ p(5 «5()()+ 5 65()«)

which permits hp'((d„. ) to be written as

h',- '((4)„)= (p /I)I )((d)„/c)

x$(X+'-, p)(&0 E„) + p[1+3(eo'&„) ]j, (45)

while using (43) and (44) gives

hP'(&u„) =
p( (d/ )c4(1/X')

x (I,((o)(&0 e„) +It((»))[1+ 3(4-'0 e„) ]]'
-=@,'"((d)(~, ~„)'+I),")((d)[1+3(i ~ e )'] (46)

where

Im()«()(&) =
& + f~))(q)f»(q )H(q, q, ~), ~ = ~.—~0.

(43)
(43) is identical to (5. 7) of Ref. 13. (41) gives an
explicit expression for f t(q) within the model used
here. Using the fact that the fluid is isotropic in
the absence of an electromagnetic field one then has
in general that'o

l, m
lt, mt

H, (q, q', (d) =H', (q, q', &o), (55)

H„(q, q', co) = —Ha', (q, q', &u)+2H, ', (q, q', v)
—H2', -3(q» q» &) ~

V. INTEGRATED s-WAVE SCATTERING INTENSITY
ESTIMATES FROM uv ABSORPTION

To illustrate the usefulness of the unified picture
outlined here, we use the results of Secs. III and
IV to establish a connection between the integrated
s-wave scattering intensity and the shift and width
of the uv absorption.

To obtain a prediction for the s-wave scattering
intensity, we integrate the first of the Eqs. (53) on
frequency to give for the s-wave part of the extinc-
tion coeff icient:

I
P ~(d

QpQptt QptQpt tt

I„t(~)= ~' Z 6'., &(q)6:„,(q~)H(q, q', ~),
gt

6', (q) =--'Tr f (q),

6'.(q) -=f.,(q) .
(46)

(49)

ptt pt tt

x(ttt" (x„)tt't"'(r„)e"'"e '"o'»),

where by (2)

t',"(~)= .' Tr T"—'(r)

(56)

f, »j(q) = ~ P &j»((»)p)&j» ((do)t, (((q)
Qo p pt

6'.(q) =f.(q),

&t(q) =3 "2' f~(q),

(51)

»»» (q)=4»f r»(»» (r)j (qr)d'r,
'

»»» (q)=4»f r'»( )j(qr)dr'»»r,
(52)

Finally, (47) is expressed in terms of scalar func-
tions characterizing the light-fluid coupling by
writing

f (q) = f.(q) 1+ (3qq 1)f,(q), - (50}

where

IXp I F.p (57)
p p 0

[The general form for the integrated intensity may
also be obtained by integrating (35) with respect to
&u„or summing the square of (A14) over intermedi-
ate states. ]

tt(r) has the dimensions of density (inverse vol-
ume) and nt has the dimensions of polarizability
(length cubed). The prime on the sum on sites
means that we take only i&j and 0& l. We now
argue that we can limit the sums on P, P', P", P'"
to the first excited p state, as long as the integral
on the left-hand side of (56) is cut off for frequen-
cies smaller than those of experimental interest in
Raman scattering. To make this argument we re-
turn to the Fourier-transformed form of (56) [Eqs.
(46), (51), and (53)] which is (omitting factors de-
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2 X PHONON —ROTON

~, =io K

-iA '

FIG. 1. Sketch of twice phonon-roton spectrum ilt.us-
trating the argument for limiting sums in Eq. (58) to the
term with p=p'=p" =p '" =1. The shaded area indicates
the region of the (d -q plane in which both the factors in-
volving t~ and the factors involving H are expected to be
substantial.

pending on k, ko)

k (&t})d&() =p—(1) 0
QpQpg t QpsQpsz s

c 47TN p pe
pit pttt

22 K te"(tt}te'2 (e )ftt,"(e', e'', »)det. (es)
t40

Now the existing approximations for H(q, q ', &d) in-
dicate that the dominant contributions)for K(d/ks
~ 10 'K come from values of q and q' which are
greater than or of the order of 1 A '. On the other
hand, t~~'(r) is expected to be of range R~~, which
increases with P and P'. Thus t~~'(q) can be ex-
pected to have substantial weight for q& 1 A 1 only
when R~ ~,

~ 1 A (Fig. 1). A rough measure for
Rp p, is the sum of the radii of the ground state and
excited electronic state P or P'. For the first (n= 2)

singly excited state this sum is already about 2. 3 A

and will increase roughly as n for the higher
states. The other excited states are also large.
Hence we assume in the rest of this section that the
sums on P, P', i}",P''' in (56) can be truncated at
the first term. With this assumption (56) becomes

Q4 ~ 4
P & (} g tit»(& )t»(z )e(&(i ~&(, )0 ~p(}) -(59)
4~ fjkl

a long-range part (2a) which is important for
g & 1 A 1 and is not state dependent.

ln the same notation, the s-wave contribution to
the second moment of the uv absorption line around
the excited state 2 P, is [using Ref. 2—this is
equivalent to equation (14) of the present paper]

(i&f )„= E —Q (t ( y)t ( y))

-(d~ Z'( 22(2et)
)} (60)

t 11 ~ t 11 y ~ lj', tf-&0) rlk
i jk l

(63)

while the moments of the absorption line involve the
sum

t11 + t11 +
ijk

(64)

The exponential factors have been dropped in (60)-
(62) and (64) since the range of t," is much less
than 2m/ko or 2}T/k. In (63) they need only be re-
tained in the terms for which all four indices are
distinct. To compare these two sums we write
them in terms of the static correlation functions
defined in Eq. (13).

where we have neglected the frequency dependence
of the Qp and the prime on the first term means that
i 0j and j &k (though i can be equal to k) The. s-
wave part of the first moment of the uv absorption
line in this notation is

(~o) &~E& g &to~(, )) (61)
'4 j

so (60) can be written (specializing to P = 1) as

Q E
(M'),.+[(M').1'= 4~' Z «."(&;,)t,"(r, )) .

ljk
(62)

Comparing (62) with (59) one sees that the s-like
Raman scattering intensity involves the sum

where Q, is that part of the polarizability arising
from the first P state. Note that this argument
limiting the sums to the first P state cannot be made
for the d part of the scattering because t~~~ (~) has

I

SR = 2sa+4S3+S4

S~ = S2+ S3,

in which

(65a)

(65b)

S2=P g2 r,2 t, X12 d @1~, ga y =g y, (66a)

(e /d} f dt(22 22 t,)t!'(e„)t!'(e„)d'et d'e2 d e (66b)

de = (»Id) f dt(2'2 2'2 2' 2'2}t (e»)t (e 2)e"" "2 '»d e d e d'e d e,

Combining (65a) and (65b)

s =2S„~2s,+s, .

(66c)

Equation (62) will be used to get a number for S„ from the data on ultraviolet absorption. No such strategem
is available for S4 which we estimate in the following way:
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S4--(p'/N) [g4(l, 2, 3, 4) —f(R)gz(1, 2)gz(3, 4)]e"~ 'o'"t,"(12)t,"(34)d(1) d(2) d(3) d(4)

+ g~12g~34 Re~ -0~ t~~12t~~34 d1 d2 d3 d4 (68a)

Here we may take R= z~(r, +r2) —&(r, + r4), because t,"(r) is of short range and f(R) is an arbitrary function
to be chosen so that the first term in(68a) is small. In Appendix C we argue that this can be accomplished
if f(R) is taken to be a. step function that is 0 for R~ R, and 1 for R &R„where R, ~ 3. 17 A. Our estimate
for S4 is then

S, =—p' J) g, (12)g,(34)[f(R) —1]t,"(12)t,"(34)d'r» d'r, 4
d'R

—p' e'" 0~ d R g~ 12 g~ 34 tst 12 tis 34 d cud r34

4 R 2

p p g yt11~
{68b)

S = K [(M') ]'/
i X, i

', (69a)

By use of equations (59), (61)-(64), and (69a),
we may now obtain an estimate for the s-wave scat-
tering intensity from (69) in terms of known quan-
tities:

because k &ko.
Thus (67) becomes

4mR3 2

SR =2S„+2$3—p p le~(r)t, (r)d r . (69)
3 J

To estimate S~ from (69) we must have information
about S,. To get this we use the Kirkwood super-
position approximation g~(123) =gz(12)g2(23)gz(31} in,

(66b). Owing to the short range of the function

t,"(r) and the rapid fall off of g(r) at small r, the
range of values of r» and r» that contribute to (66b)
are limited between about 2 and 2. 5 A (cf. Appen-
dix C). Let 0 be the angle between r» and r2, . For
6 2m it follows that 2. 8 A- x»- 5 A. For this
range of values, g, (13) is about equal to 1 or larger
and does not vary rapidly. As 8 decreases, the
factor g, (13) will rapidly become much smaller in
the effective region of integration owing to the de-
crease to zero at small x». Hence the contribution
to S, for 8& ~m will be considerably smaller than for
6 —«~ It ma.y even be negative if t,"(r) changes
sign but the magnitude must be less. Thus to esti-
mate S3 we replace g2(13) by a constant and use (6b)
getting

P 164x10-»&y & 0 534x1P-~~ cm-~ (71)

If we compare this to the experiments, we need
to know an absolute value for the experimental ex-
tinction coefficient. There is some dispute about
the right value for this. We use Baeriswyl's
value'4 of

JI
It&"(~)d~ =1.3+0.4x10 "cm ', (72)

where h'~'(e) is h ~'(e„) summed over 0„. This is
related to the d-state scattering by

h(1) ~ d 3
~ (73)

Equations (71)-(73) give

0. 25»s, /s„& 3.4 . (74)

A precise measurement of the polarization depen-
dence of the Raman scattering is available only for
a region of e about 5 'K wide at twice the roton fre-
quency. " Over this restricted frequency range one
finds that

0. 0514» (Mz')„» 0. 134 eV2,

from equations (13), (18), (19) using 2s(y')~ 5 20
and (M,'), =0.278 eV [Eq. (10)], E, =21.4, p=0. 0218

2~K~ 1, o.', =6.68x10 A (from oscillator
strength 0. 28), 2mc/&so= 5145 A (for Greytak exper-
iments}. We find

{2(Mz),+ (2+ 2K —pV&) [(M~&),] ],
I (70)

h"'~co dao
(75)

where from Appendix C

V~= 3'), R, =—3. 17 A.
Here we have used the fact that (M,'),~= 0 which is
proved in Appendix D. The right-hand side of (70)
is expressed entirely in terms of known quantities:

(The two-roton peak accounts for about ~ of the ob-
served integrated scattering intensity. ) Since (V5)
is considerably less than the prediction of S,/d~ in
(74), we conclude that the s scattering must be con-
siderably larger at higher & than in the two-roton
region. This is reasonable since the short range
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of f,~(r) means that the associated f,(q) [cf. Eq.
(51)j may be large at high q and hence make I, (&u)

[Eq. (4V) j relatively large at high cu. An experi-
mental test of this possibility would be of great
Inte x'est.

We now consider the reasons for the uncertainty
in (V4) within the context of our model for the s
scattering. (Discussion of the assumptions of the
model itself is contained in Sec. VI. ) The most
important of these is the connection between (M',)„
(M2'), and the uv experiments. ' Since a full analysis
computing the absorption line from the ref leetanee
data has yet to be performed, the shift and width

values for the absorption used above are only ap-
proximate and the adjustable factor X~ relating the
width to the second moment had to be introduced.
Some further uncertainty is introduced by the ex-
perimental error in a„. the fact that e, in the»quid
is not known precisely (analysis of the uv data
should resolve this); and the assumptions made in
estimating (Mz'}«, Ss, and S4. The contribution of
(~~)« to (V4) is quite small so the error in it should
be unimportant. More careful estimates of S~ and

84 ean be made once the uncertainties in the experi-
mental data have been resolved.

VI. DISCUSSION

The most serious approximation we have made is
the assumption that the sums on P in the s-wave
scattering can be limited to P =1. We believe that
our argument for this approximation is a good one
but it is difficult to make it quantitative.

It would be particularly desirable to discover the
spectral shape of the s-wave scattering to aid ex-
perimentalists in looking for it. This would be
possible from Eqs. (46), (4V), and (52) if a form
for t»» (»') were known. Unfortunately t»~(r) is
precisely what we don't know. One could look at
models of t»»»(») but the results are not likely to
be meaningful until a completely convincing calcula-
tion of the detailed structure of H(q, q ', &u) is avail-
able. We emphasize that our ordex of magnitude
estimate of the s-state scattering intensity ean be
improved by more detailed analysis of the uv ex-
periments. Nevertheless, a more detailed expexi-
mental study of the polarization of the Raman scat-
tering at high frequencies is wax ranted by this
study.

Another interesting feature which can be fuxthex"

puxsued is that the line shape of the d-wave Raman
scattering (unlike the uv shifts) depends in a de-
tailed way on the short range behavio-r of t~~~ (r)
which is approximated in the existing models by a
8 function or other ansatz. It will be interesting to
see what the experiments tell us about this, once a
reliable calculation of H(q, q', e) has been per-
formed. In any case, the possibility that t~~»' (t')
has peculiar short-range behaviox should be borne

in mind in discussing the experimental light-scat-
tering evidence concerning the right form of
H(q, q', &u).

We note that we qualitatively predict a substantial
s-wave scattering matrix elexnent owing to elec-
tronic states with P & 1 when Raman scattexing en-
ergy transfer is below about 10 K. It would be in-
teresting to see if this is borne out experimentally,
though the density of states [ or H(q, q ', &u)j is
small in this frequency region.

In deriving our general expression for the Raman
scattering (including d scattering), we have as-
sumed that the excited electronic P states can be
associated with a single (central) atomic site. This
is certainly reasonable for the first (n = 2. ) excited
P state, since its radius is less than the average
interatomic spacing. One must consider a,ll the
hlghex P states as well, howevex. In fact only
about one-fourth of the polarizability n() is due to
the singly excited states, the continuum states
giving the largest contribution. ' Since most of
these are quite large (the + =4 singly excited state
will already have a, radius of about 8 A), they will
feel the effects of an average over many atoms.
The dielectric constant of helium is very close to
1, so these states can be expected to be very simi-
lar to the corresponding free atom states. This
argument is bolstered by the fact that no for the
low-density gas is only about 3% larger. than for
He II. ' By the same reasoning, one expects that
the "hopping" function T should depend on two
atomic sites only, as we have assumed. These
arguments about the excited states and T are prob-
ably weakest for the smaller singly excited states
(especially the n=3 state)„as is also indicated by
the absence of a peak corxesponding to a 3 ~P, final
state in uv absorption. ~ Finally, we note that the
theory ean be applied to light scattering and light
absorption in other rare-gas liquids.
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APPENMX A: DERIVATION OF RAMAN SCATTERING
RATES USING PERTURBATION THEORY AND

QUANTIZED ELECTROMAGNETIC FIELD

In this appendix we obtain an expression for the
Haman scattering rate and extinction coefficient in
a fully quantum-mechanical treatment.

We are dealing with thixd-order processes like
the one illustrated in Fig. 2. (1) The incoming
photon excites a P state (P} on site i. (2} A second
excited P state (P') is created at j while the one at
i is destroyed through the hopping term. (3) The

P state at j decays to the gxound state with emis-
sion of the outgoing photon. We refer to the excited
electronic P states as "excitons" below, since they
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~ —er&ze ~ ' &&a&&+ H. c.
~V &p

(A2)

where r@ is the coordinate of the Pth electron as-
sociated with the nucleus located at R;. In the di-
pole approximation we have

kn ~n g- er, ,=d, =Pd,„ (A3)

FIG, 2. Typical third-order scattering process calcu-
lated in Appendix A. The incoming photon ko co excites a
virtual state p at site i which is transferred by the hopping
term t to a virtual state p' at site j that emits the out-
golIlg pl10totl k„&„.

are similar to Frenkel excitons in solids. The
amplitude for scattering by these processes is cal-
culated in third-order perturbation theory and its
square is taken to find the scattering rate. Several
terms arise in calculating the amplitude since we
must consider aQ possible orders in which the pho-
tons and excitons may be created or destroyed.
Our treatment is similar to the calculation of Naka-
jima, "the main difference being that we allow the
possibility of more than one excited P state and do
not restrict the form of the hoppi. ng term.

The Hamiltonian [see Eq. (l)] is the sum of K,
and a perturbing term & ' describing the coupling to
radiation and the exciton "hopping"

h++ ex ~

A gg
(Al)

(&F~pn '&Ã "+H c. )~
Q~Qn mn

T q» 6~p»,
fJ

pp'

where p„, e„, and m„are, respectively, the mo-
mentum, charge, and mass of the nth particle (he-
lium nucleus or electron) inthe system. ay~ is a
photon annihilation operator, k is the photon wave
vector, & is a polarization index, and V is the
normalization volume. &0 is the Hamiltonian of the
liquid with no excitons present (the "ordinary" liq-
uid). We express X,'„ terms of the c;p by use of the
dipole appl oxlmatlon

d p =Xp c.p+Xpcip

Xp is the matrix element of the dipole operator be-
tween the ground and excited state P. The time
derivative of d;p is then

d;p
—(i/k)[d)p, 3C]

= —(i/+)Ep(Xpc, p X*,c '„) . - (A5)

We now do time-dependent perturbation theory on
the system +g++ with + as a perturbation to find
the transition rate from an initial state (of the total
unperturbed system) I Or) with no excitons and no
photons of wave vector ko and polarization co to a
final state I'nr) with no excitons and plo —l photons

eo and one photon k„, e„. The states )mr)
are taken to be products of eigenstates Im) of +
and unperturbed exciton states and free photon
states, consistent with the Born-Oppenheimer ap-
proximation. In the same spirit we neglect Xo in
computing d in (A5) since the R; may be considered
stationary during the scattering process (the times
associated with thermal motions are very long com-
pared to 8/Ep or 5/7). '

In computing the amplitude for the transition from
IOr) to 1nr), we must keep only those terms linear
in &, since Raman scattering corresponds to a sin-
gle exciton "hop. " Thus a second-order perturba-
tion term like &~„X~„cannot contribute since it is
independent of T. The photon-matter coupling term
proportional to A (which we have not explicitly in-
cluded in &,'„) does not contribute for the same rea-
son although it must be kept to get the complete
Brillouin amplitude. "

Thus we must compute all third-order terms of
the type &,'„&~„&',„. Since we consider the case of
low incoming light intensity only, we may neglect
terms of higher order in &,'„. This corresponds
to keeping only the lowest-order terms in an expan-
sion in powers of pro. In calculating these terms
we may replace X~h by

1/8
p g 2MO ~a.~Ep(Xpc)p —Xp c g, ) ' gogg 8 o

koVSc ap (A6)
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or
&,12

'5C t = 'p
. PEp(Xpc&p Xp c ~gp)

.e„ak e
k„VSc ip

(AV)

depending on whether a photon is destroyed or created. We have for the transition rate in general

(A8)
2w p (nrlR'I mar)(marI3C'Im, r)(m»IK'10r)

where eo, e, c„are energies of the total unperturbed system (eigenvalue of $C, plus photon energies).
Note that the full expression for the scattering rate is actually the square of an amplitude which is the sum
of a Brillouin term (independent of T) and a Raman term. However Baeriswyl has shown'4 that the cross
term gives a negligible contribution at Raman energy transfers. Now define the transition amplitude

(nr I iC' I m»)(m» I Z '
I m, r)(m» 13C

' I0„)
(t-; —60+ tg)(e., —60+ 2'g )

1 2rtBO 1/2

2A'c V
(A9)

There are six terms contributing to yo „corresponding to the permutations of K„', X,', M,'„. The term d-c-
ex is

(A10)

In (A10) the states In) and (0) are eigenstates of the "ordinary" liquid Hamiltonian Ko—the photon and exci-
ton coordinates have been integrated out. The polarization due to the state p is

l Xp I h)P h)P
o'p(&0) = 2 3 p

= op a a, Ep ——8(up, Eo ——h&uo (A11)
Ep h)p —h)p (dp —h)O

and we have used &„.T,.;P co= ep T,, &„ which follows by time reversal invariance. Since none of the ener-
gy denominators are small, we have neglected contributions of the change in the eigenvalue of Xo to them.
Further we have replaced the final photon energy E„by the initial photon energy Ep since their difference is
of the order of thermal energies. Adding the terms arising from c-d-ex, ex-d-c, and ex-c-d to yp"„' gives

2
p

EP+ EPP +P —EO EPP —EO
(A12)

The only terms remaining are d-ex-c and c-ex-d. They tend to cancel Zo"„' since, in the former for in-
stance, 'K,' creates an exciton while „' destroys one which brings in an extra minus sign. Furthermore,
the part of &,'„ that contributes is

~
~ ~ ~ ~ ~ ~ ~c;P T,-,. ~ c,.p, +~c;P ~ T;,. c,.p, = 2~c,.p ~ T;,. ~ c,p, ,

$ Jt

PP'

so an extra factor of 2 arises. Evaluating these terms gives

(A13)

Combining (A9), (A12), and (A13) then gives

n

Pf &i

(A14)

where the frequency-dependent polarizability of
each P state appears

2
h)P

o'p(~0) = c'p a
h)p —h)p

tx, l' z,'

Note that if T is independent of P and P' and we set
op(eo) = np then &o „ is proportional to no as in phe-
nomenological treatments of Raman scattering.
(A14) is to be compared with Eq. (32), the expres-
sion for the polarization operator found in the text.

Note that the photon and exciton coordinates have

been summed out of (A14). Hence the scattering
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rate may be computed using the method applied by
van Hove to thermal neutron scattering, and the re-
sult w10 contain a time-displaced correlation func-
tion referring to the liquid in thermal equilibrium.
The final result is more complicated than the cor-
responding formula for neutron scattering for two
reasons. First, the amplitude Xo „refers to two
liquid sites so four density operators appear in the
dynamic correlation function. Second, this function
is integrated with two hopping functions T~~ which
(aside from constants and polarization factors) ac-
count for the light-helium coupling.

Now the scattering rate of energy transfer A~ is

R(~)=Z
@ ~o,.l'5(@~-e.+eo),

where e„and eo are the eigenvalues of Xo. Since
Xo „can be considered the matrix element (nlrb IO)
of some operator A., we have

tt(~)=~ f e' '(0 d" (t)d(0)~ 0)dt, (A1V)

where A(t) propagates according to ICO. Combining
(A 14) and (A 1V) gives

tt(te) ( ) e tee P~" (F(R (t))F(R (0))e-'t'e gm-(, tone'i e, tei-S. „teu)e' dt
lg

(A18)

where consistent with E(I. (36}

F(R(~) =Qotp((tt)o)otp ((do)EO ' T(

R(u)h(t)„7' [V/(2m)3] d k„

=R(~)K(d„T[V/(2w)') d'0& k'„(d(d„/c), (A23)

eo i.s the frequency of the incident photons, and we
have summed (A1V) over a thermal ensemble of ini-
tial states. Now (A18) may be written

R(~) = —' n, ~ozp' QZ(q)Z(q ')
V aa'

where we have multiplied by the number of photon
states in dsk„. Dividing by the sample volume and
time, solid angle, and frequency intervals gives

1 V co„I; (R, (d„)=—,B —" R((o)0 (2»)' c

and so
x S,((I —k„, k, —(I, k„—(I ', &o),

where 0 is the volume of the liquid and

F(0) Je "'F=(e)d'e,

S4(k~; k2, ka, (t))

=~~ Jl
e'"'(pg, (f)ps, (f)pl,p-(l„~,.~, )& dI

(A19)

(A20)

h; (R, (d„)=To—,—R((()), (A24)

where we have neglected the difference between (do

and (d„. Combining (A19) and (A24) we have

0;„(tt, ~.)=0,[—,') 0' ZF(tt)F(tt')
a» a

&&S,((I —k„, k, —(I, k„—(I, (0) . (A25)

This is the same as the expression (35) obtained by
treating the field outside the liquid classically.

[See E(ls. (36) and (3V). ]
Now we calculate the Raman scattering extinction

coefficient defined (cf. Sec. IV) by

h; (R, (d„)=I; (R, (d„)/Io, (A21)

where I; (R, u&„} is the light scattering intensity per
unit volume of sample, per unit solid angle per
unit of light frequency emitted in the direction B at
frequency ~„and with pola, rization &„. Io is the in-
cident light intensity. Since there are no incident
photons of frequency vo in a normalization volume
V we have

Io = no@no(c/V) .
On the other hand, after a time 7 the energy of
emitted photons in state k„, e„ is

APPENDIX B: BEHAVIOR OP (I;

In this appendix we find the behavior of the dipole
moments d; of the helium atoms in the presence of
an external electric field and a hopping term. To
do thxs c.onsxder the sem~-classical equation of mo-
tion (2V) neglecting atomic motions.

0

c(p = —E(a)pc(p+ (I/O')Xp Eo(r(t t)

pp»+ @Xp~Tj) dgpp ~

p'» j
Now the dipole moment operator associated with
each excited electronic state is

(B2)

Combining (B2), (Bl), and the adjoint f (Bl) gives
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d)p = wdp(X p c )p —Xpc)p) (83)

~ p

dip = —()t)pd)p+ 2—
) Xpa ~ Tgg dip

pp

+ 2(&dp/h) Xp Eo(r;, t) . (84)
Now we want to solve (84) in successive powers

of X T/&op. Let

ED(r) t) =E)) cos(ko 'r) —|dot) .
This external field is applied over a time long com-
pared to 1/u&p. Hence we find the steady-state solu-
tion of (84) which is easily seen to be

d,'po' = np(u)o) Eo(r;, t}, (86)

tiele 3 is near particle 4. If we imagine these two
distances being fixed (Fig. 3), the remaining inde-
pendent variables can be taken to be R and a center
of mass variable for all four particles. For large
R, we have g,(1234)=g,(12)g,(34). This occurs for
R«1/ Ik —koI (since 1/I'k —koI'«100A). Hence if
we let f(R) = 1 for large R, we may neglect the ex-
ponential in the first term of (68a) and the second
term becomes

(M'
„IXII' (p J[y'(s) —i]rr'R+p fe'" '0'"d'a).

(Cl.)
The second term of (Cl) does not contribute since
k-kQ&O.

Now we let

f(R}= 6(R, —R) . (C2)

IXp I2
~p(~0) =2

EP (dP —COQ
(87)

d I~I) ~2d I~I) + 2~
~
X

~

2 Q TP~P'. d Io)

&pe

The steady-state solution is

dIp = Qp((do)Q T q~ 'Qpi{Q)0)EO(rp, t) .

Hence for the polarization we have

P(I, t) = g d;p5( r —r;(t})
ip

p(Q) + p(i) +. ..
where

P "(r, t) =n,{(o,)QEO(r;, t)&(r —r;(t)),
I) (I)(r

= gc)p(co, )Tppp'np, (&d,) .Eo(r&, t)&(r —r;(t)),
(810)

is the contribution to the frequency-dependent po-
larizability due to the p state in question and we
have kept the zeroth order in the hopping term. The
equation for the polarization of 0(X T/ep} is then
from (84)

g, 1234 -8R, -B g j.2 g 34

&& t, '(l2) t 11(34)d1 d2 d3 d4 ——, )IPR, (MI)2 . (C3)

By properly choosing R& we may make the first
term in (C3} small so that the main contribution is
due to the second term which we can evaluate ex-
actly. Regarding r„r, and tr, —r, t' as fixed, we
are left with a five-dimensional integral in the first
term of (C3). Now g4 will vanish when the distances
between any pair is equal or less than RQ. Gn the
other hand, 6(RI —R)g(12)g(34) vanishes in a dif-
ferent region. VVe choose 8, so the volumes of the
regions are the same. Since one expects t,"()') to
be growing for p'» R, and g,(1234)=g, (12)g,(34) to
give numerically reasonable results for the inte-
gral over the outer region, this condition should be
sufficient.

and we have used

&0(&0)=Qc)p(&0) ~

APPENDIX C: ESTIMATE OF S4

In this appendix we estimate the magnitude of the
quantity 84 glvell ill (68a). Tile fuIlc'tioll tp (I ) drops
sharply to zero at some radius R, while g2()')
vanishes for x~ RQ. The value of RQ is about 2 A

while Rg, estimated from the radU. of electronic
wave functions is about 2. 3 A. Hence the factor
g, (p')t)I()') is nonzero for only a relatively small
range of r. This means that in the effective region
of integration particle 1 is near particle 2 and par-

FIG. 3. Illustration of variables discussed in Appendix
C. The centers 1234 6o not l.ie in the same plane.
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The volume V, where the e(R& —R)t,"(12)t,''(34)
term vanishes is just the overlap volume of two
spheres of radius &R;.

Vi = ( +3 vR i)47]'(Rp) (C4)

V~ = 3 mRp4mR~ .(6) 4 3 2 (c5)

When the sphere around 3 overlaps with that around
1 we find

The factor 4mR2 comes from an integration over the
angle between particles three and four (we hold one
and two fixed in the integration). The volume V2

where g4 vanishes can be computed by imagining
each particle to be surrounded by a sphere of radius
&Rp and finding the volume for which at least two
spheres overlap. When the sphere around 3 over-
laps with that around 2 we have a contribution

which two pairs of spheres overlap, which have
been counted twice. R& is obtained by equating the
volumes

V~= V~,

4 wR', [4m(R3) ]= 4(r~mR())(4mR2),

—,
' ~R', = 4( +~R,'),
R =4 Rp 3, 1V A

(C8)

ln calculating (C8} we have neglected the correction
due to V,". This overestimates R, slightly, there-
by making S4 more negative [cf. (C3)].

Putting (C8) in (C3) we obtain finally

S4 = —p( f 7]R3~}((M',),/I X, I')',

Ri =3. f7 A

V(b) V(6)
2 2 (C8) APPENDIX D: PROOF THAT (N2)gd=o

Now the total volume is

2(V(a) V(b) V(e)) (cv)

Here the factor of 2 accounts for the configurations
in which we exchange 3 with 4 and V2" must be
subtracted to correct for the configurations for

In this appendix we consider (M,')„which arises
in the expression for the second moment of the uv
absorption line associated with the first excited P
state. This quantity is defined in (14) when one
lets p, = s and v =4' and hence involves both T „" and

T,". We show below that it vanishes.
From (14) and (2) we have

1

(M]), =(
l
Xe]' p'(rr)I ]3 (123) —de(12)31(23)]e' ''&"' e(1 ) 2T]'(23)]**der d red'r d r

+]l «el'3'/rr)f d, ]12)1!e))2)]T„'e])2)] d'r, d'r, ** (Dl)

Consider the second term in (Dl). Since the range of T," is much less than 1/]3, we may ignore the expo
nential. Since the liquid is isotropic the remaining factors are spherically symmetric except T„. By
rotating coordinates and using the fact that g, [T~d']'" = 0 we find that this term is zero.

Now the factor f,"(12)keeps the distance between 1 and 2 small in the integrand of the first term of (Dl).
When 3 is far from 1 and 2 we have

gs(123) = g2(12)g2(23) =g2(12)

and the integrand vanishes. This happens at distances considerably smaller than 1/k. For 3 near 1 and 2
we may replace the exponential by one. In this region if we rotate all coordinates equally all factors are
invariant except [T~d~(23)]". Hence the argument demonstrating that the second term vanishes applies here
as well.
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