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I. INTRODUCTION

In an earlier calculation of g' in nickel, Fletcher'
used only simple Sd orbital functions, but obtained
(perhaps somewhat fortuitously) good agreement
with the presently accepted experimental g value.
His calculation was based upon a theory originally
developed by Brooks. Fletcher's calculation used
the nickel density of states he had calculated pre-
viously, together with several simplifying assump-
tions adopted for computational tractability.

Despite considerable expeximeeta/ work " in
the intervening years to demonstrate u~mzstakaMy
the presence of a small but non-negligible orbital
contribution to the magnetic moment of iron, co-
balt, nickel, and their binary alloys, the orbital
moment seems to have been neglected in energy-
band calculations and related theoretical work.
The energy-band calculations of Connolly, 9Wakoh, '0

Callaway, "and others, as well as the model-
Hamiltonian work of Ehrenreich et aE. ~ have pro-
ceeded on the premise that the total contribution
to the magnetic moment is due to electronic spin,
i.e. , the sum of the unpaired electron spins. This,
of course, is not true since, in fact, there is also
a small additional contribution from the orbital
lectronic moment which should be added to all

spin-moment contributions, thereby modifying the
previous author's comparisons of theoretical and
experimental total magnetic moments. In many
cases, because of the approach adopted in the cal-
culations, this additional magnetic moment contri-
bution diminishes the agreement be6veen theory
and expel lment.

II. CALCULATIONAL FORMALISM

The magnetomechanical ratio (g') of a material
is defined as the ratio of its total magnetic moment
to its total angular momentum. , g' can range from

2 for pure spin moment to 1 for pure orbital mo-
ment. However, for most materials its value is
usually close to 2 because most of the electronic
orbital angular momentum is quenched (i.e. , van-
ishes). In pure iron, cobalt, and mckel, as well
as their binary alloys, however, the experimentally
determined value of g' ' 8 is appreciably less
than 2. This experimental result is clear evidence
that there remains an unquenched orbital angular-
momentum contribution.

In quantum-mechanical terms the total magnetic
moment along the z direction is given by the term
(L~+ 2S~& and the total angular momentum along
z by the term (L~+ S~&, so that the value of g' is
determined by the ratio of the two matrix elements,
or

In the absence of spin-orbit coupling, the expecta-
tion value of L~, the orbital angular momentum, is
always zero, leading to a g' value of 2. Therefore,
in the calculation of g', the spin-orbit coupling
term must be included in order to obtain a, value of
g' different from 2.

It mould be a formidable task indeed to calculate
the value of g' from a first-principles energy-band
calculation with both spin-polarization and spin-
orbit terms included. However, the interpolation
scheme of Ehrenreich and Hodges (EH) seems
ideally suited for the calculation of g' in ferro-
magnetic nickel.

The EH scheme starts from a set of basis func-
tions which consist of five linear-combination-of-
atomic-orbitals (LCAO)-type atomic orbitals to
represent the Sd functions for nickel, plus an
additional four orthogonalized plane wave (OPW)
functions to represent the conduction bands. This
combination of basis functions gives rise to an
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18-by-18 secular equation, using a Hamiltonian
of the form

+band+ +8.o. + +corr (2)

18 18

where the a's are the eigenvector coefficients
obtained previously, g is, of course, the wave
function, the Q's are the basis functions, and 9 is
one of the I- or S operators given in the Appendix.

III. RESULTS AND DISCUSSION

The value of g in nickel was calculated by the
foregoing method using as parameters the set

where Irb d is the usual nonrelativistic Hamilto-
nian, H, , contains the spin-orbit coupling, and
H„„contains the correlation and exchange effects
which give rise to a spin-polarized or ferromagnetic

~

band structure. Each of the nine (5 LCAO+4OPW)
functions appears twice in the secular equation,
once each for up and down spin orientations.

The energy matrix elements are given in the
"model-Hamiltonian" sense, with a number of
adjustable parameters, the magnitudes of which
are chosen to fit either the results of first princi-
ples calculations or experiments. The energy
bands are then determined at a large number of
points within the Brillouin zone and the properties
which involve k-space integrations are determined.
A detailed description of the EH approach is avail-
able in the literature. However, a few comments
are in order.

The spin-orbit term is allowed to couple only
the 3d functions, since these matrix elements are
well known. Hence the OPW functions of up-and-
down spins are only indirectly coupled through
their hybridization with the 3d functions. Hence
the Ehrenreich-Hodges model can be briefly de-
scribed as the hybridization of QPW functions with
spin-orbit-coupled 3d functions within a parame-
trized model-Hamiltonian formalism.

The presently described g' calculation uses the
EH formalism unchanged. After setting up the
secular equation and diagonalization to determine
the eigenvector coefficients, it merely remains
to compute the expectation values of I & and 8&

[as given in {1}].The forms of the additional
matrix elements of I„, L, I„S„,S„and S, are
given in the Appendix. These expressions can
then be used for the calculation of the expectation
values of I and S for the spin-orbit-coupled 3d
bands hybridized with the OPW conduction bands.
These expectation values are obtained quite simply
by calculations of

b of Ehrenreich and Hodges. This set of param-
meters was based on a fit of the EH model to the
paramagnetic band structure calculation of Hanus, '
modified to obtain better agreement with various
experiments, especially the magneton number.
We believe that this set may not be the optimum
choice but it is the best available at this time.

The present calculation gives a value of g" = 1.862
for the magnetization along the (111)axis {which
is the easy axis of magnetization in nickel). This
g' value is derived from a calculated (Sqqq) value
of 0.302 and an orbital contribution from (I »,)
= 0.048. The present calculation has also been
repeated for the (100) axis, for which the g' re-
sults are almost identical. We find that in this
latter case for (100), g' = 1.858, derived from
values of (S~) =0. 303 and (Iz}=0.050. While the
calculated g' values agree fairly well with the
experimental value (1.83V), they are significantly
too large. One might reasonably ask whether
there is some obvious explanation of this dif-
ference.

In searching for an explanation for the large
theoretical values, it was concluded that the dis-
crepancy is a result of an incorrect premise in
the original derivation of the EH b parameters.
The present calculated value (-0.05 p s) for the
orbital moment, in fact, agrees very well with the
messured value (0.051'.s}. The spin moment
2(S~), on the other hand, (0. 606 p.s) is considerably
higher than the 0.552', ~ derived from g' and total
moment measurements. 4 In fact, 0.606p, ~ is
e&atly the total measured magnetic moment for
nickel. Of course, because the calculated spin
moment is too large, the calculated g' value is
correspondingly too large also.

As stated previously, the EH parameters were
chosen to obtain the best fit with experimental
data, . As a result it was reasonable to use them
unaltered in the present calculation in order to
take advantage of the fact that they had already
been optimized. However, the optimization per-
formed by Ehrenreich and Hodges appears to
assume the total magnetization for nickel arises
entirely from a spin contribution, with zero-orbital
moment. Experimentally (as stated earlier), this
assumption has been shown to be invalid. O' In
the absence of other optimized sets of parameters
it was necessary to use the present EH ones but
clearly the calculated spin moment would always
be too large.

In conclusion let us note that the present calcula-
tion yields a very accurate value of the orbital
moment in ferromagnetic nickel, using the model
potential approach of Ehrenreich and Hodges.
The EH parameters, however, overestimate the
spin moment by nearly 10/p,

'
thus leading to a

slight overestimate of g'.
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APPENDIX A. MATRIX ELEMENTS OF L AND 0
l

0 i 0 0

OW300 :)
The only expressions not explicitly given by

Ehrenreich and Hodges~ are for the matrix ele-
ments of orbital and spin angular momentum,
L and S. To be consistent with the approximations
of Ehrenreich and Hodges, we neglect all inter-
atomic contributions to the matrix elements of L
(i.e. , between orbitals on different sites) and all
conduction band contributions. We retain intra-
atomic contributions, between d orbitals on the
same atomic site. The orbital angular momentum
matrix elements are thus non-vanishing only among
d functions on the same site and of the same spins.
They are given as follows, between orbitals Q,
which are cubic-symmetry-adapted d functions

0 0 0 2i 0

0 0 i 0 0

0 —i 0 0 0

—2i 0 0 0 0

0

0 i 0 0 0

i Q, 0 0 0

0 0 0 -z &3

0 0 i 0

0 0 -a5 0

The spin matrix elements couple only like func-
tions of opposite spin. For the axis of spin quanti-
zation along the direction 8, P, these are

I cos8 —sin8
I—sin8 —cos8) '

sin8 sin cos~ cos + i sin
(@~$„~C ) =

2 cos8 cosP —sin8 cosQ
-i sin

sin8 sin cos8 sin —i cos
(4

~
&~

~

C ') =
2

cos8 sing —sin8 sing
I

+Z COS
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