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By expressing the free energy as a line integral along a renormalization-group trajectory, a technique
for calculating the crossover scaling functions which describe tricritical systems, anisotropic spin
systems, etc., is developed. This formalism is applied to the model recursion relations of Riedel and
Wegner, which simulate crossover behavior. A simple mechanism for the breakdown of ‘dimensionality
dependent ‘hyperscaling relationships emerges from the analysis. The specific-heat crossover scaling
function describing crossovers from Gaussian to Heisenberg critical behavior is constructed to first order

ine=4-—4d.

I. INTRODUCTION

Phenomenological scaling ideas® have been very
successful in describing the thermodynamic sin-
gularities associated with critical points in fer-
romagnets and fluids. Further understanding of
these concepts has come from explicit calculations
of scaling functions? and associated critical expo-
nents® within the renormalization-group € expan-
sion.

Riedel and Wegner* have formulated a scaling
theory which applies when more complicated kinds
of critical behavior are present, incorporating
the crossover from one type of critical behavior
to another into the scaling picture. Their scaling
hypothesis has been useful in describing behavior
near critical points of systems with tricritical
points,® systems with anisotropic interactions in
spin space,* etc. The scaling approach can also
be used to treat systems exhibiting spin-flop
transitions.® :

When these more complicated systems are treat-
ed by renormalization-group techniques,” ™ they
are found to be characterized by a multiplicity of
fixed points. Instead of a single fixed point of
interest, as is believed to be the case for a simple
ferromagnet,® one must deal simultaneously with
at least two fixed points, characterized by distinct
critical exponents. We present here a renormal-
ization-group formalism for calculating (by €
expansions or other means) the crossover scaling
functions associated with such situations.

The phase diagrams for a metamagnet (with a
tricritical point) and for a uniaxial antiferromag-
net (with a spin-flop point) are indicated in Fig. 1.
Both these systems have critical lines as well as
singled -out multicritical points in the (T, H) plane.
The critical exponents describing the various
thermodynamic singularities are expected to be
different on the critical lines from ones at the
isolated multicritical points. We will sketch the
phenomenological theory applicable to the tricriti-
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cal system,® although one can describe the spin-
flop system in a similar fashion.® The extended
scaling hypothesis for crossover systems, due to
Fisher and Jasnow,'! will be employed.

Deviations from the tricritical point (T, H,)
are defined through the reduced variables

t=(T-T)/Ty, h=c,(T =T,)/T,+c,H -H,)/H, s
(1.1)

where the relation 4 =0 represents the tangent to
the critical line at the tricritical point. The ex-
tended crossover scaling ansatz!! is then that the
free-energy density behaves asymptotically as

Ft,h)~t> @/t ®) (1.2)

near the tricritical point, i.e., as {,A— 0. The
exponent ¢ is the crossover exponent, while « is
the primary specific-heat exponent appropriate to
the tricritical point. The essential difference from
the usual scaling formulations!® is that ®(z) is
assumed to have a singularity at z of the form

®(2)=A+Bz-2)+Clz-2|2"% as z~2%~.
(1.3)

The exponent & is the secondary or critical-line
specific-heat exponent. The equation of the criti-
cal line itself is then given asymptotically by!*

h=zt®, (1.4)

This paper will discuss the calculation of the
crossover scaling function ®(z) by renormaliza-
tion-group methods. Riedel and Wegner!? have
applied a renormalization-group matching pro-
cedure to certain rather ad hoc “recursion-rela-
tion models” and have shown how to calculate, in
principle, the analogous crossover scaling func-
tion for the susceptibility. However, a straight-
forward application of their methods leads to
difficulties in a direct calculation of the free-
energy scaling function. This point will be dis-
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FIG. 1. (a) Schematic phase diagram for a metamagnet
in a uniform magnetic field with a tricritical point
(T;, H;) which marks the joining of the bold line of first-
order transitions to a line of second-order transitions.
(b) Schematic phase diagram for a uniaxial antiferro-
magnet in a uniform magnetic field with a bicritical
point (T, , H,). Field is applied along the direction of
anisotropy. Bold line represents the locus of first-
order spin-flop transitions.

cussed further in Sec. II. Direct € expansions for
any crossover scaling functions have not, to our
knowledge, been presented before.

We introduce here a formalism which expresses
the free energy as a trajectory integral along a
renormalization-group flow line. The kernel of
the trajectory integral is related to the spin-inde-
pendent or “constant” term generated with each
renormalization-group iteration. Singularities in
the crossover scaling functions are seen to arise
from the character of the Hamiltonian flows or
trajectories, rather then from singularities in the
kernel itself. We believe this technique repre-
sents a practical method of calculating scaling
functions for a variety of crossover problems. A
concrete application is given in Sec. V.

Wilson discussed how the free energy could be
calculated by summing up the spin-independent
terms in one of his first papers on the renormal-
ization group.! These terms have been discussed
in detail by Wegner,*® who showed how they could
produce the logarithmic singularities in the two-
dimensional Ising model. The spin-independent or
constant terms resulting from renormalization-
group iterations were explicitly summed up for
the one-dimensional Ising model by Nelson and
Fisher,'* and have been exploited by Nauenberg
and Nienhuis'® to produce an approximate equation
of state for the two-dimensional Ising model. Part
of the formalism used here was discussed in a
somewhat different form by Rudnick!® in an alter-
native approach to renormalization-group calcula-
tions.

At this point we summarize the developments
presented below. In Sec. II, a formalism is de-
rived which develops the free energy as a trajec-
tory integral along a renormalization-group flow
line. In Sec. III, we analyze in detail the applica-
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tion of the formalism to the Gaussian model. Al-
though this model is trivially soluble by various
traditional methods,” its analysis gives insight
into the machinery developed in Sec. II. Two
more complicated “recursion-relation models”
introduced by Riedel and Wegner'? are treated in
Sec. IV. These models postulate recursion rela-
tions which simulate crossover behavior. The
analysis produces crossover scaling functions for
“specific-heat like” thermodynamic quantities,
and suplements Riedel and Wegner’s analysis of
the susceptibility. A natural mechanism for the
breakdown of hyperscaling relationships on cros-
sing a borderline dimensionality appears from a
study of the models. Finally, in Sec. V, the
utility of this approach for producing an € expan-
sion for crossover scaling functions near four
dimensions is discussed. The crossover from the
Gaussian to the Heisenberg fixed point induced by
the fourth-order spin term is analyzed in detail.

II. FREE ENERGY EXPRESSED AS
A TRAJECTORY INTEGRAL

A. Definitions and notation

Although the following discussion can be pre-
sented more generally, it is convenient to have a
specific set of Hamiltonians in mind. We assume,
for simplicity, that the Hamiltonian and all re-
normalized Hamiltonians depend on only two pa-
rameters, ¥ =3C(¢, ), and postulate a set of con-
tinuous renormalization-group trajectories in a
two-dimensional parameter space, the (f,Z) plane.

S <
(o)

FIG. 2. Hamiltonian flows in (¢, %) space. Upon appli-
cation of the renormalization-group transformation,
Hamiltonians cross over from the primary fixed point P
to the secondary fixed point S. The bold line indicating
the trajectory which connects the fixed points is the
separatrix. Note that the principal flow lines for the
secondary fixed point need not necessarily be at right
angles.
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These variables could be those defined in Sec. I
for a tricritical system. Within this space there
are two nontrivial fixed points, a bw’mary fixed
point P at the origin and a secondary fixed point
S located at (¢*,k*), as in Fig. 2.

If a renormalization-group transformation R,
is applied to 3C, involving a spatial rescaling factor
b, recursion relations are generated for ¢t and %.
By taking appropriate linear combinations these
variables may be chosen so that they behave as

mb[t] { t'}z[m ] @.1)
h h' b ep

under the transformation %, near P. Different
linear combinations of ¢ and %, say

T=ct+cph, h=cyt+cy,h, (2.2)

will satisfy a similar relationship near the secon-
dary fixed point S, namely,

mb[t——t*:,=[b."t(f_t*):|. 2.3)
B —h* b (- h*)

The exponents A;, A, 5\,, and 5\,, are related to the
critical exponents for the primary and secondary
critical behaviors, respectively. For example,

if t and T are taken to be temperature-like vari-
ables, the primary and secondary correlation-
length exponents v and ¥ are given by

v=1/x;, U =1/x,. (2.4)

We will confirm that the crossover exponent,
introduced in Eq. (1.2), is given by ¢ =x,/x,.”

To obtain the flows illustrated in Fig. 2, the
exponents A, A, and 5\, are required to be positive,
with A, negative. There is a singled-out trajectory,
the separatrix, which connects the fixed points
S and P and is the only trajectory leading into the
secondary fixed point. The state of affairs in Fig.
2 represents the situation encountered in virtually
every renormalization-group calculation involving
crossover® and forms the background for the
model recursion-relation discussion by Riedel
and Wegner.'?

Further variables which are thermodynamically
irrelevant at both fixed points may be introduced,
but they turn out not to change the overall picture
in an essential way.!'® We will briefly indicate how
they can be treated in Sec. IID.

One further idea is needed before analyzing the
transformation properties of the free energy under
%,, namely, Wegner’s concept® of nonlinear scal-
ing fields. With the variables { and 2 are associ-
ated nonlinear functions

gt(t,h):t+0(t2,h2,ht),
gu(t,h)=h+ O(t? h® ht),

(2.5)

as t,h — 0 such that the approximate relation (2.1)
becomes exact, that is

mb[gf} [b“g‘} ) (2.6)
8h b rg,

Note that the normalizing relations (2.5) indicate
that g; and g, reduce to ¢ and 2 near the primary
fixed point. The general existence and uniqueness
of scaling fields is a complicated problem. Weg-
ner showed how to calculate them as (generalized)
power series about, say, the primary fixed point.
However, the question of convergence was left
quite open. Furthermore, we will need the com-
plete expression for the nonlinear field which, it
must be stressed, embraces also the secondary
fixed point. Nelson and Fisher' demonstrated
explicitly that the nonlinear scaling fields are
physically nonunique; i.e., they depend on the
choice of ®. However, the nonlinear scaling
fields can be calculated explicitly for the various
models considered here. Similar scaling fields
can be defined for the secondary fixed point, but
they will not be needed.

B. Trajectory integrals and the free energy

A renormalization-group transformation R, re-
lates the free energy at a point in parameter space
(g:, 45 to the free energy at a transformed point
according to®1?

F(g,8n) =0 "F(b Mg, b 1g,) +b™G(&y, 813 D)
@.7)

The function G(g;, g,; b) represents a spin-inde-
pendent or “constant” term generated by perform-
ing the partial trace operation associated with the
transformation ®,. For small b, say, b=2,
Glx, v; b) is expected to be regular in x and y for
x and y small, and the thermodynamic singularities
associated with F(x, y) should lie in the first term
of (2.7). However, as b— o, all degrees of free-
dom are integrated out by ®,, and G essentially
becomes the logarithm of the partition function.
Thus singularities are effectively transfered from
the first term to the second term of (2.7) as R,
acts repeatedly.

Iterating the transformation &, » times, we
obtain

F(gy, g0 = b-d"F(bMtgta bn)\hgh)

n
30 OGN Mg D).

=

n'=1

(2.8)

It is convenient to suppose that one can consider
a sequence of infinitesimal transformations cor-
responding, say, to integrating out modes as-
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sociated with a thin outer shell in momentum
space.?! Then, writing b=¢° and I=n0 and taking
the limit 6~ 0, we find

F(g,gn)=e " "F(eM'g, etr'g))

1
b [ et G g, M g ar,

0
(2.9)
where

0G (84,8m b)

Go(&:,8n = ob (2.10)

b=1

We note that G(x,y;b=1)=0. Equations analogous
to (2.9) for other thermodynamic quantities can be
obtained by differentiation.

If the integral in (2.9) could be neglected, the
free energy could then be calculated by a “match-
ing” procedure. Specifically, the recursion rela-
tions would be integrated out of the critical region
to a regime one could then “match on to” a known
noncritical free energy through

F(gt,gh)ﬁe_“F(ex'Igt,e)\"lgn)- (2.11)

This is the technique employed by Riedel and
Wegner'? to calculate model susceptibility scaling
functions. Itturns outthatthis matching procedure
can be applied to the susceptibility because the
spin-independent terms generated by R, cancel out
during each iteration, and the integral in (2.5) can
be neglected. However, this is only true of linear
renormalization groups, that is, groups which map
the spin-spin correlation function onto itself.??

In general, we expect the integral in (2.9) to be
as singular as the second term. To see this
simply, first set g,=0. Then

1
F(gt)=e"”F(e“’gt)+f e™"'GyleM g,)ar .
o

(2.12)

The matching procedure consists of integrating
this equation out to I, where e*'g, equals, say,
unity. Then, setting e*t’g, =’ in the integral,

we find

1
F(g,) =gt MF(1)+ a7 ig ﬁ

ng

e G (&) dT .

(2.13)
If the integral behaves regularly at the lower
limit it is clear that it contributes a term just as
singular as the first term generated by matching.
A discussion of how to analyze integrals of this
sort is given in Sec. IIC.
The matching procedure can be bypassed if we

let I~ = in (2.9). Provided

lime F(eMt'g,,eMgy =0,

1—>00

(2.14)

the free energy is then just given by

Flgi,g0= | e™GeMg, Mgdl.  (2.15)
o]

This can be thought of as a line integral along a
renormalization-group trajectory, determined by
g:(t,h) and g,(t, 2) and parametrized by I. We will
assume (2.14) in our discussion here, since it
amounts to the assertion that the repeated partial
traces associated with R, will eventually generate
the partition function. However, if there is some
macroscopic occupation of long-wavelength modes
(as when an ordering field or spontaneous mag-
netization are present), one cannot expect (2.14)
to hold. This will be demonstrated explicitly for
the Gaussian model in Sec. III.

The expression of the free energy as a trajectory
integral has certain advantages. The trajectories
above and below the separatrix in Fig. 2 exhibit
radically different behavior, which is amplified
as I-, One might thus hope that singularities
across the separatrix stem from different Hamil-
tonian flows, rather than from singularities in
the kernel G,(g;, g, itself. Model calculations in
Sec. IV indicate that this is indeed the case.

C. Crossover scaling functions

From the trajectory integral representation of
the free energy, a formal expression for the cross-
over scaling function ®(z) can be constructed.
First, however, the problem of splitting the free
energy into singular and regular parts will be
considered. For simplicity we consider first the
case of one variable only by setting g,=0.

Passing to the limit /-« in (2.12) and assuming
that the relation (2.14) holds, one obtains

Flg)= [ eGye g ar . (2.16)

0

Upon changing variables, as in the derivation of
(2.13), this expression reduces to

F(g)=gi™i(g,), (2.17)
where
I(g) = 1 e MG (') dl. (2.18)

At

Ing,

If the lower limit in (2.16) could be extended to
—oo, the function I (g,) would be asymptotically
independent of g; and (2.15) would then represent
the usual form for the free energy near a critical
point with d/), =2 - a.
It is easily seen that
ar -1

v TR AR (2.19)

Assuming that G,(x) has the expansion
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Go(0)= Y ax” (2.20)
n=0
about x=0, we find
_8_1__ _1_ = -d/Xg=1+n
og, T n A MEr @20

and then integrate back up to obtain the formal
result

a g n=d/ \¢
I(g:) =40~ Ag Z n-d/x;
where A, is a constant of the integration. Hence
we can see that

(2.22)

F=A.g{™+F (g, (2.23)
where
P ()=~ MZ;W d/k, (2.24)

The existence and character of the expansion (2.20)
can be determined case by case for the various
models studied. F ., will play a role above the di-
mensionalities d=4for criticalpointsandd =3 for
tricritical points in breaking hyperscaling.2’ The
terms n —d/X, in the denominators may conspire
to give logarithms.

One may proceed in a similar fashion to obtain
an expression for the crossover scaling function.

A change of variables applied to (2.5) gives

F(g:, 80 =81"1®(g,,8/27), (2.25)
where
®(g;,2)=— e MG (e}, e®2)dl (2.26)

At Ing,

and ¢ =A,/A,. Only the crossover variable

z =g,,/gf’ occurs in the integrand, with a residual
g: dependence in the lower limits of integration.
As in the case of only one variable, we may cal-
culate

8@) 1 a1 @
—_—] = — t~1G z).
(E)g, v o(88(2)

Again assuming G, is expandable in its arguments
about the primary fixed point as

(2.27)

Gol%, ¥)= Y Gumx"y", (2.28)
n,m=0
we obtain
3(1’) n+pme=d/\, -1
= a tT1g™ (2.29)
(agt 2 A'tnz nmg

The formal results follow

1l & [ -
‘I)(ghz):@o(z)"‘sz m a/xg’”

o (2.30)

NELSON 11
that is,
(gt)gh) gd/)\tq) (Z)+Freg(gt,gh): (2-31)
where
1 - anm n,m
F (%, y) == W >, aromoam Y (2.32)

n,m=0

The crossover scaling function is evidently ® ,(z),

which can now be expressed formally as
¢O(Z) =® (gt’ 2) —g;d/ )\tFmg(ghz) .

Since the right-hand side must be independent of
g:, we will evaluate (2.33) in the limit g,~ 0.
Considering the expression

gt-d/ )\tFreg(gt; Z)

(2.33)

o
— 1 Ay n+dm ~d/ )\,zm

=_ )Tt—nzz T g% (2.34)

we see that the limit is straightforward except for
those pairs (#,m) in a set N defined by the condi-
tion

n+pm <d/x, . (2.35)
Rewriting the offending terms as

1 m fw ~dl/X;+nl+dml

— a,. .z e ¢ dl 2.36

A (n%:e:n i Ingy ’ ( )
(2.31) becomes

& ,(z) =lim _f et/ N

g -0 t Ingt
X <Go(e',e‘“z)
Z anmzmenhcbml) dl,
(n,m)en
2.37)

or, taking the limit explicitly,
__l_fw =dl/ X,
_)\t -we

X(Go(el,eduZ)— Z a, Zme"HWl)dl.

(n,m)egt

(2.38)
In practice the set X will normally contain only
three or four elements and represents precisely
those subtractions needed to yield a convergent
extension of the lower limit in (2.24) to -«.

D. Kernel of the trajectory integral for
a momentum-shell-integration renormalization group
Although (2.36) represents a formal expression
for the crossover scaling function, it is not par-
ticularly useful without knowledge of the kernel



11 CROSSOVER SCALING FUNCTIONS AND RENORMALIZATION GROUP... 3509

function G,(e', e®z). Fortunately, this kernel has

a very simple form for the usual continuous spin-
Hamiltonian renormalization groups already ex-
tensively studied via the € expansion.®

Following Wegner and Houghton,?! we consider

a general Hamiltonian expanded in N Fourier com-

ponents® of the continuous spins

1
Ho=Nvo+ 5 zk: v,(R)S,S_,

1
f;}'!—N Z vk, Ryy kg, RY)
k

1reoky
X Sy, Stk S Dbyt kg hgrg +7 0" - (2.39)

The momentum summations run over a spherical
Brillouin zone of unit radius. In a perturbation
theory in v,,% the inverse propagator will be v,(k),
which is taken to be spherically symmetric. Weg-
ner and Houghton?! constructed the differential
generator of the renormalization group associated
with integrating out the spin components in an
infinitesimal shell of momentum space,

e~ % <|k|<1. Repeated iterations as in Sec. IIB
then produce the transformation for finite b=é'.
The spin-independent part of the Hamiltonian (per
unit spin) is v,, and it is not hard to show that
lim;_ . e %v,(1) is just the free energy per spin

F, provided the condition (2.14) holds. The re-
normalization-group differential equation for vy(l)

is?!

dv,(l)

al =dvo(l)‘%[2—n(l)]+%d1nvz(l’k)lk=l .

(2.40)

The function 7(l) arises from a spin rescaling
used to keep the coefficient of k¥ in v,(l,k) con-
stant.® It will in general be a specified function
of /, but must reduce to the correct critical ex-
ponent 7 at all fixed points.

On integrating (2.40) from [=0 to ==, we
obtain
lim e~ (1)

>

=2,(0) + fw e {31 -n()]+3d1nv,(L, 1)}dl.

(2.41)

The quantity v4(0) is an initial constant which we
choose to be #d for convenience. The free energy
per spin is then

F:f e~ [m(l) +3d Inv,(L, 1)]dl, (2.42)
0

provided (2.14) holds. Comparison with (2.15)
yields the identification

Go(1)=3n(1) +3d1nv,(1, 1) . (2.43)

Note that v,(l, 1), although independent of k, is an
l-dependent quantity. An expression for the free
energy equivalent to (2.42) has been derived by
Rudnick.®

A procedure for calculating the free energy from
the renormalization-group recursion relations is
now clear. We expand, as usual,® the functions
v, and v, in powers of k:

vy(1,R)=7(l) +ek® + O(k*) ,
V(L Ry, Ry, Ry k) =u(l)+ O(R?) .

The coefficients of the higher-order powers of 2
are irrelevant variables, and will, for now, be
neglected. Recall that 7(l) is chosen to keep the
coefficient e of k* equal to unity. Differential
equations for #(7) and u(l) can be constructed

by the Wegner-Houghton method or, equivalently,
by taking the b—e® limit of the recursion rela-
tions in Ref. 3. Constructing the scaling fields
g,(r,u) and g,(v,u), we obtain

(2.44)

Go(l) = %n(gre)\rl,gue)\“l)
+3dIn[1+7(geM ge™h)], (2.45)

from which the free energy can be found through
(2.15). Here, 7 and u are equivalent to the ¢ and
h variables utilized in Sec. IIA. [In practical
calculation, we will often take 7(1)=0 as an ap-
proximation.]

The simplicity of the result (2.43) is a conse-
quence of taking the continuous limit 6 -~ 0. The
nontrivial graphs arising from a perturbation the-
ory in v, are order 6% or higher. The only contri-
bution linear in 0 is the usual multiplicative term
involving the inverse square root of the deter-
minant of the propagator. Some nontrivial graphs
which do %ot contribute to the differential equation
for the free energy are shown in Fig. 3.

E. Irrelevant variables

We now indicate how an additional irrelevant
variable at the primary fixed point may be incor-
porated into this scheme, using an idea due to
Wilson.?® Suppose we have constructed a set of
three coupled differential recursion relation in-
volving the variables £, 2, and w, namely,

at/di=T(,h,w),
dn/dl=H(t, h,w), (2.46)
dw /dl=W (t,h,w) .

These recursion relations are assumed to be di-

agonal about a primary fixed point P to first order,
i.e.,
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dt/di=t,
dnh/dl=x,h , (2.47)

dw /dl=n,w .

Note that the primary fixed point has been taken
to be at the origin. The eigenvalues A, and A, are
taken to be positive, so ¢ and # correspond to the
variables discussed in Sec. HA. The parameter
w is an additional variable irrelevant at the pri-
mary fixed point, i.e., A, =-|2,|. As in Sec.
IIA, it is assumed that there is a secondary fixed
point S to which Hamiltonians can flow crossing
over from P, We again assume that there is one
singled-out trajectory, the separatrix, which
connects P to S.

In general, the Hamiltonian flows governed by
(2.46) could be quite complicated. However, we
will show that there is a two-dimensional manifold
wo(t, k) in (¢,h,w) space on which the trajectories
behave as depicted in Fig. 2. If an initial (unre-
normalized) Hamiltonian has parameters lying
in the manifold, it will lie in a crossover scaling
regime without any transient effects. Although
this manifold will not in general just be the trivial
plane w =0, this could be taken as an approxima-
tion.?

The first step is to find the scaling fields
gt h,w), g4t ,h,w), and g,(,h,w) associated
with the primary fixed point, which amounts to
solving the system (2.46). The functions g,({,z,w),
git,h,w), and g,(t,h,w) are defined in analogy to
(2.5). In terms of these variables the solutions of
(2.46) may be expressed

t(l):t(gte)\tl’ghe)\hl:gwe-‘ )\w‘ l) ’

n(D)=h(ge™, gre™, g e 2!ty (2.48)

w(l)zw(gtextl,ghe)‘hl,gwe"‘ )\w‘ 1) .

Note that all trajectories in the simple two-dimen-
sional parameter space discussed in II A near the
primary fixed point originate from P (see Fig. 2).
Letting I~ -« in (2.48), we find that the only solu-
tions “originating” from P are those with
g.({&,w,h)=0. Consequently, we define a manifold
w,(t,2) by the condition

gw(tywoyh):0~ (2.49)

OO OO0 ©

FIG. 3. Feynman graphs which are order 5% or higher,
and hence do not contribute to the differential equation
for the free energy.
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On this manifold, because the nonlinear scaling
fields must be identical to the linear scaling fields
for small arguments,

t]ir?m [t(l),h(l),w(l)]:[0,0,0]. (2-50)
Since the separatrix is by definition a trajectory
originating from P, it, as well as the secondary
fixed point S, will lie in the surface w,(f,2). At
the secondary fixed point, there is already one
irrelevant direction singled out by the separatrix,
The remaining eigenaxis must be associated with
a relevant operator since, if it were irrelevant,
there would be more than one separatrix, which
we have taken to be unique. (We exclude here the
interesting case of a marginal operator.) Note
that the prescription given above only gives tra-
jectories on one side of the secondary eigenaxis
of S (unshaded portion of Fig. 2). We expect that
the remaining trajectories can be obtained by
analytically continuing the function wy(¢,%) into
the shaded region of Fig. 2. A picture of the
Hamiltonian flows we have in mind is shown in
Fig. 4.

Formally, the asymptotic crossover scaling
function can be extracted by expanding in g,. Ex-
pressing the kernel of the trajectory integral as

Golgee™, g, g e~ Mol 1),

the free energy is just

F(gty ghagw)

=f e MGy (geM!, ghe, goe~ Mol a1, (2.51)
1]

All trajectories approach the manifold w,(t,k)
during the large-I part of the integration. Expand-
ing in the third argument of G,(x, v, 2) and changing

g,(t,h,w)=0

g,(t,hw)=0

FIG. 4. Hamiltonian flows in (¢, 2, w) space. Only the
trajectories in the manifolds given by the equations
gu(t, h, w)=0 and g.(t, h, w) are shown. The separatrix,
which connects the primary fixed point P to the second-
ary fixed point S, is shown as a bold line.
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variables, one obtains corrections to crossover

—J

Flg,, gmg) =2 g 0 [

Ing,

where
G(l)(xa y) = [8G0(x,y, z)/BZ]FO .

The first term is the asymptotic crossover scaling
function (provided the regular parts of the free
energy are subtracted out), while the second is the
leading correction term due to the irrelevant vari-
able. It corrects for initial Hamiltonian param-
eters which are off the “scaling manifold” w,(t, z).

Although explicit reference to the irrelevant
scaling field g,(¢,%2,w) has been eliminated in the
first term of (2.52), the irrelevant variable w still
plays a role since it appears in the arguments of
g: and g,. The asymptotic crossover scaling pre-
diction from this renormalization-group treat-
ment is

(2.53)

“®(g,/g?).
(2.54)

F(gtygh,gw):F(gt,gh)O)=g%-

However, the result of an analysis by series ex-
pansions or through actual experiments would be of
the form

F(t,h)=t2" %3 /t?), (2.55)

where the results are expressed in terms of the
linear scaling fields. Now, g; and g, must vanish
when ¢ and # do, if (2.54) is to give a correct de-
scription of the physical system which scales
according to (2.55). Thus g, and g, must behave
like

g =t1+c,w+0w?)], (2.56)
ga=h[1+c,w + Ow?)], (2.57)
as t,h -0, where c¢; and c, are constants. De-
fining

P=lim (g, /1),

sh—=>0

Q=1lm (g,/n), (2.59)
t,h>0

we see by equating (2.54) and (2.55) that the con-

nection between the scaling function ®(z) and the

“observed” scaling function @ (z) is

&(2)=P2"%®(Qz/P?). (2.60)

Thus an observed scaling function ®(z) must be
normalized properly if it is to be identified with
the universal crossover scaling function ® (z).1
One could, for example, enforce the conventions
<I>(O) 1 and &'(0)=1 by rescaling ¢ and % properly !
thus eliminating the effect of the irrelevant vari-

e-dl/)\tGo(el’ e¢lz’ O)dl +xt-1gg/>\,+ h‘w‘/xt f

scaling of the sort first discussed by Wegner,

e'(""‘)‘wh’/)‘tGé(eZ,e¢’)dl+' ..,
lngt

(2.52)

r

able w. Although these techniques for treating ir-
relevant variables will not be exploited in this
paper, they have, in fact, been used to obtain the
equation of state for systems with dipolar inter-
actions.'®

III. GAUSSIAN MODEL

Although the Gaussian model is a well known
and easily solved model, it is well suited for a
first demonstration of the abstract machinery
developed above. The Gaussian model is simply
described in momentum space by the Hamiltonian

H=Nv,+ 22

On expanding v(k) =7 +k? + O(k*), the usual renor-
malization-group analysis® gives simply

dr(l)/di=2v(), n(l)=0. (3.2)

This choice of 1 keeps the coefficient of k2 equal
to unity. The coefficients of higher powers of
k are irrelevant variables, which could be incor-
porated into the analysis by the techniques out-
lined in Sec. I E. They will be neglected here.
Thus the nonlinear sca,lidg field is just g, =7 and
(1) =7(0)e?’.

The free energy, by (2.15), is

£)S,S-.s - (3.1)

F(T)=f e "1n(1+7e?t)dl. (3.3)
0
Using (2.23), we obtain
_ d/z l fd (_ m
F(r)=Arts 4 o Z—l——( —am (3.4)

n=

The amplitude A can be expressed

"’)’" -d/2

lf e 2 1n(1+e") dl—%z

In7

(3.5)

which is equivalent to Eq. (2.31). The right-hand
side must be independent of 7', so we take the
limit » - 0,

A=lim<lf dle™™21n(1+¢")
=0 Inr
1 yi-if2

*y1-dnz " 3.6)

1 7272
1 2-d/2>
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As in the discussion following Eq. (2.34), we have
explicitly taken the limit -~ 0 for those terms in
(3.5) which have #>3. The two terms retained in
(3.6) allow the range of integration to be conver-
gently extended to - for all dimensionalities less
than d =6. Writing these terms as integrals from
In7 to infinity and explicitly taking the limit we
obtain an expression for the amplitude analogous
to (2.38), namely,

=2 ethlmre) ~det - te?lar. (.0)

That the “trajectory-integral” expression (3.3)
is in fact the correct expression for the Gaussian
model can be seen by a trivial change of vari-
ables. Setting ¢=e”, and neglecting an unimpor-
tant constant, it is easily seen that

F)= [ nbr+g)e " dg, (3.8)

which is the usual expression for the free energy
of a Gaussian model in d dimensions defined on
a spherical Brillouin zone of unit radius (and ne-
glecting higher powers of ¢7).

The Gaussian model in a magnetic field 2 pro-
vides an interesting counterexample to the asser-
tion (2.14). We introduce the field by adding the
term NS, to (3.1). The exact free energy in a
magnetic field is

~1
Fir,h)= [ In(r+q?)g*tdg +h*/K 7,
0 (3.9)
K;'=2""1"21(3d),

where the factor K;! in the second term comes
from a normalization convention.?! However, a
naive application of the formalism developed in
Sec. II would lead to the result (3.8), without any
field dependence.

The missing term, in fact, arises from the
limit of e"®F[r(l)] as I~ <. The recursion rela-
tion for 7 is just (3.2), while for % one has

dn(l)/dl=(1+3dh(1). (3.10)

Substituting the trajectories 7(1)=7e* and
n(1) =he!¥2)" into (3.9) and taking the limit ex-
plicitly, we find
lime " Fre? he' ™2 =p*/Kr , (3.11)
1>
which is, of course, the missing term. That the
right-hand side of (3.11) is nonzero suggests that
(2.14) does not hold when the modes at g=0 are
macroscopically occupied. One could conceivably
surmount this problem by transforming away the
linear term in S by a spin shift, which works for
the Gaussian model. More generally, one can
hope to determine this limit by a matching pro-

cedure near the attracting fixed point (¥~ ). In
this case the expansions for large 7 can easily be
found and leads to the same result (3.11). How-
ever, in the remainder of this work we will stay
above any ordering temperatures and take the 2
variable defined in Sec. II to be a nonordering
field.

IV. MODEL RECURSION RELATIONS

Riedel and Wegner!? have discussed crossover
critical behavior in terms of simple “model” re-
cursion relations. They analyzed the Hamiltonian
flows and scaling fields in detail, and calculated
a susceptibility crossover scaling function. We
will use these models to test the procedures out-
lined in Sec. II. It is convenient to calculate the
scaling function for the “specific heats” of these
models, that is, two derivatives of the free ener-
gy with respect to a temperature-like parameter.
These specific heats would be rather difficult to
obtain for realistic systems by the matching pro-
cedure, for the reasons outlined in Sec. I B.

A. Recursion-relation model I

We first consider the recursion relations most
extensively discussed in Ref. 12. Expressed in
terms of the variables of Sec. II A, these recur-
sion relations are

dt/dl=nt+(}, = A,)ih (4.1)
dn/dl=x,h(1-h). 4.2)

The secondary fixed point of the differential equa-
tions (4.1) and (4.2) is (t*,h*)=(0, 1) (see Fig. 4),
and the model implies the identity A,=-X,, (see
Sec. IIA).

These recursion relations were postulated by
Riedel and Wegner without reference to an under-
lying Hamiltonian or renormalization-group pro-
cedure. However, they are similar in structure
to the renormalization-group equations derived to
first order in € by Wilson and Fisher®* from a
Hamiltonian like (2.39)—this presumably was the
motivation of Riedel and Wegner in considering
the equations. Thus, it is reasonable to postulate
that the function G,(¢, %) associated with the system
(4.1) and (4.2) has the form G(t,2)=1n(1+t+ ah),
where we have set 7=0 and the combination f+ah
plays the role of ¥ in Eq. (2.43). The equality
v =t +ah results from the introduction of new vari-
ables in terms of which the recursion relations
are diagonal to first order about the primary fixed
point. Although in general a will be nonzero (see
Sec. V), we will set it to zero for convenience.
Thus we suppose

Go(l) =In[1+1£(2)]. (4.3)
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Note that, following Riedel and Wegner, we are
attempting only to find a reasonable simulation
of crossover behavior. It will become evident that
equations with the structure of (4.1) and (4.2) and
the relation (4.3) lead quite naturally to crossover
scaling functions with the expected properties. A
nonzero value of @ turns out to make no significant
difference.

The solution of (4.1) and (4.2) may be represented
asxz

E(1)=geM'/(L+gpern) e M, (4.9)

h(l)=gretn!/(1+g e™r’), (4.5)
where the scaling fields g, and g, are given by

g =t/(1=n) e (4.6)

gn=h/(L-h). (4.7)

That these solutions mimic crossover behavior
can be seen explicitly in the ! dependence of the
“temperature-like” variable ¢. Thus ¢ (l) initially
behaves like e)‘”, with an exponent characteristic
of the primary fixed point, while for large [ it
goes as e"t’, which is the behavior appropriate
to the secondary fixed point.

Insertion of (4.3) into (2.15) and use of (4.4) and
(4.5) then gives

F(gt’gh)

=f e~ In[1+g,e™/(1+g,e™ ) e~ )N dp

[

We will analyze explicitly the specific-heat-like
quantity

—92 «
- f — e(zx,-d)t[(l +ghe)‘h’)’ +g,,e>‘"]—2 .
og% o
(4.9)
where
p= “}‘t)/hh' (4.10)

For convenience, we have taken derivatives with
respect to the scaling field g; rather than with
respect to the more “physical” variable {. One
can go back and forth between the two possibilities
using (4.6).

A change of variables applied to (4.9) yields

C:A{lg[“f e [(1+ze® Y +e']2,

lngt

(4.11)

where a=-(d/x;)+2 and z=g,/g . If one assumes
that a is positive (corresponding to a divergent
specific heat), there is no problem in extending
the lower limit in (4.5) to —«. This immediately
shows that the singular part of C is

Csing =gt_a¢(z)’ (4.12)

where the scaling function is given explicitly by

z,b(z)=>\,"f e“[(1+ze®) +e']2. (4.13)

The difference arising from extending the lower
limit has been absorbed into the regular part of
C; if a <0, subtractions must be made as in the
case of the free energy.

A particular Hamiltonian trajectory in (¢,4)
space can be defined by the condition z =g,(1)/
g:(1)®=const, and we expect the integral (4.13)
to be singular when z equals some constant 2
which locates the separatrix. It is easy to see
from Eqgs. (4.1) and (4.2) that the separatrix is
just the line t=0 (see Fig. 5). Since g; =t/(1 =h)?,
it is apparent that the value of z indexing this
separatrix is 2 =,

If we set g,=0 and then approach the primary
fixed point along the path (i) in Fig. 5, the specific
heat varies as

C:A/gta’ (4.14)
where the amplitude is given by
A=¢(0)=x;1f e (1+e')2, (4.15)

~-c0

If, however, we approach the separatrix at a non-
zero value of g,, such as path (ii) in Fig. 5, we
must use the result

w(z)z)‘;l fw eaz(el+zpeebpl)-2

a(xg =2,/ A\
zconst(%) e h, Z— 0, (4.16)
For fixed g, then, as {~ 0 we obtain
Clge, 80~ (/g M 0 Mrag e
~g7%, a=2-d/A,, (4.17)

boe N
N

FIG. 5. Hamiltonian flows for recursion-relation
model I. Two different paths of approach to the separa-
trix, (i) and (ii), are indicated.



3514 DAVID R. NELSON 11
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102 107 10 16% 6% 102 i® 102
I°gl09$
FIG. 6. Plot of the logarithm of the specific heat vs the

logarithm of the scaling field g; for recursion-relation
model 1.

where & is the secondary specific-heat exponent
for the critical line. We note that (4.16) can be
written

z,b(z)~z<é“°‘)/¢, Z=oo, (4.18)

and hence satisfies the predicted!! double scaling
law of phenomenological crossover scaling theo-
ries. A logarithmic plot of C along the path (ii)

is shown in Fig. 6 for a choice of parameter values
which mimics the crossover from a “tricritical”
specific index @ =0.5 to a “A-line” specific-heat
index & =0.052. The expression (4.13) was evalu-
ated numerically with X, =2.0, X,=1.6, X, =1.54,
and d=3. In Fig. 7, a plot of the effective specific-
heat index,'® defined through

aeff(t) = (3 lnC/a lngt)gh ’

is shown.

(4.19)

B. Breakdown of hyperscaling

The model recursion relations described above
provide a convenient arena in which to investigate
one source of the breakdown of the dimensionality-
dependent hyperscaling® exponent relationships.
Specifically, we have in mind a breakdown of
hyperscaling above three dimensions for fricvii-
ical systems which can be described by recursion
relations similar to those of model I, but with ex-
plicitly calculated coefficients depending on d.

For concreteness, we will consider a tricritical
point like that occurring in He®*-He* mixtures.?
The appropriate experimental parameters for this
system are the temperature 7 and the mole frac-
tion x of He®. In the notation introduced in Sec.
ITI A the field H is the difference between the chem-
ical potentials of the two species, H=p;—u,. The

renormalization-group scaling prediction” for the
free energy of such systems is

F(t,h)=t"®h/t*)+ F,, (4.20)

A derivative with respect to the field % then gives
the prediction that the discontinuity Ax=x, — x, in
the He® and He* densities should vary as

Ax~tiv-¢=¢B | (4.21)

The exponent 3 describing the discontinuity
obeys the dimensionality-dependent hyperscaling
relationship

dv-¢=5 (4.22)

However, this dimensionality-dependent re-
lationship is expected to break down for d>3.
For 3<d<4, a renormalization-group analysis’
shows that v=3 and ¢ =3 d- 2 exactly. The re-
lation (4.21) then gives f=d—2. Thus for 3<d
<4 the “naive” B calculated from (4.21) exceeds
unity, and one expects the temperature dependence
of the concentration discontinuity to be dominated
by a linear term from the “regular part” of the
free energy. This is in accord with the idea” that
tricritical exponents should lock into their clas-
sical values for d>3. Below d=3, expansions of
B in powers of 3 — d indicate® that < 1; so the
hyperscaling relationship (4.21) should hold in
this case.

Taking model I as a description of He® — He*
mixtures and using the identifications suggested
above, we can calculate the discontinuity in den-
sity Ax by taking one derivative of (4.8) with
respect to g,:

w (0=d/A¢)1
Ax:(—?£> -2 ;z/xt—d:f é__d/%dl,
agh Er=0 )‘t l+e

in &
(4.22)

0.0 L 1 L 1 | ! 1 L
16" 162 16"° 6° 6% 16* 02 10 1 10
109,09,
FIG. 7. Plot of the effective critical exponent Qg VS
logy(g; for recursion-relation model I.
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where we have made the usual change of variables
in the integral. Calculating the density discon-
tinuity associated with model I involves allowing
negative values of %. In a real physical system,
this could correspond to an unbounded Hamilton-
ian” and would require the introduction of a third
stabilizing irrelevant variable to get a genuine
density discontinuity. We will, however, in this
illustrative example of the breakdown of hyper-
scaling, ignore such difficulties. Setting

a/\-¢p=dv-¢=B,

one can evaluate (4.22) exactly to find

(4.23a)

Ax=pr;imesc(nB)g?
-t s R(11-5;2-5, -2)

©

=pAs! <1r csc(arf%)g?—g:z _L_—__g%_{'{ ) ’

(4.23b)

where ,F, is a hypergeometric function.?® Assum-
ing B is less than unity for d< 3, greater than
unity for d>3, and unity for d=3 we find that Ax
behaves asymptotically as

pritmesc(Bmgl, d<3
Ax= { prylg/(B-1), a>3 (4.24)
pATglIng,| ,  d=3.

Thus below d=3 hyperscaling holds; above d=3
a term from the regular part of Ax dominates;
and at d=3 the regular and scaling parts conspire
to give a logarithmic correction. The form of the
logarithmic correction is not that predicted by a
more complete analysis of tricritical points in
three dimensions,?® but we attribute this to the
. neglect of a marginally irrelevant variable (at

gte)\,l - Cg'll/qﬁe)\gl

trg, e
1+g,e !

t(l)=

d

h(l)=g)¢exhl/(1+gnexh'),

where

_ T+ A/MTA-1/9) T, [, 1) d
€= TG+ %, - 170) (-5 ]

1
+1+gheh’g12 1(6', 1,1+

‘1 )y
- . FlL .9, 2
M (L+ A /A (1 + g e™n) 2 ‘<¢’1’2+ X

d=3)?° in the formulation of model I. An example
of such a variable would be the coefficient of the
S® term in an expression like (2.39).

The mechanism for the breakdown of hyper-
scaling is seen to be the finite lower limit of
(4.22). If this could be ignored (say, by extending
it to —«), the hyperscaling relation B, =8, would
be inescapable. The lower limit produces a reg-
ular part of x which “locks in” a critical exponent
at its classical value above the changeover di-
mensionality d=3. Apparently, below d=3, itis
the large-1 or long-wavelength modes of (4.22)
which are important, while for d>3 small-I or
short-wavelength modes yield the dominant be-
havior. A similar mechanism seems to destroy
the usual hyperscaling relationship 2 - a =dv
above four dimensions.*® We do not expect that
these ideas are merely an artifact of the model.

C. Recursion-relation model II

We now discuss briefly a second model con-
sidered by Riedel and Wegner' in an appendix. It
is more sophisticated than model I, in that it
allows for a curved nonanalytic critical line in
the vicinity of the primary fixed point. For ap-
propriate values of the model parameters, its
recursion relations are those discovered by Wilson
and Fisher?* for the crossover from a Gaussian
to an Ising-model fixed point. The recursion
relations in question are’?

dt/dl=xg(1=h)+ X, (¢ =t*R)h+ dh(1-h),
(4.25)
dn/dl=x, h(1-n), (4.26)

which have a primary fixed point at (0, 0) and a
secondary fixed point at (¢*, 1). The solutions of
these differential equations may be written® in
terms of nonlinear scaling fields as

A 1
hh,__r

F4X4 a?

1
; - M) (4.27)

(4.28)

(4.29)
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The (I-independent) nonlinear scaling fields g;
and g, are defined implicitly through Eqs. (4.28)
and (4.29) evaluated at 1=0.

When coupled with an expression for the kernel
of the trajectory integral (2.15) such as (4.3),
these equations determine the free energy,

Flgog)=) e i1+ t(geM, g e dl
0

____A;1g;1/)x, ® e—-dl/)\t
. In &
X 1n[1+ t(e*, e®2)]dl . (4.30)
As I - the result (4.28) simplifies to
t(1)m tH 4 ght/ Mgt g1/ _ Y (4.31)

If the lower limit of (4.30) is unimportant, we can
substitute (4.31) to obtain

Fing (81 g;.)zgf/)“fL dle-/M

X In[1 + e/ M 2 MM (2176 _0)] | (4.32)

H

where L is some lower limit such that the approx-
imation (4.31) is good for I > L. Inspection reveals
that the integral in (4.32) will be singular at z

=z =C¢, which is the equation of the separatrix
associated with the system (4.26)-(4.27). In fact,
it is not hard to show that as z -~ % the crossover
scaling function associated with singular part of
F(g,, g,) behaves as

®(z)= f dl e~/ 1n[1 + ei*’/)“zxt/)‘h(zl/‘b—C)]
L

~(z —CO/ e (4.33)

This agrees with (1.3) provided we set d/A, =2~
and d/it =2 —qa. Of course, possibly dominant
terms which are regular in z - 2, could also be
present in an expansion of ®(z) about Z.

V. GAUSSIAN TO HEISENBERG CROSSOVER NEAR
FOUR DIMENSIONS

A simple example of a crossover problem treated
via the epsilon expansion is the crossover from
Gaussian to Heisenberg critical behavior. Ana-
lyzing an Ising-like model with renormalization-
group techniques, Wilson and Fisher?* found that
below four dimensions a fixed point with Ising-like
critical exponents is stable relative to the Gaussian
fixed point. An analogous fixed point for n-com-
ponent spins was subsequently investigated by
Fisher and Pfeuty® and by Wegner.® The Hamil-
tonian flows look roughly like those in Fig. 2, ex-
hibiting a crossover from the primary Gaussian
fixed point to the secondary Heisenberg fixed point.

The Hamiltonian is given by (2.39), and the rele-
vant variables which change under iteration are the
v and u variables defined in (2.44). They obey the
differential recursion relations?*

ar _ 2(n+2) 2(n+2)

7 =27+ I e (5.1)
du _ 2(n+8) ,

G -, W (5.2)

The right-hand side of these equations are expan-
sions in 7 and u carried to second order in €; both
7 and u are taken to be of order €=4 -d. We have
evaluated the coefficients of the higher-order
terms in the equations to lowest order in €; this
will not affect our result for the scaling function
to first order in €. Note that there is no term pro-
portional to #* in (5.1), although such a term would
be present in a recursion relation constructed for
a finite spatial rescaling factor 5.2 It is not hard
to see that the renormalization-group eigenvalues
for this system are

=2, .)\,,:2—[(;1+2)/(n+8)]e (5.3)

The results for Xt and '7t,, are valid to first order in
€, while A; and ), are exact as given between three
and four dimensions.’

These equations have the same form as the sys-
tem (4.25) and (4.26), so their solutions are es-
sentially given by (4.28)—(4.30). However, these
solutions break down when evaluated at e=1. It
will be convenient therefore to display the solutions
in a form more suitable for calculations. As a
first step, we define new variables

t=r+[(n+2)/nlu (5.4)

h=[2(n+8)/neju , (5.5)
which obey the differential equations

dt/dl = et — eaht — €bh? (5.6)

dh/dl = en(1-h) , (5.7)
where

a=(n+2)/(n+8), b=3[(n+2)/(n+8)*]e, (5.8)
and 5 is the inverse crossover exponent
0=2/¢€ . (5.9)

The solution of (5.7) is given immediately by (4.5)
and (4.7) with A, =€. To solve (5.6), we first form

the ratio of (5.6) and (5.7)," namely,
h(1 =h) dt/dh = Bt — aht - bh? . (5.10)

Integrating this equation to find #(#), and then sub-
stituting the expression (4.5) for ~(I) finally yields
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_ Cog,?T e?! b gles!
= Trge™ " 50 Urgme "
Xy o2 —a, §—a; F—a+1;=1/ge)

(5.11)

where C, is a constant of integration.

The hypergeometric function in (5.11) appears
in the form ,F,(a, B; v; — 1/g,€%"); it appears de-
sirable to transform this to hypergeometric func-
tions which have expansions about g, =0 rather
than g,=«. [In fact, this is how one may derive
(4.28)-(4.30).] However, it is not possible to do
this in a simple way when 8- « is an integer, i.e.,
whenever $=2/¢ assumes integer values.”® Dif-
ficulties occur at €=1 and for a countably infinite
set of other dimensionalities between d=3 and 4.
At these special dimensionalities logarithmic
terms are found in the small-g, expansion of
(5.10).7

For large ! one finds the asymptotic behavior

Hl)~ C g eM? +b /(- a) (5.12)

Hence, #(I) diverges as /- with an exponent
characteristic of the secondary fixed point, unless
C,=0. By setting C,=0 in (5.11), one obtains the
equation of the separatrix f,(!), namely,

to(Z)

b a eal

gn € =1

= )a2F1<2_a;‘-5—a’$_a+1’—et>-

p-a (1+g, gne

(5.13)

In general one has tomh"?near the origin. How-
ever, when ¢ is an integer,'? the separatrix is
given asymptotically by £, :hg’ Ink, near the Gaus-
sian fixed point.®! The value of ¢ at the secondary
fixed point is

tr=t(=)=b/(¢-a), (5.14)

in agreement with (5.5).

It is convenient to express (5.11) entirely in
terms of nonlinear scaling fields. Any renormal-
ization-group trajectory can be written gt/g,,"5
=const. We are therefore led to define the scaling
field for ¢ through

g =Cog® . (5.15)

Equation (5.10) becomes

HI) =Hg; 921, gne’)

__ & b (ge)”
(1+gze®)*  P-a (1+g4e)*

X, Fi(2-a,p-a;p—-a+1;~ 1/gpe) .
(5.16)

It is easy to show that g;~ ¢ for small ¢ and /.

Note that scaling fields are only useful in the
trajectory integral formalism when they appear
as dependent variables giving the / dependence
of tand 2. Their usefulness does not really de-
pend on the invertibility of the transformation giv-
ing ¢ and % as a function of g; and g;, nor does it
depend crucially on the analyticity properties of
the transformation. In fact, it is possible to show
that the function #(g;, g,) defined by Eq. (5.15) eval-
uated at / =0 contains a term which is an analytic
function times g,‘,”. One can circumvent this mani-
fest nonanalyticity by redefining g;, but the cir-
cumvention breaks down when ¢ =2/¢ is evaluated
at e=1. This point is discussed further in the
Appendix. We note that such nonanalyticies will
modify the analysis of the regular part of the free
energy given in Sec. IIC.

To treat n-component spins via the renormal-
ization group, the expression (2.43) for the kernel
of the line integral must be replaced by

Gy(2) =3nm(1) +3dnlnv,(1) . (5.17)

The approximations made in deriving (5.1) and
(5.2) enforce =0, so

G,(l) =3dn1n[1 +7(1)]
=zdnln{l +#1) = [(n+2)/(n+8)] €h(l)}.
(5.18)
The free energy is
F(g;, g0 =8f™ z%fw e~ /M1 +K(e, )],
t “neg
(5.19)
where
b 3

K(x,y)= —_a(1+y)a

-
(1+3)° " @
X, F.2-a,d-a;p-a+1;-1/y) .

(5.20)

The specific heat, which we define by taking two
derivatives with respect to g;, is

3%F nd ([~
C=- = d/)‘t_._f e(2=d/A\) 1
og, 8t 2, e
x{(1+e®2)*[1+K(e', e®2)]}2dl .
(5.21)

Using (5.16) evaluated at [ =0, we see that the
quantity C is related to the usual specific heat
(defined as two derivatives with respect to £) ac-
cording to

82F/0t%=C0%g,/0t2=C(1 +g,)** . (5.22)
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Since by (5.3) we have X, =2, for 3<d<4, there
are no problems in extending the lower limit of
(5.21) to — . Thus the singular part of the spe-
cific heat is

Csing =gtd/)\t zp(gh/gt‘b) ’

where

_dn f“’ (2-a /7)1
Wa)=g5 ) @

—co

(5.23)

x{(1+e®2)*[1+K(e!, e®2)|}2dl . (5.24)

Figure 8 shows a logarithmic plot of C,, against
log,,g:, for fixed g,=0.5, with »=1 and evaluated
at e=1. A crossover from the “tricritical” spe-
cific-heat exponent @ =0.5 to an Ising-like index
a=0 2 is clearly indicated. In order to evaluate
(5.24) numerically, we have set both d=4 - ¢ and
X, to their values at €=1, which gives a=-d/),
+2=0.2. The “correct” value of & to first order
in € at €=1 is 3, corresponding to expanding both
numerator and denominator in € of the fraction
in the equation @=-d/x, +2. A plot of a.(g;) as
defined by Eq. (4.19) is given in Fig 9.

An improved treatment of the crossover scaling
functions for this problem would require the intro-
duction of a third irrelevant variable when e=1.
This variable couples to an S® term in the Hamil-
tonian (2.39), and is only marginally irrelevant
at the Gaussian fixed point.” The effect of this
marginality is to introduce complicated logarithmic
corrections to the primary critical exponents.”
This variable can be neglected when 3<d<4. We
note that the truncation scheme of solving the

T T T T T
2.0F -
slope = 0.2
o 1L.OF -
o
o
8
slope =
0.5
ool -
_|0 1 1 1 1
= — - - 0 2 4
6% 16° 6% 162 1 10 10
log, 09,

FIG. 8. Logarithm of the specific heat for the
Gaussian-to-Heisenberg crossover problem plotted
against log,(g;.

06 T T

0.5

0.4 .

0.1+ —

ool 1 1 1 1 1
0° 10° 6% 16* 6% & 1®2 i

log5 g,

FIG. 9. Effective critical exponent s for the
Gaussian-to-Heisenberg crossover problem plotted
against log;og;.

differential recursion relations leads to spurious
terms of O(€?) in (5.24). However, the essential
features of crossover are preserved, as indicated
by Figs. 8 and 9.
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APPENDIX: NONANALTICITIES IN
NONLINEAR SCALING FIELDS

In order to examine the question of nonanalyti-
cities in the nonlinear scaling fields of Sec. V, we
transform the solution (5.11) of the differential
equation (5.10). Using the standard formulas for
transforming hypergeometric functions,?® this
solution may be written

& 2
0=\ [ T 525 T T
X Fi[2~a,2-¢;3-¢;-g,(D] , (A1)
where
C,=C,+bB(¢-a,2-9), (A2)
B(x, y) is the beta function, and
gn(l) =gne®’ . (A3)

The transformation which led to (A1) is only valid
when ¢ =X/, does not assume integer values.
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When ¢ is an integer, the appropriate transforma-
tion formula is much more complex; and involves
logarithmic terms in g;.?® These logarithmic
terms were predicted by Wegner in his original
discussion of the corrections to scaling.®

It is clear from (A1) that the definition (5.15) of
the scaling field g; in terms of C, will leave a
residual nonanalytic term in #g;, g,) proportional
to g,?. The only way to define a scaling field which
makes #(g;, g,) analytic is to set

&) =C,8,0)°%, (A4)
where
FA)] :gt€21 . (A5)

The defining equation (A4) insures that the con-

stant C, is, in fact, independent of /, as required.
Thus, the analyticity requirement has determined
the scaling field g; up to a multiplying constant.

Of course, when €=1, ¢ =2; so the above pro-
cedure will not work. The scaling field g, defined
by Eq. (5.15) in the text was constructed so that it
would be useful for calculations at e=1. In this
case, the resulting function #(g;, g5) is then analytic
except for terms logarithmic in the scaling fields,
in agreement with the results of Wegner.®

Note added in proof. After completion of this work,
we received a report of work by M. Nauenberg
(Max Plack Institute report) developing a formalism
similar to that discussed here, but for ordinary
critical points described by discrete recursion re-
lations.
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