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The contributions to the macroscopic-anisotropy constants and resonance energy from crystal-field
anisotropy, magnetoelastic effects in the frozen and flexible lattice model, and two-ion interactions have
been found for all terms allowed in a crystal of hexagonal symmetry. The temperature dependence is
expressed as expansions of thermal averages of the Stevens operators (0& ). A systematic spin-wave
theory, renormalized in the Hartree-Pock approximation, is developed and used to find the temperature
dependence of the Stevens operators and the resonance energy in terms of the magnetization-deviation
parameter hM(T) and the parameter b(T), which characterizes the nonsphericity of the moment
precession. Significant deviations from the classical l(l + 1)/2 temperature law are found. The inclusion
of b(T) gives rise to important reinterpretations of the contributions to the resonance energy.
Numerical results are given for the magnetization agreeing with experiment for Gd, Tb, and Dy. For
Tb and Dy the zero-point deviations were found to be 0.05pz and 0.08@~, respectively, and the ratio
[b(T) —b(0)]/IEM(T) —EM(0)] is approximately 1/3 for all temperatures below 100 K. This gives
rise to large corrections of the results of previous theories. Tables of these corrections are given for the
resonance energy and the macroscopic-anisotropy constants. For planar anisotropy the temperature
renormalization is reduced for the axial anisotropy and increased for the in-plane anisotropy.

I. INTRODUCTION

The magnetic properties of the heavy rare-earth
metals have been extensively studied experimen-
tally in the last decade. A comprehensive review
is available. Experiments have shown that the
magnetic properties are a result of an intricate in-
terplay of many forces of comparable magnitude.
The dominant interaction is the indirecI. exchange
interaction, and of importance are also crystal-
field anisotropy, magnetoelastic effects, and pos-
sibly also two-ion anisotropy. In general, how-
ever, the experiments have been analyzed on the
basis of simple classical and molecular-field-type
theories which can only be expected to account for
the major features correctly. The molecular-
field-type theory of Callen and Callen for the tem-
perature dependence of the macroscopic anisotropy
and magnetostriction has been a very successful
first-order theory. The classical (i.e. , the infi-
nite-angular-momentum J' limit) spin-wave theory
of Cooper, ' which includes a majority of the phys-
ically important effects and with a renormalization
in analogy with classical expressions for the reso-
nance energy, has also been very useful in struc-
turing the problems. The quantum-mechanical
corrections for finite J are of importance and have
been discussed by Lindgard et al. and later by
Brooks and Goodings and co-workers. They have
also studied the effect of the nonspherical preces-
sion of the angular momentum under the influence
of anisotropy. " However the spin-wave treat-
ment of the anisotropy terms is complicated and
was not done systematically. A basis for a sys-

tematic treatment has been developed by Lindgard
and Danielsen by a generalization of the Holstein-
Primakoff transformation which can be applied to
tensor operators of arbitrary rank. Using this
transformation it is simple to treat a,ll the various
terms relevant for the heavy rare-earth metals.
For simplicity and as a first correction to the mo-
lecular-field-type theories, the dynamical interac-
tion is treated in the Hartree-Fock approximation.
Although this approximation does not exactly re-
produce the results by Dyson ' for a Heisenberg
ferromagnet it has proved to compare well with ex-
periments for various test systems as for instance
the planar antiferromagnet NiC12. It is the aim
of this paper to carry out this calculation for the
heavy rare-earth metals and show that significant
corrections to the first-order theories are obtained.
The results are also valid for other magnetic sys-
tems of hexagonal symmetry.

It is well known tha, t the spin-wave theory using
the Holstein Primakoff transformation is only valid
at low temperatures, where the number of ther-
mally excited spin waves is small. ' At higher
temperatures the neglected kinematical interaction,
which prevents more than 2J excitations of a. single
ion, becomes important. However, for the heavy
rare-earth metals the J values are large (8~3.5)
and the presence of large energy gaps in the spin-
wave spectra reduces the number of excitations.
A renormalized spin-wave theory, which only
treats two-magnon interactions, is therefore ex-
pected to work well for this group of materials.

In Sec. II the most important, features of the
heavy rare-earth metals are summarized. Section
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III gives the relation between the macroscopic and
the microscopic anisotropy parameters. In Sec.
IV the spin-wave theory, renormalized in the Har-
tree-rock approximation, is developed and the re-
sults are given for the temperature dependence of
the anisotropy parameters and also for the reso-
nance energy (the spin-wave energy gap). Finally,
in Sec. V the magnitude of these effects are in-
vestigated by applying the theory to gadolinium,
terbium, and dysprosium. Section VI is a short
summary. The Appendix gives an explicit discus-
sion of the planar anisotropy case, including mag-
netoelastic effects.

II. BASIC INTERATIONS IN HEAVY RARE-EARTH METALS

2l9 (Rff ) tTf ' lJf (2)
f&f'

ot(Rfg) is the exchange interaction between sites f
and g within the same sublattice, and 8'(Rff. ) is the
interaction between f and f' in different sublattices.

Cooper, Elliott, Nettel, and Suhl have given the
single-ion anisotropy term per ion, with the quan-
tization axis along the hexagonal c axis as follows:

H, ~=B 0,(2) 2c8'4+04(c)+B202(c)+B202(c) .

The 8, coefficients are the crystal-field parame-
ters and 01 (c) are the cosine-type Stevens-opera-
tor equivalents, defined by Elliott and Stevens.

Expanded in terms of the irreducible strains of
the hexagonal-close-packed lattice, the single-ion
magnetostriction per ion is (Callen and Callen')

~I, i Sl, i I 2i
me

I'

M=P, 6

16~21+ ~&22~@22 OM C

+ I31.2 C10i C +&20g S

The crystal structure of the heavy rare-earth
metals is close to the hexagonal-close-packed
structure. In the magnetically ordered phase it is
distorted by magnetostriction. ' We shall consider
the effect of the isotropic exchange interaction, the
single-ion anisotropy, the single-ion magnetostric-
tion, and an external applied field. Two-ion an-
isotropy is included in a general phenomenological
form. The Hamiltonian therefore contains the fol-
lowing terms:

Hex + H1 an + Hme + Hel + HZ ee + H2 an ~

As the hexagonal-close-packed structure can be
divided into two interpenetrating Bravais sublat-
tices, the isotropic exchange term takes the form

H,„=—Q 2$(Rfe) Jf ~ Z~
f&g

+ B24[&1 Of (c) —&z Of.(s)]
+ B21[e101,(c) + E2 01,(s)])
+ B,', [4:1 0,'(c) —4:2' 0,'(s)],

where the 8's are the magnetoelastic constants,
and I, =2, 4, and 6; g~" are the appropriate sums
of Stevens operators; e " are the irreducible
strains. 01(s) are the sine-type Stevens opera-
tors. The elastic term per ion is

~ '=(l/2v3)(34:„—~ '),
y 1

2(Cxe qee) ~

y= e 6
yz& 62 = 6xz ~

(6)

When the lattice is in equilibrium with respect
to the strain, we find, by differentiation of H I+H,
with respect to e ", the equilibrium strains

1

M=P26

(c,fBf.'„' —c;,Bf,'„') 02(c),

(i, j)= (l, 2) or (2, l)

"„=—'„E e,.o.(').e„o,('),
'„=—.E '

e;,o.(').e;,o,('),
The strains in thermodynamic equilibrium (q ")
are found by taking the thermodynamic equilibrium
value of the Stevens operators. By substitution in
(4) and (5) we find in equilibrium with respect to
strain

He1 + Hme
I eq

= He1

An externally applied magnetic field H contrib-
utes with a term in the Hamiltonian

H2..=-gq, , Z H Zf,

where gis the Lande factor1 and p, ~ is the Bohr
magne ton.

The two-ion anisotropy term can generally be
represented by

H2 —— 2 KI.„.;l (f, g)0", , (i')f01..(i")4,
l' m'i '

i ff mme i ee

2 2

Ca (~a, 1)2 Cn ~,1~ ot, 2 Cn (~n, 2)2

+ 2C"[(41)'+(~2)']+ ~2C'[(~l)'+ (~2)'] I'

c;, are the elastic constants. The irreducible
strains in terms, of the Cartesian strains are given
by Callen and Callen:

n, 1
xx+ 6yy + 6zz
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where the constants of interaction between sites f
and g a,re K', -"„l;- (f, g).

III. RELATION BETWEEN MACROSCOPIC AND

MICROSCOPIC ANISOTROP Y PARAMETERS

are differentiated with respect to 8 and Q, and,
since (12) must hold for any set of (80, $0), the
right- and left-hand sides are equated term by
term. Following this procedure we find for the
contribution from the single-ion anisotropy. terms

The macroscopic anisotropy parameters are the
coefficients in a symmetry-determined expansion
of the free energy in terms dependent on the direc-
tion of the magnetization specified by the polar co-
ordinates (8, &f&) relative to the crystal axis. The
microscopic anisotropy parameters are terms of
various physical origins which enter in the Hamil-
tonian for the system. The two sets of parameters
are related by the expression

K, (T) = ——,'B',((O,')+ (O',&)
—5B,'((O,')+ 3(O',))

—0-B6(&06&+ 5& 06&)

Ka(T ) =~8 B4((o4&+ 4&o4&+ (o4&)

+ ~8 B',((0',) + 20(0',) + 5(0',)),
K3(T)+ —+~B60((06&+p(06&+3(0~~&+ ~(068&),

K,(T) =„B6((06&+$(06&+3(0',)+-,'(0',))

(14)

Z(8, y) = - u, Th Vr(e-'"""), (10) =-+«K,(T), for a hexagonal crystal field.

—„Z(8,y) = —„H(8, y)
8 8

got eo 801 &t 0

, +(8, 0) =, H(8, 0)
'0'o

(12)

F(8, P)„,„=K~(T)sin28+ 2K2(T) sin~8 sin28

+ 3KB(T)sin~8 sin28+ 3K4(T) sin48

xsin28cos6$,

E (8, P)„,„=—6K4( T ) sin~8 sin6$ .
(13)

The angular dependence of the Hamiltonian H(8, &f&)

is found by rotating each term in the Hamiltonian
to a representation with the quantization axis along
a direction specified by 8 and P. Such rotations of
Stevens operators have been treated in detail by
Danielsen and Lindga. rd. The rotated operators
are linear combinations of Stevens operators with
coefficients dependent on 8 and Q. The coefficients

where k~ is Boltzmann's constant, T is the tem-
perature, and P = I/k~ T. H(8, Q) is the Hamilto-
nian in a representation in which the quantization
axis is along the magnetization direction. For
hexagonal symmetry the free energy is generally
assumed to be'

E(8, $)g,„=Kp(T)+Kg(T) sin 8+K&(T) sin 8

+ K3(T) sin68+ K4(T) sin88 cos6$, (11)

where 0 is the angle of the magnetization relative
to the hexagonal axis and &f& the angle in the basal
plane relative to the direction to the nearest-
neighbor atom.

If the hexagonal symmetry is distorted by the
presence of strains, other terms of the appropri-
ate symmetry will occur. In the following we

shall, however, only consider the hexagonal terms.
A simple relation between the free energy and

the Hamiltonian is obtained by differentiation with
respect to 8 and Q:

(OP& are the average values of the cosine-type
Stevens operators in a coordinate system with the

z axis along the magnetization direction (8O, Po).
It is somewhat difficult in general to assess the ap-
proximation involved in the method of determining
the anisotropy constants K„(T)by means of (12) and

(13). In the following section the problem will be
discussed within the framework of the spin-wave
theory.

The free energy for hexagonal symmetry is also
conveniently written in an expansion of spherical
harmonics as follows':

F (8, p) = «o(T ) + «2(T ) I'~~(8, p) + «4(T ) I'4(8, Q)

+«6(T) I'eo(8, P)+ «~~(T) sin68cos6$ . (15)

The so-called anisotropy coefficients «, (T) are
simply related to the anisotropy constants K„(T).'

We find

«2(T) =Bc((oz&+(02&) 3 B4((oa&+ (04))

——'B (5(0,&
—6(O,') —11(O',)),

«4(T) = B4(&o4&+4&04)+&04))

—
~() B06(5(0~6&+ 6(04)+ 3(066)),

«,(T ) = B,'((o,'&+ Q(o,'&+ 3(o',&+ -.'(o,')),
«66(T) =K,(T) .

(16)

The anisotropy coefficients «, (T) are most directly
related to the microscopic parameters B„since
(0 &» (0

The treatment of the magnetoelastic terms in the
Hamiltonian requires an additional consideration.
Let us consider two physical extremes. In the
frozen-lattice model the strains are fixed at the
equilibrium values and independent of the actual
direction of the moment (8, P). This model is like-
ly to hold in the case of rapid moment precession,
which occurs in the propagation of spin waves in
anisotropic systems with a large spin-wave energy
gap. In macroscopic measurements where the
magnetization is slowly tilted to the polar eoordi-
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TABLE I. Coefficients in the reduction of a product of two Stevens operators

OP. (c) OPV (c) = Z [f 'm', f "m ", LM) Of (c)
L,M

For a general angular momentum J the coefficient can be written as the sum g„C~, where X=I(J+1). Only the coef-
ficients relevant for this paper are given, a complete table is given. elsewhere (Ref. 19).
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+0-2. 1429xlp
2. 5714xlp 2-8.9286xlp p.-1.4286xlp
7. 1429xlp
1.4286xlp
1, 7143xlp

-7.4026xlp +

4. 5455xlp
7. 1429xlp

-9.2532xlp
1.5152xlp
1.4286xlp+0
1.1104xlp
1.5152xlp
S.ppppxlp

-4. 9351xlp
2. 8537xlp +

—3.6970xlp +

-1.0487xlp +

3.5672xlp z
+

4. 6212xlp
-9.8701xlp
-8.7198xlp +

2. 0333xlp
1.2200xlpl. 9740xlp p

+

6.3417xlp +

2. 1126xlp
6. 6084xlp +

-1.5655xlpl. 8357& 10+

-9, 3182xlp
2. 9371xlp
1,4909xlp p

4. lpppxlp
-1.0250xlp
4. 4057xlp

-5. 3748& 10+

1.3566xlp +

7. 3429xlp
6. 7185xlp 0

8. 0749xlp
1.1749xlp

-3.5529xlp
1.0659xlp
3.9971xlp
4. 1959xlQ
1.5357xlp
3. 2299xlp

—6.6618xlp
-1.5172xlp +

1.9723xlp
-6.6507xlp
-1.6772xlp
1.7889xlp +

-3.9588xlp +

-1.5241xlp +

2. 0643xlp +

4. 9195xlp
6.9674xlp
1.2193xlp
3.4405xlp

—3. 5778xlp
2. 1113xlp 3-1.5241xlp
8.6012xlp 2-1.1181xlp

-6.5979xlp +

2. 0643xlp
2 0125xlp
3.1670xlp

5. 7143xlp

2, 3810xlp

-1,9048xlp
+1-1.3143xlp

5. 1948xlp

-5.4762xlp 3

6, 4935xlp
+0-1.0952xlp

—7. 7922xlp

+ 2
4. 1299xlp

-5. 2759xlp +

8. 0808xlp 0

8. 7760xlp
-6. 5949xlp
-l, plplxlp

8, 2597xlp +

1.6121xlp +

-4. 4444xlp 1,-2. 6667xlp
+-1.6519xlp o+-1.1724xlp

-4. 6176xlp
-1.8566xlp +

5. 0909xlp
-5.1573xlp 3
3. 0303xlp

—8. 2517xlp
-4. 8485xlp
-1.3333xlp

3, 3333xlp
—4. 6154xlp 3

1.6276xlp +

-1.1470xlp
+-7.6923xlp

2. 0344xlp +

-6. 8271xlp
-1, 2308xlp
3.0Q39xlp 0

+

-9.0118xlp
-3.3794xlp +

-4, 3956xlp +
+-4. 650lxlp p-2. 7308xlp

5, 6324xlp +

1.6389xlp
-7. 2086xlP
9.OS99xlp 3

1.8117xlp
-6. 5384xlp
5. 3928xlp
2. 0762xlp
2. 2298xlp

-1.7981xlp +
+9.4914xlP-1.661pxlp 2
+

-3.7163xlp +

1.3077xlp +

-2. 8762xl0~2
2. 0762xlp~l-9.2907xlp
4. 0865xlp p

8. 988pxlp
-2. 2298xlp
-7.3557xlp +

-4. 3143xlp +

+02. 2857xlp

9.5238xlp

1,9048xlp

+1-9, 2352xlp
1.2947xlp

+0
—1.9625xlp
1,6184xlp

+0-1.8470xlp
—3.9560xlp

p

4. 6176xlp

9.8124xlp

9, 2352xlp

3.4965xlp

5. 5944xlp

1.-l.l.
2.-l.
7.

-3
9.
3.l.
3.
2.

—5
-6.
8.

-3
-6.
7.

-1.
-7
-8.
2.
3.
5.
1.-l.
1.

-7
3.

-3
8.
8.
1.

+ 3

6203xlp 2

3538xlp o

1979xlp
70QSxlp p

6923xlp
1301xlp
3207xlp
1373xlp
4118xlp
5294xlp
543lxlp
8681xlp
8520xlp
8824xlp
0972xlp
6157xlp
1703xlp z
7401xlp
8147xlp
8871xlp
2652xlp
2955xlp
1490xlp p

3212xlp
8122xlp +

3826xlp
5629 xlp o

0064xlp
2652xlp
4564xlp o

8842xlp
1451& 10
2955xlp
7915xlp p

5097xlp

+2-2. 2937xlp p

2, 2378xlp
+0-3.8228& 10

2, 7972xlp
+06. 1166xlp

+0-2. 1845xlp
-6.3936xlp

+ 3

9.7142xlp
-3.6655xlp o

1.8013xlp
1.0739xlp

-3.3247xlp
1.0722xlp
4. 128pxlp
1.3217xlp

-9.1429xlp
-1.8871xlP
-3, 3024xlp
-2, 2028xlp +

6. 6494xlp +

-5.7184xlp
4. 128pxlp o-5. 5069xlp
2. 0779xlp
1, 7870xlp

-1.3217xlp p-3.7403xlp +

-8. 5776xlp

+0 1

3.694lxlp 2 -l. 8470xlp
2. 8771xlQ

+p1.2587xlp

+11.1189xlp

1,8648xlp

2. 9837xlp

1.0656xlp

-6.
3.

-7
3.

2
4224xlp
3172xlp

~p
0996 xlp
0088xlp

+01.4563xlp
-6.0175xlp

3.-1.
8.
3.

6408xlp
8805xlp

+p
7379xlp
3849xlp

+0-8.7379xlp 3

8. 2741xlp

+11.2531xlp

1, 3853xlp

1.7050xlp

2. 8416xlp

-7, 1040xlp

-1.7050xlp

nates (8, @), the lattice will develop a correspond-
ing strain. This is the flexible-lattice model. The
bvo models give different contributions to the mac-

roscopic-anisotropy constants. The two models
have been discussed in connection with spin-wave
and resonance experiments by Cooper. 3
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In equilibrium with respect to strains, the com-
bined contribution of the elastic and the magneto-
elastic terms in the Hamiltonian is minus the elas-
tic term (8). The contribution from the irreducible
strains (6) to the anisotropy constants is therefore
in the frozen- and flexible-lattice models obtained
from

—5'(1 ()= ———Z c &
' c '))9 r r~r

89 ' 96I 2

flexible-lattice model

c(E')( f ')~ ~

~

r zj
eL9

0",. (c)0",- (c) ~" = [l'm', l"m", LM] 0"(c) .
The relevant coefficients [1'm', l "m", LM] are giv-
en in Table l. [l'm', l"m", LM) = [l"m", l'm', LM]
when l'+ l"+L is even. The reduction of the rele-
vant sine-type Stevens operators can be obtained
from the following identity:

0",. (c)0",. (c) +0,. (s)0,- (s)~", ' =0 (m', m" CO) .
The result of the magnetoelastic coupling in the

flexible-lattice model is, therefore, that the sin-
gle-ion anisotropy contribution B~ [(14) and (16)]
is replaced by

BD Bo V'

frozen-lattice model. (17) i'

alyf Ayj

l'm'

I . II

x(c,;Bi I B(' - —c Br I Bi ~-)0"(~ (c)OP-(c),

—Zc (e ")ran
l' m'
) II

p=(c, s)=(1,2)

r r

x 0,.'(P) 0,-'(P)

—( —1) ~ Bi'm'Bi" I"Oi' (P)0(" (P) ~ (20)
m" Wm ' I

where m' and m" can take the values according to

(7). The L, M term in the reduction of the pair of
Stevens operators is

8E(e, P)/8 Q is obtained analogously. Under the
average sign (.. . ) the Stevens-operator expres-
sions for the strains (7) are to be used.

In the frozen-lattice model the effect is simply
to alter the single-ion anisotropy contribution BI"
in (14) and (16):

Bz-Bi-(B2~(&"')+BE~&&"')), M=o, 6 (18)

Since the frozen strains just add a contribution to
the crystalline field, only strains with hexagonal
symmetry contribute. Two-ion anisotropy con-
tributes in the molecular field theory by symmetry
in a, similar fashion by

ffiZ. ' (f, a)&0( (~')) .
fpl'

In the flexible-lattice model we again, for sim-
plicity, limit ourselves to terms which transform
according to the hexagonal point group. There-
fore we need only consider terms in & "& 'j which
have L even and M=O or M=6 when transformed to
products of Stevens operators and reduced to one
Stevens operator OI".. We find for the e, y, and e
stra, ins

x(c,;BP"B,.i' —c;,B,' ~B,.lI )[l'm, l"m, LO]

1 1—
y Bi B~- +—6&iy y

C C

x [1'm, l"m, LO] . (21)

There is only a contribution to the BI, term from
the m' =m" terms. The magnetoelastic contribu-
tion to the sixfold anisotropy comes from the m'
4m" terms

6 6 1 ~ 1 yBe-B6-2 + —yBi Br"--
m' Wm"

—„ZB"„(0',(c)) =e cos2$,2

',B( 40(c4()) = —,acos4&f . —

Notice that the Stevens operators are in a c-axis

+ 6 BgI IB~II II I ~g $ ~ 666 6

Equations (21) and (22) show the magnetoelastic
contribution to the anisotropy when the lattice is
strained according to the average moment direc-
tion. Its temperature dependence is related to the
rapid xnoment precession and is likely to be well
approximated by the frozen-lattice model. In this
case the temperature dependence follows that cor-
responding to l' and l" in (20) and not that of L in
(21) and (22).

The large number of parameters in the above
expressions can then be reduced considerably. By
measuring the equilibrium strains in thermody-
namic equilibrium, (7), it is possible to determine
certain combinations of the parameters B', . In
particular, ' the magnetostriction coefficients 6
and 8 are the coeff icients of the y strain, which trans-
form under rotation around the caxis as cos2$ and
cos4$, respectively:
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representation. Magnetostriction coefficients for
the e strain, D and S, transforming as cosP and
cos5$, respectively, may be defined analogously
according to (7). The contribution in the frozen-
lattice model for the strained crystal is

B6 B6 sing) e ion + 2 C CC+ 2 C X)

and for the axial anisotropy it is c"(e + —,'6 )+ c'(5)
+-,'8 ). The macroscopic coefficients do not ade-
quately describe the contribution for each value of

However, it can be found under simplifying as-
sumptions by means of (20), (21), and Table I. The
& strain only contributes if the magnetization has a
component along the c axis.

IV. SPIN-WAVE THEORY OF TEMPERATURE DEPENDENCE
OF RESONANCE FREQUENCY AND STEVENS OPERATORS

In the limit where the isotropic exchange inter-
action is the dominant term in the Hamiltonian, the
temperature dependence of the resonance frequen-
cy and the Stevens operators can be calculated in a
renormalized spin-wave theory. Bose-operator
expansions of the Stevens operators have been cal-
culated by Lindgard and Danielsens using a method
where the Stevens operators are formally expanded
in a well-ordered Bose-operator series, the co-
efficients of which are found by matching the ma-
trix elements in and between the ground state and
the excited states. This method is simpler than,
but equivalent to, the Holstein-Primakoff trans-
formation. We find the temperature dependence of
the Stevens operator OP(c) by

00 = C(l, 0)S, 1 —n, —ata1
l, l S

+ n&(n, —1)/4 —a a aa+.1
S~

Z/2

O, =C(l, 2)»z — (aa+a a )—a St 1 t t S&S~

2 3

x] —-1+O', S&S3 ' S3 1———(a a a a+a aaa)+ ~ ~ ~

S2 Sa S~

(26)

= (1/2 j)(aa+ a~a )2b(T) —b(T)

+ (1/ j)a~a4nM(T) —26M(T)

(1/ j')(ata~a ~a+ a'aaa) „r
= (1/2J)(aa+ a~a~)6AM(T)

+(I/ j) ~ a6ab(T) —6AM(T )b(T),
(1/J )(a~ata~a +aaaa)„F

=(I/2 j)(aa+a~a~)12b(T) —6b (T),

(27)

Ol=C(f, 4)
)
.[(

' ' ' '+ )+" ],
where n, = —,'I(l+ 1),

Si =J(J'- —,')(J —1) [j-2(l —1)], l=1, 2, 3, . . . ,

and the coefficients C(l, m) are given in Table II for
E even only.

The interaction terms in the Hartree-Fock ap-
proximation are, in the direct space,

[(1/J')a'a'aa ]„r

(Om(c)) Tr[Om(c)e /ks//r]/Tr(e H-/her)- (24) where the characteristic functions are defined as

The operators are expanded in spin-wave opera-
tors and the trace is taken over the spin-wave
states. We include consistently two-magnon inter-
action terms (four Bose-operator terms) and de-
couple these by means of the Hartree-Fock approx-
imation.

A. Spin-wave theory in the Hartree-Fock approximation:
Temperature dependence of the resonance frequency

Let us choose a coordinate system in which the
z direction is along the quantization axis, i.e. , the
average moment direction. The Hamiltonian then
contains no sine-type Stevens operators and has the
form

n M( T ) = (1/ j) (a'a)

b(T) = (1/J )(aa) = (1/J )(a~a~),

where the Bose operators act on a single site i.
The characteristic function nM(T) is related to the
temperature-dependent deviation of the reduced
magnetization m(T) by

(J,, ) = (O&(c)) = J'[1 —AM(T)] = J[1 —nM(0)]m(T) .
(26)

The characteristic function b(T) is related to the
nonspherical precession of the angular momentum
in the presence of anisotropy,

If=If,„+p K, O, (c), , m=0, 2, 4, 6; all I, (25) (j'.) - (j',) =(o,'( )) =2j'b(T)[1--',nM(T)) . (29)

where the coefficients K, are obtained by properly
rotating the contributions from the single-ion an-
isotropy and magnetostrictive terms and two-ion
anisotropy (19). According to I indgard and Dan-
ielsen the Stevens operators belonging to the site
i are expanded in terms of Bose operators as fol-
lows:

The effective Hamiltonian for the noninteracting
Bose operators is then, after the usual Fourier
transformation to wave-vector space as given by
Lindga, rd et al. ,

H = —Z [A,(T ),'(a,a, + a,a~)-
q

+ B,(T)~(a aq+ a,'a' )]
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b(T) = ~ (a,a,)
1

(32)

e a'L

where n, (T) =1/(ea"'"'&' —1) is the spin-wave
population factor and the summation is over N
points in the Brillouin zone corresponding to the
number of atoms in the crystal. We shall here
only treat the resonance frequency, i.e. , the spin-
wave energy gap E, 0. In this case the contribution
from the exchange interaction vanishes, and the
number of atoms per unit cell is irrelevant. Us-
ing (25) and (27) we find, to the first order in the
characteristic functions hM(T), b(T), and 1/8,
the following contributions to the temperature de-
pendence of the energy gap, valid for all l:

[A,(7)+ B,(T}],"„'= —g S,(-K', C(l, 0)

x n,(1 —(n, —1)(1+1/2Z)[bM(T)+ -,'b(T)] j
+K2C(l, 2)(1+1/4J)(1 —(n, —1)(1+1/2J)

x [~M(T)+ —,'b(T)]] )+ &'(7'), (33)

where

6'(T) = —2 Si2(1+1/2J)

x(( —(1+1/4 J)K2C(l, 2)(n, —1)+ (1+1/J)

x [K,C(l, 2) a 24K, C(l, 4)]jb(T )

+(1+1/Z)K', C(l, 2)~M(T)) . (34)

6' is zero in the case of pure axial anisotropy,
i.e. , when K&' =0 for all l. For the case of pure
planar anisotropy the resonance energy is zero for
all temperatures, according to the Goldstone theo-
rem; consequently 6' must be zero and the factor
(1+1/4J) in (33) is unphysical. The problem
arises because of the approximate Hartree-Fock
treatment of the dynamical interactions. We shall
discuss this in a forthcoming paper" and here ne-
glect 6' and the (1+1/4J) factor. The planar an-
isotropy case is treated in more detail in the Ap-
pendix.

Cooper has discussed the temperature depen-
dence of the energy gap on the basis of a classical

A diagonalization gives the spin-wave energy

E,(T) =Q, (T) —B,(T)][A,(T) + B,(TP . (31)

The transformation which diagonalizes the Hamil-
tonian enables us to evaluate the characteristic
functions in terms of E,(T), A, (T), and B,(T):

n.M(T) = m (a,'a, )
1

a ' a

= —~2 ( —K, C(l, o)n, I. .
l

x [2 (m(T))]/m(T) + K
~ C(li 2) I( ia+g) ia

x [Z-'(m(T))]/m(7 )] . (36)

Here I&a, ,»,2[4, "(m(T))] is the ratio of the hyper-
bolic Bessel function of the order of (2l+ 1)/2 to
that of the order of 2, where the argument of the
Bessel function is the inverse I angevin function of
the reduced magnetization. When the reduced mag-
netization is close to 1, we can expand in the de-
viation AM(T) as follows:

I&zi+y&ya[Z (m(T))]/m(T) m(T)
- [1 —(n, —1)EM(T)] .

Thus if we neglect the ellipticity parameter b(T)
in (33), we obtain in the Hartree-Fock approxima-
tion, and for J»1, exactly Cooper's result. How-
ever, the inclusion of the ellipticity parameter
b(T) significantly alters this result. We shall see
later for Tb and Dy that ~M(T) and b(T) are of
similar magnitude. Therefore the constants K,
cannot be scaled equally in the brackets containing
A+ B and A —B as suggested by the expression of
Cooper.

However, the simplicity of Cooper's result is
retained. According to (33}it is possible to find
the temperature renormalization of the energy gap
by scaling each term of order l appropriately. The
numerous works, "' which in more or less detail
discuss the anisotropy and magnetoelastic contri-
butions, can thus directly be renormalized by
means of (33).

B. Temperature dependence of the Stevens operators

Using the Bose expansion for the Stevens opera-
tors (26) and taking the trace over spin-wave states
according to (24), we find for the temperature de-
pendence of the average value of the Stevens opera-
tors to the second order in AM(T) and b(T) and the

TABLE II. Coefficients in the expressions (26), (33),
and (36).

C(t, 0)

1
2
2

8
8

16

C(t, 2)

2
12
4

32

C(L, 4)

2
2

20

formula for the resonance frequency' and found the
following contribution to the temperature depen-
dence:

[A,(T)+B,(T)].. .
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first order in I/J,
(OP(c))r = S, C(l, 0)(1 —n, AM(T)

+2n, (n, —1)(1+1/2J)[EM(T) + pb(T) ]+
(OP(c))~ = S,C(l, 2)(l+ I/4J)b(T) (36)

x(l —[n, —1 ——,(1+3/4J)](1+1/2J)bM(T)+ ~ ~ j,
(04(c))r —S, C(l, 4)(1+3/2J)6b(T)

In the large angular-momentum limit we can write
the temperature dependence of the Stevens opera-
tor s as power laws of the reduced magnetization
and terms involving the ellipticity parameter b(T).
For a small deviation from saturation we can ex-
pand the reduced magnetization to a power in
~M(T),

m(T) = [1 —~M(T)] -1 —n~M(T)

spin-wave theory the Hamiltonian for this system
takes the form

a(8, P) =A+a{8, P)+ g [Z, +e,(8, P)]n, , (39)

where A and a(8, Q) are constants independent of
and dependent on the angles (8, P), respectively.
E, and e, (8, P) are, respectively, the parts of the
renormalized spin-wave energy which are indepen-
dent of and dependent on, the angles. By definition
a(Hp& Pp) = &,(Hp& Pp) =0. The spin-wave number op-
erator is 6„and the summation is over the Bril-
louin zone. We likewise separate the free energy
in a part F independent of (8, Q) and a part f(8, P)
which depends on the angles. According to (10) we
have

-BlF+f (&~ 4 ) j -l3[A+a(ep 0 ) j

+ —,
' n(n —1)aM(T)'+ ~ ~ ~ (37)

(36)

From (36) we then find the following power laws:

(Ol(c))r =(Ol(c))pm(T)" [I+b(T)']"'""",
(O', (c))r =(O', (c))pm(T) & '"b(T)

(Ot(c))r =(Of( ))pb(T)',

which gives

F+f(8, Q) =A+a(8, Q) —kp T

e 8[Eq+eq(8, ~ & 1-

xZ e'Zl&, +~,(,, 4)j.l),
nq=0 q

(40)
which are valid for large angular momentum J and
at low temperatures. The identification of power
laws from the finite expansions (36) is of course
not unique. However, we have shown that the re-
normalized spin-wave theory in the Hartree-Fock
approximation gives the first two terms of the n,
=-,'l(l+ 1) power law exactly. When the ellipticity
parameter b(T) can be neglected, we recover the
well-known —,'l(l+ 1) power law, which is discussed
in the work by Callen and Callen. The correction
to this law due to the nonspherical spin precession
has recently been discussed by Brooks' and by
Brooks and Egami. ' However, their results differ
from ours since they did not treat the kinematic ef-
fects systematically when decoupling the equation
of motions for the angular-momentum operators.

The temperature dependence of the strains and
of the macroscopic -anisotropy constants derived
in the previous section can be found by inserting
the results for the temperature dependence of the
Stevens operators .

C. Relation between the macroscopic and microscopic
anisotropy parameters in the spin-wave theory

Within the framework of the spin-wave theory
and the Hartree-Fock (HF) approximation we can
evaluate the relation between the macroscopic and
microscopic anisotropy parameters directly. Let
us consider an anisotropic magnet in a magnetic
field which tilts the direction of magnetization to a
position described by the polar coordinates (8, Q).
The direction in zero field is (Hp Pp), In the HF

Assuming that the system is dominated by the iso-
tropic exchange interaction, we can expand to first
order in the angular-dependent terms. The part
of the free energy f(8, P) which depends on the an-
gles is then, to first order in c(8, P),

f(8, y) = a(8, P) + P ~,(8, y)n,', (41)
q

where np = I/(ep~~ —1) is the occupation number
when the magnetization is along the (Hp, Pp) direc-
tio n.

The result (41) is identical with the angular-de-
pendent part of the internal energy evaluated as the
zero-field thermal average of the angular -depen-
dent terms in (39). The free energy obtained by
equating the angular derivatives (12) and (13) and
evaluating the averages in the HF spin-wave theo-
ry (24) gives the identical result, i.e. , the inter-
nal energy. We conclude that the approximation
involved in the expressions for the anisotropy con-
stants E„(T) in (14) and z, (T) in (16) is valid at low
temperatures and in the limit where the anisotropy
is much smaller than the iso tropic interaction.
Qnly in this limit is the assumed angular depen-
dence of the free energy (11) correct for all (8, &f&).

At high temperature and when the anisotropy is
large (still small enough to be treated by spin-
wave theory), the free energy f(8, P) associated
with the magnetization in an arbitrary direction
(8, Q) must be evaluated directly from (40), includ-
ing the effect of the magnetic field which is neces-
sary to tilt the magnetization. The free energy
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thus becomes field dependent. However, a differ-
ential measurement which only tilts the magnetiza-
tion infinitesimally from the equilibrium direction
(Oa, Qa) can still be interpreted on the basis of (14)
and (16). Care must be taken in this case as the
contribution from hexagonal terms cannot be sepa-
rated from that from the nonhexagonal terms in a
distorted crystal.

It should fina. lly be mentioned that the slightly
different theoretical approach by Brooks and
Egami' is subject to precisely the same limits of
validity as mentioned above. The main restriction
in their theory and in the present spin-wave theory
is that the anisotropy is assumed not to perturb the
ground state significantly from a pure I J) state.
If the anisotropy has a magnitude and nature which
makes this assumption invalid a different approach
to the problem is necessary.

V. DISCUSSION AND NUMERICAL RESULTS

I et us apply the theory to the following three fer-
romagnetic rare-earth metals: gadolinium, terbi-
um, and dysprosium. Gda' is an S-state ion (S=P)
and gadolinium consequently has a negligible an-
isotropy in comparison with terbium and dysprosi-
um, in which the large orbital angular momentum
(L=3, 5, S=3, —', , and 8=6, Q, respectively) causes
a large anisotropy, which confines the total angular
momentum J to a particular direction in the basal
plane. However, the exchange interaction is dom-
inant and the excitations in all materials can be
treated by the spin-wave theory. The measured
spin-wave dispersion curves for Gd (Ref. 11) show

(i) no energy gap, as we would expect, and (ii) that
the interaction is significantly stronger in the basal
planes than between the planes. The measured
dispersion curves for Tb (Ref. 12) and Dy (Ref. 13)
are similar, but with a substantial energy gap due
to the anisotropy.

On the basis of the measured dispersion curves
E, and (32) we can evaluate the temperature depen-
dence of the magnetization and the ellipticity pa-
rameter b(r) by summa, tion over the Brillouin
zone. It is necessary to sum numerically over the
total zone. In the calculation we used the following

I

procedure to obtain the spin-wave energies at all
wave vectors q. The spin-wave energy has for the
acoustic branch the form E, =A, —8, where 8 to
a good approximation is independent of q since the
anisotropy is dominantly of single-ion origin. To
obtain accurate results for AM(T) and b(T) at low

temperatures, A, is fitted to the polynominal ex-
pansion

4

~a ~ P (
n an cn n)

n=1

for q, in the basal plane less than 0.1q„,„,and q,
along the c axis less than 0.4qII This analytic
form of E, agrees with the measured dispersion
curves within the experimental accuracy for ener-
gies below 5 meV (-60K). The detailed shape of
the spin-wave dispersion surface at higher ener-
gies is of less importance in the calculation of
hM(T) and b(T). The surface for this part of the
zone is approximated by linear expressions in q,
and q . The optic spin-wave branch is approxi-
mated by a constant. The data are summarized in
Table III together with the calculated values of
AM(0) and b(0). We note that the zero-point mo-
tion caused by the anisotropy gives a reduction of
the saturation moment for the fully aligned ferro-
magnetic ground state. For Tb and Dy it amounts
to 0. 59%%up and 0. 76%—corresponding to 0.05 p, a and
0.08', ~, respectively. This correction must be in-
cluded when the polarization of the conduction elec-
trons is estimated from the measured saturation
magnetic moments. We thus find the values given
in Table III.

It is well known from the extensive studies of the
antiferromagnetic ground-state problem'4 that
spin-wave theory is unsatisfactory in the study of
the ground state. Therefore the calculated zero-
point deviation ~M(0) must be taken with some res-
ervation. The same applies to the ellipticity pa-
rameter b(0), which for Tb and Dy is quite large,
0.031 and 0. 032, respectively.

The temperature dependence of bM(T) and b(T)
caused by the population of the excited states is ex-
pected to be accurately given by the spin-wave the-
ory. The results are shown in Fig. 1. We note

TABLE III. Spin-wave dispersion data for Gd, Tb, and Dy in units of meV.
Ap and Bo are defined in the text (33), (A5). 6 is the energy gap. Shown also
are the values used for the zone-boundary energies E~' and the optic energy.
Summation over the Brillouin zone of (32) gives the T = 0 values for lUII(T) and

b(T). Given also is the conduction-electron polarization M. .. derived from
the magnetization data [Ref. 15(a)] on the basis of the present theory.

&o —Bp X.„„~(0) b(0) M, , pz

Gd 0 10.0 15.0
Tb 4. 25 3.90 1.69 8. 0 12. 0

Dy 4. 82 3.60 3.21 6. 0 8. 0

15.0 0
12, 0 0. 0059

8, 0 0. 0076

0
0. 0309
0, 0324

0. 55
0.41
0, 41
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the interesting fact that because of the two-dimen-
sional character of the dispersion relation for Gd,
the temperature dependence of the relative mag-
netization m(T) is much greater than that of a
Brillouin function for 8=P. In fact, m(T) follows
closely that of Tb, although Tb has a large energy
gap. This is in agreement with experiments, 5 as
shown in I ig. 1. The temperature dependence of
m(T) for Dy is greater on account of the weaker
exchange interaction, in agreement with experi-
ments. " The temperature dependence of the el-
lipticity parameter bb(T) = b(T) —b(0) is also shown
in Fig. 1, right scale. The reason why b(0) is
larger than EM(0) is clear from (32), which shows
that AM(0) involves a difference of almost equal
terms. The temperature dependence of AM(T) is
greater than that of b(T) because A, is an increas-
ing function of q; therefore the contributions to
AA1(T) are large when the states at higher energies
(and larger wave vectors) become populated with
increasing temperature. We note that the ratio
[b(T) —b(0)]/[AM(T) —AM(0)] is approximately —,

over the whole temperature region for Tb and Dy.
This means that the ellipticity corrections of the
temperature laws for the Stevens operators (36)
and, in particular, for the spin-wave energy gap
[(31) and (33)] are very significant for Tb and Dy.
The terms of the order of l in [A,(T) + Bo(T)], the
curly brackets in Eq. (33), have the approximate

gktemperature dependence proportional to C', m(T)~~,
where the corrected exponent is

p; = (n, —1)(1+1/2 j)[1 —EM(0)](1 +La)/C f,
and the scale factor is

C', =1 —(o, —1)(1+I/2Z)[~M(0)+ —,'b(0)] .
We note that the corrected exponents P', differ sig-
nificantly from the classical exponents n, —1. This
must be taken into account if the temperature de-
pendence is used to extract information about the
relative magnitude of terms with different order /.

TABLE IV. Exponents and scale factors for the reso-
nance energy and the macroscopic anisotropy in the clas-
sical theory and in the present theory for Tb and Dy.
For the dominant magnetoelastic contribution (p strain)
the exponents are discussed in the Appendix. For odd
values of l, K& in (25) must also contain average values
of Stevens operators with odd / values, for which the macro
scopic exponents should be used. The E = 6 results are
in particular sensitive to uncertainties in ~(0) and b(0).
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FIG. 1. Relative magnetization m(T) and temperature
variation of the ellipticity parameter b(T) for Gd, Tb, and
Dy. Experimental points are taken from Ref. 15.

1 —[2l(l+ 1)]bM(T) + [2f(l —1)](1+1/4J)b(T)+ ~ ~ ~,

which can for Tb and Dy approximately be written
gNas C,"rn(T)~r, where the macroscopic exponent is

l3i = [o'r —3a'~ s(l+ 1/4Z)]/C, ,

and the macroscopic scale factor is

However, the calculation shows that it is valid to
use m(T) in a parametrization of the temperature
dependence. The scale factors are of importance
because C& 4 C, and are different from those to be
used for the macroscopic anisotropy parameters.

The temperature dependence of magnetoelastic
terms in the frozen-lattice model involves both the
exponents P f and exponents P f relevant for the
strains. The temperature dependence of the
strains can be obtained by rotating the Stevens op-
erators in (7) and using (36). The magnetoelastic
effect when the moment is in the ba"al plane is dis-
cussed in the Appendix.

The temperature dependence of the anisotropy
parameters which can be measured by macroscopic
measurements is most easily found from the ex-
pressions for the anisotropy coefficients «, (T), Eq.
(16). When we use the temperature laws for the
Stevens operators (36), we find that (T«) is pro-
portional to

Resonance energy Macroscopic anisotropy C, = 1 —o i 6M(0) + Q, i (1 + I/4 J )b(0) .
l ~& —1 PI C'

I

0 0 0 1
2 2 2. 6 1.8 0. 95
3 5 7 4. 3 0. 88
4 9 14 7 4 0 79
5 14 26 11 0. 68
6 20 (46) (») (o. 54)

1

1.02
1.05
1, 09
1.14
(1.21)

+1 Pl

1 1
3 2. 6
6 4. 7

10 7. 0
15 9. 5

(12)

CM

0.99
1. . 02
l. 06
1.13
1.22
(1.35)

The numerical values are given in Table IV. The
scale factors for the macroscopic measurements
C, are thus different from those relevant for the
microscopic measurements C', . This may account
for the difference in magnitude of the anisotropy
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parameters previously determined~ without taking
this difference into account. Spin-wave measure-
ments have not so far been analyzed on the ba.sis
of the spin-wave theory in the Hartree-Fock ap-
proximation [(31) and (33)]. The correction of the
temperature exponents for the macroscopic-anisot-
ropy coefficients is particularly large for the l =6
term. This is in agreement with experiments'
which show large deviations from the classical
2l(l+I) law for the order of I =6. The magneto-
elastic contributions are also important in this
case, (23) and (A4).

VI. CONCLUSION

The relation between the macroscopic- and mi-
croscopic-anisotropy parameters is found by the
conventional method, using angular derivatives of
the free energy. The approximation involved in
this procedure is investigated in the spin-wave the-
ory and is found valid when the anisotropy is small
compared with the isotropic exchange interaction
and when the entropy contribution can be neglected,
i.e. , at low temperatures. The generally assumed
angular dependence of the free energy is only valid
within the same limits. A more general spin-wave
expression for the free energy is given which is
valid for larger anisotropy and higher tempera-
tures.

The precession of the moments in spin waves of
systems with large anisotropy is generally non-
spherical. The moments tilt less in the anisotrop-
ically hard directions than in the easy directions.
This has significant effects on the magnitude and
temperature dependence of the anisotropy contribu-
tion to the free energy (the anisotropy constants)
and the resonance energy in particular for the high-
order l terms. I arge deviations are found from
the classical —,'/(1+ 1} laws and the numerical values
are calculated for Gd, Tb, and Dy. It is found that
it is valid to parametrize the temperature depen-
dence, using the relative magnitization instead of
the temperature.

Qualitatively the effects are physically clear. In
the case where the axial anisotropy confines the
moments to the basal plane the elliptic precession
reduces the temperature dependence of both the
macroscopic axial anisotropy and of the axial con-
tribution to the resonance energy. The tempera-
ture dependence is, on the other hand, increased
both for the basal-plane strain (y strain) and for
the contribution of the basal-plane anisotropy to the
resonance energy.

High precision measurements of the magnetiza-
tion and anisotropy would be valuable for testing
the present theory. Existing measurements of the
spin waves should be reanalyzed, taking the dis-
cussed effects into account.

&an=@ex+ E t O)
l, m

where

E2 ——2 B2,0 I 0 K2 = —2B2,2 3 0

E = —B E =~B4, E4 —-SB4,
(A 1)

K() ——
) 6 (5B6—B6), KB ——

Qq (7B()+B6),

KB = —,6 (21B6—B()) 5 Ks = —,6 (231B6 —B6) .
The formula for the resonance energy (33) is then,
for J&1,

Ao(T) + B()(T) = —(1/J )36S()B66

x{1—20I b M(T)+ —,b(T)]}+5"(T),

Ao(T) —B()(T)= ——Q ( —1)' S,B,(l —1)().(J
x(1 —(o.)

—1)[EM(T}——,
'

b( T )]]
—(6/ J)S6Bt((1 —20IEM(T) —

~ b(T)]j + 5 (T) (A2)

5+(T) =+ —Z ( —1)' S, B,(l —1)().)(AM(T)

-159~B([bM(T) —(6*19)b(T)]). (AS)

5' is small compared with the main terms in (A2).
The resonance energy is, according to (31),
& =(IAO(T)+ Bo(T)] [Ao(T) —Bo(T)]P'~. For pure
planar anisotropy (Be =0) 6 must be zero according
to the Goldstone theorem. This theorem is vio-
lated in the simple spin-wave theory to first order
in I/J, b.M, and b. Brooks Harris'~ has investi-
gated the similar problem of an anisotropic anti-
ferromagnet and shown that ~ vanishes if the dy-
namical interaction is treated more correctly. We
shall therefore neglect 5(T) in the case of planar
anisotropy.

Finally we shall give the explicit expressions for
the planar anisotropy case including the z strain in
the frozen-lattice approximation. We find, using
(7) and (23), that (e,) = 6 —28 for (t) = 0, where

= —,[~ 2((0&) —(0',)) —-'B', ((0,') + 4(04) —7(O,'))

APPENDIX: RESONANCE ENERGY IN THE CASE OF PLANAR
SINGLE-ION ANISOTROPY INCLUDING p STRAIN

The case where the equilibrium direction of the
moment is in the basal plane is important for the
heavy rare-earth metals. As discussed in Sec. III
all anisotropic terms in (1) can be treated analo-
gously as the single-ion term (3). By rotating (3)
into a representation with the quantization axis in
the basal plane we obtain the particular form of
(25) when the y axis is along the hexagonal axis:
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~&, B2((oo)+p(o', )+ 3(o,') —f&o',))],

8 = ——,[-,' B,'((0,') —4(o',) + (o'))
C

,', B—,'—((0,')+ ', (o',—)—13(o')+ ' (o'))1

(A4)
rameters do not adequately describe the A-B
bracket. An important fact is that X involves a
part which transforms under rotation of the aver-
age moment in the basal plane as cos6@. This
term was first mentioned by Lindgard. It is de-
fined as

We have abbreviated B', by B," as in Ref. 18. If
we only consider the terms of lowest order in l we
may express the temperature dependence as

S S6- 6 ~~8 I - C ~~4 .0 0

~~(T) = (7B~S4m~4 —18B~6S6~~6)go~84

—22B6$6g0~ 6' & . (A6)

36B', Sm' ]6 (A5)

A (T) —B (T)
= (1/Z) {(c"/Z)(2e',m'~'~+a', I'4'4

—Coco(2m 4' ~+ m ~' 4)]

+ 2(3B2Sqm 3 —30B4S4m 4

+ 105B6S6rn 6) —6B~~S6rn 6+ Xj,
where

X= —2(VB4S4m 4 —18BBSsm 6

+11BBSem 6)(eq) = 65tt(T)+ Y.
X shows that the macroscopic magnetostriction pa-

For Tb and Dy we find from (36) and Table IV P~-3.4 and P4-14.6. The result is when the temper-
ature dependence can be described by m(T) = m, as
for Tb and Dy;

Ao(T)+ Bo(T)

= (1/ J)[4(e'/J')(e ~o m'2'&+ 8 Om'4'4)

—(c'/Z) e,e,(8m'4'2+ 2~'2'4)

It is clear from (9) and (20) that also two-ion an-
isotropy of the appropriate symmetry will contrib-
ute to AOR(T). Yis of axial symmetry. The only
terms in (A5) transforming under rotation as cos6$
are BG, 8060, and 45K; all other terms are invari-
ant. The dominant contribution to Bo(T) in Tb and
Dy is the axial anisotropy B2. Therefore the effect
of a Q dependence of the ellipticity parameter b(T)
is not likely to be large, as suggested by Brooks
and Egami. Spin-wave measurements on terbi-
um~ show that 65K is the dominant sixfold term.
It is about 20/0 of the axial anisotropy in magnitude.
Since b(T) to a good approximation is proportional
to Bo(T), Eq. (32), we expect a 20% variation in
b(T) under rotation of the moment direction in the
basal plane. The effect is essentially caused by a
change in the ground state under the rotation. The
results in Table IV can easily be adjusted to take
this into account.
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