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Bounded and inhomogeneous Ising models. II. Specific-heat scaling function for a strip
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The specific heat, energy, and free energy of an infinitely long, square-lattice ferromagnetic Ising strip
consisting of n parallel layers with free boundary conditions and a surface magnetic field H, = kz Th,
imposed on the last layer, is analyzed for large n in the light of finite-size scaling theory. It is shown

rigorously that the free energy (and, similarly, the energy and specific heat) can be written asymptotically
in the scaling form Af(n, t,h, ) =n ~(inn)V, (ng, n'~ h, ) +n kV2(nt, n' h, ), where t=(T —T, )/T, . The
scaling functions W';(x,y) are computed in explicit closed form and shown to verify all the analyticity and

asymptotic requirements anticipated by scaling theory. Furthermore, in the limit n M ™at fixed t 4 0,
the bulk and surface contributions to the thermodynamic properties are found to account for all except
a correction of order e&"'l'&~ ~, where a is the lattice spacing and $(T) is the bulk correlation length; the
value of the small rational constant p is interpreted in terms of interference effects between the two op-
posite boundaries (or "surfaces").

I. INTRODUCTION AND SUMMARY

In this article, we consider a two-dimensional
square-lattice Ising model with nearest-neighbor
ferromagnetic coupling of strength J =k&TK. We
study the free energy and specific heat of a "film"
or a strip consisting of n parallel, infinitely long
rows of spins, with two free "surfaces" or bound-
ary rows. On one of the boundary rows of this
n&& ~ system, a magnetic field Hj =4~A, is applied.
However, no magnetic field acts on the interior
spins or on the opposite boundary. When n- ~, the
free energy and specific heat of the film expressed
on a per spin basis must become identical with
those originally found by Onsager' for the bulk,
~ && ~, two-dimensional square lattice. In partic-
ular, the specific heat must diverge logarithmically
as T- T„since the surface field H, can play no
role in this limit. However, when n is finite the
specific heat of the strip remains a bounded and
analytic function of T, although it may display a tall
and relatively sharp peak as shown in Fig. 1 (which
is based on unpublished calculations by A. E.
Fe rdinand).

The aim of the present work is to study this
crossover, from the smooth analytic behavior to the
sharp critical behavior, as a function of the "thick-
ness" or breadth L = na (where a is the lattice spac-
ing). In particular, we will check the finite-size
scaling theory of critical behavior initiated by
Fisher and Ferdinand, ~ partly tested by thems in a
discussion of .an m && n square-lattice Ising torus
(with periodic boundary conditions), and subse-
quently developed by Fisher and Barber, 7 and
Hinder and Hohenberg. ' Some exact analyses for
the spherical and ideal Bose gas models ' have
tested aspects of this theory, butprevious exact cal-
culations have not included a surface field, or stud-

while I-=na is the film thickness. The bulk cor-
relation length, asymptotically given by

(1.3)
may be defined in terms of the asymptotic decay of
the pair spin correlations above T~, according to

(s ss) e R/ f(T &- (1.4)

in which s„-= + 1 denotes a lattice spin located at

ied the effect of surfaces on the shift and rounding
of the specific-heat peak. (Note that the specific
heats in the spherical and ideal Bose models re-
main bounded even in bulk systems; these models
also suffer from physically unrealistic effects as-
sociated with the spherical constraint and the con-
stant-density condition, respectively. ' )

The surface field H& is particularly significant,
since it enables one to study the magnetization
M, (T, H, ) of the surface layer and the correspond-
ing layer or local susceptibility y» = (8M'/&Hq)r.
In particular, we will test the scaling hypothesis
involving H, and study the subtle features of the
corresponding scaling functions.

To explain our results, we summarize the scal-
ing hypothesis for a film: it asserts that the re-
duced free energy per spin of the film can be writ-
ten asymptotically as T- T„ II, -O, and n- ~ in
the form

f(n, t, a, ) = —F(n, T, H, )/k, T

= —itin F„„(T,H, )/nmksT

"X(L/), hq/~t~ )+ fo(n, T, Hq),
(1.1)

where F„(T,Hi) is the total free energy of a lat-
tice of n&&m spins and

f = T/T, - I, a, =H, /a, T,
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FIG. 1. Specific heat per spin for n&& Ising strips
with free edges for n=2, 4, 8, 16, 32, and 64 (based on
calculations by A. E. Ferdinand). It is instructive to
compare these curves with those for an n&n torus (with
periodic boundary conditions) shown in Fig. 1 of Hef. 8.
Note that the vertical line indicates the location of the
divergent logarithmic singularity in the bulk lattice
(n- ~).

and

o =0 (log), v=1,

1P~=&, so that ~~ = —, .

(1 . 5)

(1.6)

Because of the logarithmic specific heat singulari-

postion R. The exponent n describes the diver-
gence of the bulk specific heat as C(T)-t, while
&~ is a special surface exponent defined in terms
of the exponent g, which describes the variation
of the surface layer magnetization according to
M~(T, 0) - I t I I; the required relation is 6I = 2
—n —v —g. The scaling function X(x, y) describes
the crossover from bulk to finite-size behavior.
Finally, fo(n, T, H, ) represents the "background"
or nonsingular contribution to the free energy,
which is uniformly analytic in T and II, as n- ~.
The main physical content of this scaling hypothe-
sis is that, for a "thick" strip (n»1), the thick-
ness L should enter into the critical behavior only
via the relation it bears to the correlation length.

In the case of the two-dimensional Ising model we
have

r f (n, t, fI,) = n '(inn) W, (nt, II,n'")
+ n-'W, (nt t,n"')

where

W, (x, ~) =x'X, (x, ~/x'")

(1.6)

W, (x, u) = —x'in~x ~X, (x, u/x'")+x'X, (x, u/x"') .
(1.10)

Then the theory requires that W~(x, u) and W2(x, w)

should be analytic functions of x and zv.

In the limit when n is very large and T is a fixed
distance from T„ the film should behave as a bulk
system with two, independent (infinitely separated)
free surfaces. The total free energy as n- ~
should then assume the form'

f (n, t, hI) = f„(t)+ n~f "(t, 0) + n 'f "(t,, h~)

+ 0(e 0& /I)- (1.11)
I

where f„(t) denotes the limiting bulk free energy
(independent of II, as explained) while f"(t, h~) is the
surface free energy which, of course, depends on

Az. The last, exponentially small term expresses
the belief'" that in a film there are no corrections
to the bulk free energy per spin beyond those due
to the surface, which are proportional to 1/n;
those arising from the "interference" between the
two surfaces at separation .L are mediated by the
correlations, and hence should decay exponentially
on a scale set by the correlation length $(T', . The
actual value of the parameter P in (l. 11), which

ty, the general scaling hypothesis (1.1) must be
modified' to read

&f(n, t, II,)=t'in~tI 'X, (nt II /t'")
+ t'x, (nt, II,/t"'),

where b,f = f —fo denotes just the singular part of
the free energy. We have also substituted the ex-
ponent values (1.5) and (l. 6), we have removed the
numerical factor 1/f in replacing I/$ by nt
[This form for n=0 (log) can be anticipated by
"borrowing" a term to replace t by (t "—1)/n,
and letting n- 0. ]

The scaling functions X,(x, y) and X2(x, y) are
subject to restrictions as their arguments attain
large or small values. Indeed, one of the purposes
of the exact calculations is to check the validity of
these restrictions. To elucidate the matter, first
note that the free energy of the finite width strip
should on general grounds, be analytic in f, and k~.
Furthermore, the limiting values of these scaling
functions should be in agreement with the exact
closed-form results of McCoy and Wu, "which will
form the starting point of our asymptotic analysis. '4

To impose this analyticity on the scaling form,
we may rewrite (l. 7) as
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where i = 1 or 2 and P =f P. The singular part of
the bulk free energy is then described by

b f„(t)=Xi"t ln ti +X2 t (i. 13)

as t- 0. Similarly the singular part of the surface
free energy is given by

/2f (t, 0) + r f"(t,hz) = t ln
~

t
~

X&(h&/t
~ /2)

+tX2(h~/t / ), (1.1.4)

for t and h1 small. Since the surface free energy
should be an analytic function when tt 0, we ex-
pect X,"(y) and X2(y) to be analytic for finite y.
Finally, in the opposite bmit, where t=0 but
h, x 0, the scaling theory requires that hf" -h, '~'
-h1 in@1, where the scaling relation —&,51=2- e
—v —h~ = g holds. This yields the restrictions

and

V, (v) = V, (y-') =y-'X",(y)- V,' (1.iS)

V2(v) = V2(y ) =2y ln~y ~X~(y)+y X2(y)- V2,
(1.16)

as y- ~, where Vz and V~ are finite constants.

may depend on h1, will be discussed further below
in the light of the exact results found in the present
calculation. However, one would expect simple
integral or fractional values, such as 1, 2, or 2.

To reproduce the asymptotic form (1.11), the
scaling functions must, as x- ~, be of the forms

X;(x,y) = X;" + x 'X,*(y)+0(e ~), (1.12)

T = n(1 —sinh2K)/(2 sinh2K)~ 2

= 2K, nt-n(T —T,),
where

(1.17)

K = 7/heT, K, = tanh (W2 —1)= 0. 440 6868,
(1.18)

and the surface field scaling variable

o = n"'(1+V2 )'"tanhh,

=hn'"h - Wne,1 1

in which

h, =(1+&2)'/2=1 5537774

(1.19)

(1.20)

Then we may write our main result in the form
(1.8) as

f(n, t, h)=n inn(T+T +o )/2+n Y(T, o')

+ n 1+ 0+ f0(ns ts hl) (1.21)

where the scaling function Y(T, o2), related directly
to W2(x, w), is given by

Our exact analysis bears out all of the above
general theory and reveals a number of interesting
further details. In particular, we calculate in
closed form (given as elementary functions plus in-
tegrals over elementary functions) all the various
scaling functions X,(x,y), etc. , encountered above.
For convenience in dealing with the Ising model,
we work explicitly with the temPerature scaling
variable3

r/Y(T, o ) = fln2 —in[1+ (T2+1)' ]](T+ T +o ) —in[1+ (7 +cr )/(T +1) / ]+ T tan (1/T) —2 2~ 7
~

+ —, T (1+ln2)
—(1+T ) + (T+o ) (1+& 1n2+2/4 —2/v2 ) —o(o + 2T) Z(T o )/rr+R(T, o ) (1.22)

where

1 lo +Tl 1+o(o +2T) (o +T)+o(o +2T)
2 o +T 1 o(a'+2T)-" (o +T) o(o +2T—)

la +Tl lo +Tl (T +1) +T +o((r +27)
o'+T lo'+Tl (T' 1)'+'+T'-o(o'+2T)' ' (i.23)

1 00

R(T, o' )= d$[e +e +(o +T)(e —e )/X] + dg(1+[1+(cr +T)/X] [1 —(o +T)/X]e
0 1

(1.24)

in which

(T2 + )2)1/ 2 (i.26)

ergy varies with n as

f,(n) =f(n, 0, 0)= —,'ln2+D2 +n [Dz —ln(1+W2)]

The nonsingular part of the free energy can be writ-
ten as

f2(n, t, h~) = 2 ln2+ 2 ln sinh2 K where, finally,

+ (rr/48)n +. . . ,
(i.27)

+n (lncoshh, —lncoshK —21n2) .
(1.26)

At the critical point t=O, &1=0, the total free en- = 2G/2 =0.5831218 (i.28)

D, = in[2 —cos8+(1 —cos8) / (3 —cos8)' 2]
de 1/t.

0 27T
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= 0. 2589554 .
The reduced energy per spin is given by

(1.29)

has been given by Onsager, ~ in which G is Gatalan's
constant; while

D, = —ln [1+M2(1 —cosg) I (3 —cosa) ~ ]
'd8 1/2

Q 2'

can be expressed as

y»(n, t, hq) = = (1nn)2(1+W2)/g+Z(z, as),
8hi

(1.38)
in which the scaling function Z(v, o ) is given by

Z(~, v') =2(I+)t 2)
8o

u(n, t, h, )= (s5sg) = —n— s2y
+4(1+W2)o s 3 +1.so (1.s9)

(1.so)
where 5 denotes a nearest-neighbor lattice vector.
We may note that higher-order terms enter by dif-
ferentiating o with respect to T. At the critical
point, we have

u, (n)=u(n, 0, 0)= ~v 2 —(mn) inn

—(sn) (y+ 3~ ln2 —ln)) —v/4), (1.31)
where y=0. 5772157 is Euler's constant.

The specific heat can be expressed explicitly as

Cs(n, T, H))/ks=C(n, t, h~)=A l onnB+(~, o ),
(1.32)

where

Ao= (8/w)K, = (2/v)[ln(1+v 2)] = 0.4945386,
(1.ss)

while

2

B(r, o ) = 4K, s y(v, a ) —2K, .
8v' (1.s4)

= —0. 312 5538, (1.s5)

which may be compared with the corresponding re-
sult for an infinite torus, which is

.
B" '=0. 1879027 . (1.36)

The difference in values of Bo is evident on com-
paring Fig. 1 with Fig. 1 of Ref. 3.

The boundary magnetization can be expressed as

Mg(n, t, hg)=(s. ) =n sf
o 8h, z

= 2(1+F2)h, v inn+ I +hg,
8Y
8o

(1.sv)
where so denotes a spin on the boundary row on

which the magnetic field h~ is applied. One finds
that the spontaneous boundary magnetization
Mz(n, t, 0 ) is identically zero for a finite strip.

Finally, the boundary magnetic susceptibility

A more explicit form for B(v, o ) is given in (2. 53).
Indeed, this was the first form in which the result
was obtained. At the critical point, one obtains

Bo(0, 0) = Ao[y+ 3 —,
' ln2 —Inn —14f (3)/v —v/4]

At the critical point itself, one finds

X»(n) =y»(n, 0, 0) = (inn)2(1+F2)/m

+ (y + 3 ln2 —1nv) 2(1+&2 )/s ——,'(v 2 + 1).
(1.4o)

The verification of the analytic properties of the
scaling function Y(v, o ) in r and o is presented in
Sec. III. We also show, in Sec. III, that the large
n limit (v-™)yields the scaling behavior corre-
sponding to the bulk-plus-surface decomposition
(1.11). In particular, from (l. 32) one obtains the
specific heat, for h& -—0, as

C (n, t, 0)= Ao(ln
~

t
~

—»K, + —»2 —vl4)

+ 2n (-K,/vt) y. . . . (1.41)

The first term agrees exactly with Onsager's re-
sult' for the asymptotic behavior of the bulk spe-
cific heat C„(t). The second term represents twice
the leading behavior of the surface heat C (t), and
agrees precisely with the exact result found by
Fisher and Ferdinand. The strong divergence as
t ~ is consistent with (l. 5) and the general scaling
prediction that surface specific heats should di-
verge " as t

In Sec. IV we also show that the scaling form of
the corrections

n 'e(n, t, , h, ) = f(n, t, h, ) f„-
—n [f"(t, 0)+f"(t, h, )] (1.42)

to the bulk-plus-surface behavior of the free ener-
gy, are given for h&= 0 and T & T, by

e(n, t, 0)=EO(7)e '+O(e "/w ')

as 7 -~, with Eo(~)=1/32(2m') ts. This confirms
the theoretical form anticipated above. Since one
has'"

(1.4s)

I,/~(7)=2~ (T& T,), (1.44)

the parameter p in (l. 12) is equal to 2. This may
be understood, when it is recalled that the energy-
energy correlations (sos,sas„„)decay:as e
i. e. , as the square of the spin-spin correlations
(sos"„). ' (This in turn can be seen diagramati-
cally in the high-temperature expansion in powers
of V=tanh K, since the leading long-distance con-
tribution to (sosa) consists o~ a chain of bonds
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from 0 to R, but the energy-energy correlation re-
quires two similar chains to reach the same dis-
tance. ) Now the spatial integral (or sum) of the
energy-energy correlations is, of course, just the
total specific heat, which is thus expected to con-
tain terms of order e ~'= e '. Integration of the
specific heat (at constant L=na) yields the free en-
ergy, which should thus also exhibit similar n-de-
pendent corrections, as indeed observed.

In the presence of a nonzero magnetic field h&,

above T„ the form (1.43) still applies but with
Eo(~) replaced by a function E'(o, r), with E'(0, r)
= Eo(w). Since the field H' is applied only to a sin-
gle surface, this is consistent with our previous
interpretation. However, had a field been applied
to both surfaces one would expect the spin-spin cor-
relation function to come into play (along with sin-
gle chain diagrams stretching across the film), so
that corrections of order e ~ ~ = e ' should appear.

For T &T„ the asymptotic behavior is quite dif-
ferent: more explicitly, for zero field, h& = 0, one
fands

strip into one "up" and one "down" domain, is thus
proportional to e ~~. However, the exact re-
sults ' ' show that the interfacial free energy var-
ies as

~(T)=4(& &.-)I&=2I~IIL (T&T.) (1 48)

In conclusion, then, we may, when h = 0 below T„
expect corrections to the free energy which decay
as e ', just as found in (1.45). Note that as soon
as 6~40 a 'down" domain stretching over half the
strip becomes improbable, because of the large en-
ergy (- h, &&~) associated with the field acting on the
domain at the surface. Diagramatically, below T,
the interfacial free energy is described in leading
order by a chain of bonds, but the spin-spin, and
all other correlations of local quantities require
two similar, but nonintersecting chains. This
provides an understanding of the difference be-
tween (1.41) and (1.44), and of the result p =-,'.

Finally, in summarizing our results, we dis-
cuss the numerical form of the specific heat in
more detail. In Fig. 2, we plot, for 0 =h.

&

——0,

e(n, t, 0)=2lr e '+o(e "). (1.45) B(r, 0) —B(0, 0) = C(n, t, 0) —C(n, 0, 0), (1.49)

But for T & T„one has (for the net correlation
function(soss) —(sos-„) ) the result '

L/$(T)=4r (T&T,). (1.46)

Thus the correction is lgxgex than the expected
e '=e ", and the parameter p in (1.12) is only

At first sight this slower decay of the surface-
to-surface interference term is quite puzzling.
However, the presence of a (single) surface field
Hj removes this slow decay and yields instead

1 Ap—

e(n, f, h, )=E ((r, T)e "", (h, &0) (1.47)

as ~-~. This now has the decay expected on the
basis of the previous energy-energy correlation
arguments, since, below T„both spin and energy
correlations ' decay as e = e ', leading to
P =1. As o- h'- 0, the function E (o, ') (which is
given explictly below in Sec. IV), diverges so that
the more complete expression must be used and
(1.45) results.

The removal of the slowly decaying interference
term by the surface field suggests that its role is to
stabilize themagnetization of the film in, say, the
"up" direction. In a thick film, long-range order
would set in below T„and with overwhelming prob-
ability the whole sample would point up, provided
h& is not too small. When h~- 0, the film may
break up into two or more domains spontaneously
magnetized in opposite directions and separated by
a fluctuating domain wall or interface. The short-
est domain walls will be those of length = L, which
stretch pn oss the film from one boundary to the
other. Such a wall has a free energy Z(T) per unit
length. The probability of a single wall dividing the

1

2
--A

-A
p -3 -2 - I 0 1 2

T nb T/Tc
FIG. 2. The asymptotic specific heat of a finite strip

B(~, 0) -B(0,0) = C(n, t, 0) —C(n, 0, 0), relative to its crit-
ical value C~(n) = C(n, 0, 0) vs the reduced temperature
variable 7' -AT/T, (solid curve), and the reduced spe-
cific heat of a semiinfinite Ising lattice B(7)= C„(t)
+2n- C "(t) —C~(n), relative to C~(n) (broken curves) in
units of Ao = (2/m) [la.(1 +W2) ] —0.494358.
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0.3A

I
I

C(n, t, h, )- C(n,o, h, )

0.) A

-0.1 '

-0.3

——A2 0

—1 -0.5 0
t'

FIG. 3. Plots of the asymptotic field-dependent spe-
cific heat B(v, a') -B(0,o ) = C(n, t, h~) —C(n, 0, h~), rela-
tive to its value C(n, 0, h&) at T= T, vs v, for 0'

= ( + v2)nba =0, 2. . . a, '
u it o Ap.

0.5

which represents the asymptotically rounded form
of the specific heat relative to its finite critical
point value C,(n) = C(n, 0, 0). Also shown in the fig-
ure is the difference

B(7 ) = C„(t)+ 2 n C"(t) - C(n, O, O),

which represents the contributions to B(~, 0) of the
bulk and surface specific heats [ as given by
(l. 41)]. As expected, the two curves coincide
asymptotically for large ~ (n- ~). A striking fea-
ture of Figs. 1 and 2 is that the specific-heat max-
imum is displaced below T, to the point

0.2—

C{T)—AOSnn

-0.2

is that the maximum in the specific heat moves
closer to T, as the field increases. This is intu-
itively correct since the field aligns the spins near
the surface, which, in turn, then tend to align
themselves and nearby interior spins more strong-
ly. An argument based on the Griffiths inequali-
ties~8 strengthens this intuitive approach. By set-
ting to zero the interactions between the nth and
(n —1)th rows, and with the field h~ acting on the
first row, an nx~ strip is reduced to an (n —1)x~
strip. The Griffiths inequalities then suggest that
the ordering temperature 7.' ~ satisfies the rela-
tion: T (n, h~) & T (n —1, h~). But via the scal-
ing relation, we have T (n —I, h, )=T (n, h(),

we conclude that T (n, h~)& T (n, hf) for h~& hf.
In the limit h~- , one finds that the fractional

shift & vanishes to the order n "=n . (Of course
there are still higher-order corrections which we
have not elucidated. ) Ferdinand and Fishers found
a similar result for an infinitely long torus with
periodic boundary condition ($ = n/m- ~ in their
notation ). In Fig. 4, we compare their result
with ours for two free surfaces on one of which the
spine are fully aligned (h~ =~); the two curves co-
incide asymptotically for large v. This is an ex-
pected result for the following reason. In the lim-
it that v is very large, the film should behave as a

= —0. 786 8V'71 .
This means that the fractional shift in the

pseudocritical point, ' '

(l. 51)
-0,4—

is described for h~= 0 by

X= I/v= 1, c = 0. 8927850 .
The first exponent relation again confirms the scal-
ing predictions. ' ' On the basis of a numerical
study of small finite strips Fisher has estimated'
c =0.900+0. 007, which compares quite well with
our results. (This estimate utilized unpublished
numerical work by A. E. Ferdinand and M. N.
Barber. )

The curves in Fig. 3 show the effects of impos-
ing the surface field II&. The predominant feature

-0.6—

-0.8—

-0.5

FIG. 4. Comparison between the asymptotic specific
heat of an infinitely long, nx~ torus (dashed curve),
and of an Ising strip with two surfaces, on one of which
the spins are fully aligned (solid curve), relative to
A.p inn. (The curves are symmetric about 7' = 0 and
asympototically equal as 7 —~.)
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Ci o Kcivt,

while, for a free boundary, it is

Cf - K/-vt .

(1.54)

(l. 55)

Consequently, the total surface specific heat van-
ishes identicallyt Thus for large ~, the film be-
haves as a bulk system when h~=~. Since there is
no surface free energy for a Ising torus, it also
should behave as a bulk system when 7 is large.
This means that the two curves, which are sym-
metric about the point v = 0, should coincide
asymptotically for large v.

In the remainder of the article we establish the
asymptotic results quoted here, starting with the
exact expression of McCoy and Wu ' for the free

bulk system, plus a free surface, and a ferromag-
netic surface. It was found by Ferdinand and
Fisher that the leading term of the surface specif-
ic heat for a ferromagnetic wall is

energy of a n&&~ strip with a field Hj imposed on
one boundary. The arguments are quite intricate
in places so that various details have been rele-
gated to appendices. The main analysis is per-
formed in Sec. II. In Sec. III, the properties of
the scaling function are studied, and Sec. IV is de-
voted to the correction term to the bulk plus sur-
face behavior for large ~.

II. FREE ENERGY

We consider a n&&~ Ising strip with magnetic
field Hj applied on the first row. The reduced free
energy per spin will be written

f(n, t, h~) =lim (2mn) ~inZ
S+po

= fp(tl T H]) + &f(B f Pl]), (2. 1)

where Z is the partition function. The nonsingular
contribution to the free energy as given by McCoy
and Wu. is

fp(n, T, H&) = —,
' ln2+p ln sinh2K+n (lncoshh& —lncoshK ——,

' ln2),
where the singular part of the free energy, hf, can be written as

i
&f(v, f, hq)= —,z,qp ln[&,"v.+&"v +z u(&". —&")],vn p (1 —e

in which,

&, ((o)=(I+2& n +2(u )+2(dn +aP) (1+en +(o )

and

v, (ur) = I+(T n +1) (rn +&@ [(r n +2) —7'n ]&~(r n +e ) ( 1+v n +&@ )
we also have

z = tanhh&

(2. 2)

(2. 3)

(2.4)

(2. 5)

(2. 6)

u((u)=(1 —&u )f1+(T n +1) [(t n +2) —7'n ]](r n +&g ) (1z+n 7+&v ) (2. 7)

The scaled temPevature variable 7 was defined in
(1.17). The differences of notation between this
article and McCoy and Wu's are outlined in Ap-
pendix A.

It is evident from (2. 4) that & (pp) & A. (ur) for
T4 T,. Hence when n ~, T 0 T„ the term &"(~)
in (2. 3) is negligible compared to A",(v); this yields

ln(a,"+X"+ (X."—X") [—,
' (v. —v ) + z u]] .

One finds, from (2. 6) and (2. 7), that

z u(&u) & 0 for ro c [0, 1],

(2. 9)

(2. 10)

I

finite strip, given by (2. 3), is in fact, analytic.
The integrand of Af can be written as

1 ' d(o 1 dc'&f= —, z, qqz Ink, +—, p, ~~z lnv. .
~g —(d ~ pn, (1 —~ )

and, by (2. 5), we have

~

—,'(v, —v )
~

~ 1 or -,'-[v, (e) —v (g)]& —1 . (2. 11)
(2. 6)

The first term here gives the bulk free energy
f„(r), and one finds~ for T near T, that f„(T)- t lnl tl; the second integral gives the surface free
energy f"(T, h, ) with f (~)-tlnl tl for f-0. How-
ever for a finite strip, n is finite and one can no
longer drop the ~" term. We shall now show that
the "singular" part of the free energy, hf, for a

On combining the above two inequalities, we get

&."+&"+(&," —&")[-,'(v, —v )+z'u]& 2X". (2. 12)

Since & (v) & 0 for all &v and r, this shows that the
argument of the logarithm in (2. 9) is positive. We
shall next show that it is an analytic function of r
and &u. It can be seen from (2. 4) that &,(pp) —& (u)
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contains the singular term (r n +e ) . The first
term of the argument ~,"+~" contains only even
powers of &.(~) —& (&u). Hence it is analytic. The
second term is a product of (X+ —X") and [a(v, —v )
+z u]. Because P., —I" contains only odd terms in

(A,, —& ), and [a(v, —v )+z u] contains (r n +uP}'/
in its denominator, one concludes that the second
term is also analytic. Since the argument of the
logarithm in (2.9) has been shown to be positive and
analytic, we find the integrand of (2.3) is an an-
alytic function of 7. and ~. This means the free en-
ergy of an finite strip is an analytic function of T,
as it is to be expected on general grounds.

Consider now the ratio A. /A. ,= & (&u) = &, (u&).

Since A., (&u) of (2.4) is an increasing function of &u,

this ratio is a decreasing function of ~. For
z=c/n &1, we find

e-nr(a&) (y /g )n (2. 13)

[1 2(pa+ ca)l/an l]an exp[ 4(pa + ca)r/a] -e 4&

(2. 14)
We shall choose c, such that c»1, so that e ' is
negligible. A suitable choice proves to be c =n'
This means that when &u is larger than c/n or of the
order of c/n, the ratio (A. /&, )"=e "r is negligible.
For this reason, we separate the interval of inte-
gration into two parts [0, c/n] and [c/n, 1]. In the
interval [c/n, 1], the ratio (& /&, ) is initially ne-
glected, and so the basic expression (2.3) can be
written

I1 =m' -1 d~2(~an a+(ua)'/a+7/-'z, (Tn-') (2 20)

It is shown in Appendix C that the function

1

Zr(~n ') = d(u (1 —(ua) '/'ink. .
0

1
—2 d&(T n +(d ) (2. 21)

1

r/D, =Z, (0) = d(u (1 —(ua) '/a in[1+2(ua
0

+2(d(l +&8 ) ] —1

(2.23)=2G -1= 0.831931188,
where G is Catalan's constant, and

1

wDa=Zr (0) =2 d&u&u [(1 —&o ) —1]=ln2 .

(2.24)
The integral in (2.20) can be written as a sum of
two integrals, namely,

1/n
I —v 'Z (7n ')-2a ' d(u(~an a+(ua)'/a

H3

1

+ 27/ ' d(u (v'n-'+ (u')'/' (2.25)
1/n

is well behaved, and has the asymptotic expansion

v 'Z, (vn ') =DO+ ,'~ n Da+O—(1/nc', c'/n'),
(2.22}

&f(n, t, Irr) =Ir+Ia+Ia+Er r

where

(2.15) The second integral can be performed, and is

d+2(v n +uP)' =1+v n lnn+n P(v),

Ir = a'
'I I agr/a in~+(&), (2. 16)

in which
(2. 26)

and

c/n

Ia = (rrn)
'

(1 ~a)r/a

xln[v. +v e "'+z'u(1 —e "')], (2. 1 I)

P(T) = av —(1+z )
/ + q (ln2 —in[(w + 1) / + 1]} .

(2.27)
Substituting (2. 22) and (2.26) into (2.25), we get

I, =r/ n d)2(v' +P)' +(v /v)n lnn+rr n P(7')

d(d1

Ia = (7I'n) a r/a ln (v +z u)
c/n (1 (JO J

(2.16)
+2G/7r+-.'~'n 'a-'ln2+O(n '"), (2.26)

The correction term

d(d
E, = (rrn) -(,)„,

c/n

x (ln[v, + v e "r +z u(1 —e "r)] —ln(v, +z u)].
(2. 19)

can rigorously be shown to be of the order e 4' (see
Appendix B). The function &.(&u) in (2. 16), defined
by (2.4}, a singular at the origin &u =0 for ~ =0.
Therefore, the dominant contribution to I„comes
from the interval where & is small. For small ~,
the integrand of I, behaves as 2(v n a+uP)'/a. Let
us therefore write

where $ =n&u, and following (2.22), we have choser
c =n' to optimize the error term.

Analogously, the function v, (&u) +z u(&u) in Ia is
singular for (d =0 and v=0. When ~ is small, we
have

v, ((u)+zau(~) =1+(~+o ) (~'+n'uP) ' ', (2. 29)

in which, recapitulating (1.19), we introduce the
scaled surface-field variable

o =n'/a(1+v 2)'" tanhI, .
Hence, we write
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+v-'n 'Z, (7n ', a'n-') . (2. so)

1

IB =v 'n ' d(sin[1+(v+aa) (7 +n (o )"' ]
c/n

On expanding Za(7'n ', a n ') as a function of n

and following arguments similar to those used in
Appendix C (which we will not present in detail)
one finds,

rr 'Z-, ( 7n-', o'n-') =D, +n-'(a'+~)D, +Z, +O(n-'"),

where
1

7rD, =zz(0, 0) = d&u (1 —uP) '~ ln[l+M2(d((1+@A)'r ]=0. 813532308
0

(2.31)

(2. 32a)

1 1

rrD = d&u (o '[(1+(o')'"(1—(o') '"-1]-v 2 d(v (1 —(o')-'ra =-'ln2+-,'(-,' —v 2 )rr (2. S2b)

with

c/n
Z, = — d(u (1 —(v') ~ra in[1+v 2 (v(1 +&a ) ~~] .

0

The integral in (2.30) may be written as

(2. 33)

On integrating by parts, the first integral becomes
1

du&in[1+(a +~)(~ +n &o ) ]=[u(l n[1 +(o +~)(7 +n (o ) ]}Ir„
1/n

d(o(o fin[1+(o' +v')(w +n uP) ]}.1 d
d(d

The second term in this equation is an integral over a rational function R((o, &), where & = (~'+n'~')
It can then be broken up by partial fractions into terms of the types

(2. s5)

1 c
I~ —rr 'n 'Z((vn ', o n ) =7r 'n ' d l(o[1n+( ~ax+) (v +na(v~) 3] —rr n d)in[1+(v+aa) (r +]3) 'ra] .

1/n 1

(2. s4)

fd~X ', d(oX'(a +w') ', f w(ad'+d) '. (2. 38)

These elementary integrals can be evaluated, and (2.35) become

J
1

d(@in[1+(a +w)(v +n (o )
' ]=(7+a )n 'inn+@(w, a ),

1/n

in which

Q(7, a ) =(a+a ) —in[1 (r++)a(1+v )
' ]+(r+ )a[ln2 —in[1+(r +1)'~3]}

+ a[tan '(1/~) —sgn(~)v/2] —a(a'+2~)' 'S(T, o'),

(2. 37)

(2. s8)

where S(7, aa) is the function defined by (1.23). Consequently, Eq. (2. 34) becomes

c
Is= —rr n )din[1 (+a+7') (v +$ ) ~ ]+rr (w+a )n 1nn+w n Q(v, o' )

+n 'D, +n '(T+o')D, +Z, + O(n 'r') . (2. s9)

(2.41)

Finally, we turn to the integral Ia given by (2.17). Note that the integration is from the origin to c/n =n 'ra,
and n '/~ «1. In this interval, one can write

v, =1+7(7'+ ]') "'+o(n-'), (2.40)
1/2

e " =e ' '~ [1+0(n )],

and

u=a'(v'+g') '"+O(n '), (2.42)
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Hence

(2.43)

(2.44)

(2.45)

(2. 48)

and

3
C 7'+ 0' 3 7 + 0 g( 3+pa~~/3

3
I2 =7T '/// (ft ln 1 +, p 2,2/3 + 1 —,g g, y/2 8 +Em .

Q
(7' + ) (r +h )

The sum of the correction terms E~ and Es is shorn, in Appendix 0, to be of the order I ~ . I et us make
the abbreviations

x(t) = (~'+ g')'",
p(g) =1+(~+~')/x(g),

q(~) =1 —(~+o')/X(t),

so that we may write (2.37) as
C

I, =m 'n ' d(ln[p(g) +q(() 8 ~("]+m 'n~ d(in[ p(g) +q(g) e 4X"'] .
Now consider the sum of the integrals in (2. 28),
(2. 39), and (2. 48), namely,

C j,

It(7; a')= d(2X($) — d& ln[p(g)]+ d& ln[p(g)+q(g)e '"]+ d( ln[p(&)+q(g)e '"],
0 0

C

dg ln[p(g)e~(') +q(&)e-~(')]+ Z in[1+ q(()p-'(g)e" '"] .

On expanding ln(1+p ~qe ) in powers of 8, one sees that

d/ln(l+p 'qe )=0(e '),
C

so that ere find

(2.47)

(2.49)

(2. 50)

It(~, o')=R(7., o )= dgin(pe~+qe ~)+ d)ln(1+p 'qe~).
0

On combining (2. 28), (2. 39) and (2, 48), and using (2, 51) we get finally

&f(n, t, hg)=Ig+Ig+Ig=2G/m+n Dg+(7' +v+o' )v n lnn+n v [B(r, (T )+Q(v; o' )+P(w)

+-,'v ln2+(7+o )(-,'ln2+ m/4 ——,'m&2)]+0(n "').

(2. 51)

(2. 52)

The functions R(r, o ), Q(r, o ), and P(T) a.re given by (2. 51), (2. 38), and (2. 2V), respectively. If we

define

r(~, o') = [a(7, o')+q(~, )o+(P~)+-,'~' 2ln(~+~+')(-,"1 2+n~/4 ~~a]/~,

then the free energy is indeed in the form quoted in the Introduction.
At the critical temperature in zero field (7= T„ II~= 0), we have

tt(2, 2)=2J ttt (if Cktn(1+n t)=t+n'/t2,

Q(0, 0) =0,

I (0)= —1,
and

lncoshK, = —,
' In(1+~2 —-', ln2.

Hence the free energy (2. 1) at the critical point is

f(n, 0, 0) =f,(n)= 2 1 2+n2G/ +nv[D& —~ 1n(1+~2]+n (7(/48),

where D, was defined in (l. 29). The reduced energy per spin is given explicitly by

n(, 1, Kt)= —n (
—= -, nntn2K ——,'n tnnnK —(nn) (tt+1) 1nn —(nn) -', 1n2+n/2 ——,'nW2+ t 1n2

0'

(2. 53)

(2. 54)

(2. 55)

(2. 58)

{2.5V)

(2. 58)
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/sRI
+ (2r+1)(ln2 —In[1+(v +1)~ ]]+tan (1/r) —sgn(v)w/2-o(o +2v) ~ ~2(v, ow)+

~

~ ev),
At the critical point, itself, we have

1 OO—R(0, 0) = d( $ ~tanh2$ —2 d$ $ ~(e4~+ I) ~=—y+3ln2 —Inw,
o

and so

u(n, 0, 0) = u, (n) - 2 W2 —(wn) ~ lnn —(nw) ( —w/4+$ ln2+ y —Inw} .
The specific heat can be written as

C(n, t, h~) = Ao ln n +AD(ln2 —in[1+ (7 +1)~' ]I + —,'Ao(ln2 —w/2) —~AD(1+ v ) ~ -A g [(v + 1)" + 1+v ]

(2. 59)

(2.60)

(2. 61}

x[1+(a~+2') ~]-~Aoo (o +2v) ~[a +I+(o~+7)(a~+I)' ]

+-,A,o(o +2~) Z(~, o )+-,A,3 -cia a i s'R(~, o')&

)"=o
' (2. 62)

where Ao was defined in (1.33) and the corrections are of order n ~"2 or smaller. At the critical tempera-
ture in zero field, we have

and

s'Ro 0 =2 de) tanh2$ -4
I d($ (e ~ +1) — d$ $ tanh 2(+2

ding

(e ~ +)I

= 2(y+31n2 —lnw)+1 —28&(3)/w

C(n, 0, 0) = C, (n)=Aolnn+Ao[y++2 ln2 —lnw —14$(3)/w —w/4],

(2. 63)

(2. 64)

where t'(3) = 1.202 0569 is the Riemann f function and y = 0. 577 2157 is the Euler' s constant.
We define the boundary or surface layer magnetization by

9
M, (n, hie ,I=@,+2(1+MR)tr'h~(lnn+inR —in[1+(v +1)' ] —(s +v)tF'(s +Re) ' ~2(v, v~)

1

&R(r, ow) &

+-,'ln2+w/4 ——,'wv 2 + (2.65)

We find from the above expression that the sjontaneous boundary magnetization M, (n, f, 0) vanishes identi-
cally for all t (as expected for n &~).

The boundary susceptibility is likewise given by

X»(n, t, h, ) = ' ' ' ' =1+2(1+&2)w ' Inn+In2 —I [1n(r++1) ] —(o~+r)o'(0~+2') '~'~R('v, o'w)
sM, (n, t, h, ) 1 3 1/2 2

1

+ 2 ln2+w/4 —2wV 2 —2(o + T)(o '+27') (I —[(1+ T ) + T+0 ] )
&R7', o'

g sR7' a'~
+2T (o'+2T) ' '0 'R (T 0') + ' + 2io'so' s(o'}'

In particular, at the critical point T=T„hj =0, we have

X»(n, 0, 0) =2(1+& 2)w 'Inn+2(1+v 2)w '(y+~~ln2 —lnw) ——,'(F2+1).

(2.66)

(2. 6V)

III. PROPERTIES OF THE SCALING FUNCTION + [(v + I )' i'(o + w) + (7'+ 1)] 'j, (3.1)
We shall first show that the scaling function

Y(r, o ) of (1.22) is analytic. It is obvious from
(1.22) that the only possible singularity of Y(7; o )
can come from the function 2(&, o ) and the inte-
gral R(v, o ). We differentiate 2(&, o ) with re-
spect to 7; and find

and with respect to o 3, to obtain

s&(«') i s=o '(o +2v) '"{1-[(~'+1)'"+o'+v]'}.
(3.2)

Using these relations and the fact that Z(r, o ) is
odd in (o'+ 2v)'~3., one can show that the deriva
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tives of o (o'+2r)'t'Z(7; o') with respect to ~ and
to a are analytic functions in 7 and o . Hence
o(o +2m)'t2Z(r, o ), itself, must also be analytic.
The function R(r, o ), given by (1.24), is a sum of
two integrals, whose integrands contain the term
X(f) = (r~+ $')'~' which has branch points at $ = + i 7;
However, as the integration in the second integral
runs from 1 to ~, one concludes that it is analytic
for all real 7' and o . As for the integrand of the
first integral, one can see that it is analytic in
X=X(g). Moreover, since (e +e ) and (e

)/X are even functions of X, one finds that
the integrand has a convergent Taylor expansion
in X' = (r'+ P). This shows that the first integral
is also analytic in 7' and o'. Hence, we have
shown that the scaling function is analytic, as ex-
pected on general grounds.

When r-n/)-nt»1, we rewrite (2.30) and (2.44)
in the form

1

I, + I, = (n]]) ' d(o In[I+ (o'+ 7')(7'+ n w') '~']
0

+ (n)]) 'Zz(&/n, o /n)+n e(&, o' ), (3.3)

&f =Iq+Iq+Iq

= ~f"(t)+ n '[&f"(t, 0,)+ &f"(t, h, )]+n 'e(r}o')
(s.6)

where the bulk free energy is given by
&f"(t)=I}, (3.6)

and the boundary free energy by

t}f"(t,O)+&f"(t, h, )=n(Iz+I3) —n e(r, o ).
(3.7)

By (2. 10) and (3.6), one finds that the bulk free
energy can be written explicitly as

where e(r, o') is the correction term,

e(~ a')=w'f d (n([1+ )'($)q(f}e'""'] . (3.4)
0

Since X($) = (7' + f )' 2 and e 4» ~ e 4', one expects
the term e(7', o ) to be exponentially small in 7'.

The detailed analysis of e(& o') is described in
Sec. IV.

Conse(luently, the free energy &f of (2. 15) can
be written as

1

&f"(t)=v ' 2(& n +(o )' +Z~(&n ')=2G/7]'+7]' (1 +I n2)2K, t —m '4K, t I ~nK, t
~

. (3.8)

Thus the bulk specific heat diverges as C "(t)= —(8E, /7])1n~ t~. This is identical to Onsager's result. '
The boundary free energy &f"(t, 0,), given by (3.7) and (3.3), is an integral:

1

&f"(t, , 0)+&f"(t,h, )=)T ' d(oln[1+(o +r)(r +n oP) '~ ]+}]' 'Z2(rn ', o n ') . (3.9)

(s. 10)

where D, is given in (1.29), while

This integral is identical to that in Eq. (2. 37), except that the lower limit of integration is changed from
e ' to zero. Hence it can be evaluated in closed form, and we find

nf"(t), 0)+ &f"(t, , k, ) = )T '2K, tin ~K, t
~

'X",(o/v't~) + 7}
' 2K, tX~(o/w'~~)iD~,

X",(y) =1+y' (3,11)

Xz(y) = (1+—,
' ln2+ n'/4 —~}]'v 2)(1+ y ) —-'wsgn(&)+ n

~

y(- 2 —y')'"
~

e(- y')e(I+ y')

——,'y(y +2)' (In[1+y +y(y +2)' ] —In[1+y —y(y +2)' ]).
Note that y = o /r may be positive or negative. In (3.12), 8(x) is the Heaviside function defined by

(3.12)

1 for x&0,'('=
0 for x&0' (3.13)

When the boundary field vanishes (o' = y' =0),
one finds

X'",(0) =1 and X'2(0) = 1+ 21n2+ )]/4 —27) v 2

—2)] sgn(w) . (3.14)

Hence, the boundary free energy in zero field can

1—cosh'- 2 ln2+ D1 . (s.16)

At the critical temperature (T = T,), the boundary
free energy of a semi-infinite lattice is given by

be written as

2f"(r, 0) =2&f"(t,O)+2f"(t,0)

+ 2Z, t [» + }} —,
' In2+ 4 —~ W2 —2 sgn(v)]
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2f"(T„O)=D, —2 In(1+v 2) . (s. 15)

This is identical to the result found by Ferdinand
and Fisher. It is obvious from (3.15) that the
derivative of f"(T,0) with respect to temperature
not only has a logarithmic singularity at T„but
also has a superimposed discontinuity there.
The boundary specific heat, which is proportional
to the second derivative of f"(T,0) with respect to
T, diverges linearly as

V, (0) =limy X",(y) =1 (s. is)

This is identical to the results of McCoy and %'u, '3

and of Ferdinand and Fisher.
In the limit y2=o /1 ~h, /t-~, we find from

(S.1) ~d (3.12) t at

I,"(t, 0) = lim [f"(t1h, )]
hg~0 1

=2(l+~ 2)' 'K,'~'~t~'~'6(- t), (3.25)

while the boundary susceptibility behaves as

q"„(t,0) = 11m M",(t, h, )

= —2(I+M)~-'In~t~ .
These results agree vrith the computation by
McCoy and Wu. '3

(3.26)

IV. CORRECTIONS TO THE BULK-PLUS-SURFACE
BEHAVIOR

In this section, we consider the correction term

e(~, e') = &-' dg in[i+ p-1(~)&(g) e-'»«&] (4. i)

Vz(0) =»m[2y '»I y fX1(y)+ y 'Xz(y)1
y eyao

=1+—,
' ln2+ n/4 —zn'V2 . (3.19) (4.2)

to the bulk and surface behavior for large ~. In
(4. 1), we have

p(k) =1+ (1 + c')/X(5)

This agrees with the scaling prediction of (1.15)
alld (1.16). Fol' slllall y we ca11 wl'lte

e(5) =1 —(1 + e')/X($) . (4. 3)
V, (v) = v X,(v ') =1+v with v =y ', (3.20) For large ~, one may write

-4»(c) -4lvl -zP/IiI[1+ 0(~4/) &) 8)] (4.4)

V, (v) = 2vz In
i
v

i

'X",(v ') + v X,"(v ')

= (1 —
& ln2+ n'/4 —z»v 2) —v [21n2+ v/4 —&»@2]

--.'mi v'i --.'v'Inv'+ 0(v') . (3.21)

Hence the boundary free energy of (3.10) can be
written as

&f"(t,0)+ &f"(t, h, )= D, + n' '(1+v 2)z

&&/- lnz —In(l+W)+1+ z ln2

+ ~/4 ——.
'

v&2/ + O(t) . (S.22)

The boundary or surface layer magnetization" of
a semi-infinite lattice behaves at T, as

e(1;o') = w
' dt P 'q e ' "'+0(e-'") for T & T, .

(4.5)
We may substitute (4. 2)-(4. 5) into this equation
to get

(7'+ o )/X(g) = [s gn(&) + e /
~

7
~
]

'[ gn( )+ '/~ ]+o(5'/~ ~') ~ (4.5)

When T& T, (1'&0), it is obvious from (4. 2) that
p(g) ~ 1. Hence, p 'qe 4» is small for large &.
On expaIldlng the logarithm 1n povTers of p q'e
one finds

m", (T„h,) = f"(t, h, )
t=0

= —»"'4(l+ vY )z Inz = —» '4(1+&)h11nh1.
(3.23)

In the other limit, when hz is small but nonzero,
such that az/2r-h1/2t«l, Eq. (3.10) yieMs

af"(t, h, ) =2(1+M)'"~."',
~

t~)'"e{-t)z —v-'

—w '(1+v 2)z' ln
~
K, t ~+ [w '(-' ln2 —1)+ -' —-'

v 2 ]z '
(3.24)

This then gives the surface-layer spontaneous
magnetization of a semiinfinite Ising model, name-

e(&, o') = e ""E'(7,o'/7'),

in which

E'(" y') = (3 ) '"[ '"(-y')(2 y') '

+ & '~'(I+ y')4 '(2+ ya) '] .
When the external field h, vanishes (y = 0), we
have

(4. S)

- e'/r 1+e'/1. , ;,p„,~

(4. 7)
2+ o'/1' (2+ o'/1 )'

These Gaussian integrates can be evaluated easily,
and rve find
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E'(T, 0) = E()(T) = (32) (avT)

and the leading correction term is simply

(4. 10) we did for T & T, . We integrate (4. 1) by parts,
and find

e(T, O)=(32) '(awT) ' e (4. 11)

When the field is nonzero (y 4 0), we find from
(4. 9) that

E'(T) y') = (Sv) '"(-y')(2+ y') 'T'"[1+O(T ')].
(4. 12)

Hence, the leading term of the function e(T, o )
for large v'is

e(T, c')= (Sw)
' '(- y')(2+y') 'T'~'e" . (4. 13)

When the temperature is below T, (T &0), one
finds from (4.2) that

p(&)=o2/ITI+2g2T 2(1+@ /T)+o($ T ') . (4. 14)

Therefore p(g) ' can be very large when $ and o'/
I Tl are sufficiently small. For this reason, we
may not use the expansion of the logarithm, as

g2 4q 2 &-4»
e(T, o )=v ' d(—X P+qe

)2T 2(1+a'/T) e-4»

X~ p(p+qe )
(4. 15)

When w is large, we may make the following ap-
proximations:

p=o'/ITI+25'T '"(I+o'/T),
q= (2+cr'/T) —,'('T '—(1+a'/ )T, (4. 18)

/X- ( /I Tl, g T/X —g /T

Substituting (4. 16)-(4.19) into (4. 15), and then
neglecting the term of the order e "', we find

(4. 19)

p+qe ' =o'/I Tl+2g'T '(I+(r'/T)+ (2+a'/T)s "',
(4. ie)
(4. 1V)

8(& ~')=4( '"/~l~ )f (2 -(' 2v'~'(-x'+&'+A')'le ' '"'«,
0

,4(;4i ig„)f (~1+ p2+(2&2)-1&Bi
0

+4(e "y /w5') [(y'+5'+ g~') ' (y'+ g'x') ']e" " dg
0

(4. 20)

where we have written

(4.21)

CO a}tgP

C(X)= 2 du.
o 1+I

It is easy to show that

(4. 24)

x' =-'T '(1 —y'),

g2 (2 y 2) 8& IvI

Let us define a function

(4. 22)

(4.23)

c(0) = v/2, (4.as)
c(x}=c(0)+o(~'~') as ~-0, (4. 26)

C(~)=-.'(v/~)'~'+O(~-'") as ~- . (4. 27)

Now, the integrals in (4.20) can be written in terms
of the function 4 yielding the final result

8(;")=«' "
(anal TI) '"(x'-

I Tl«) -«""y" 'x '(y'+ &') '"4(2(y'+ &')/I Tlx')

+4 e ' v 'x '(y'+ 5') ' 'c (2(y'+ 5')/I TI x')+ 4 e '"' v 'y'x '

x~-2[(y2+~2)-' 'C(a(y'+ ~2)/I T x') — yl 'C(ay'/I Tlx')] (4. as)

When the field is zero (k, =o=y=0), we have

4)(25 /I Tlx ) = ll'/2+ 0(5) ~

Hence (4.28) becomes

(4.29)

e(T, O)=2IT e 2"I+O(e 4l'I) (4. 30)

When the field is nonvanishing, we find 6 - g
«y for large 7; and we can make the Taylor ex-
pansions

(4. 31)

In (4.32), we have used the identity

—„4(~) = 4 (~) —-'(./~)'" . (4. aa)

c(2(y'+&')ITI 'x ')=c(»'ITI 'x ')+»'ITI 'x '

~[c(ay'ITI 'x')-2(ZITI/»'"xy ']+«&')
(4. 32)
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Substituting (4. 31) and (4.32) into (4.28), we get

(& &2) e-41~1K-1(& &2) (4. 34)

where

When y & &, the argument of the function C is
large, that is,

2y'I ~i '~'= 41 ~ly'(I- y') '» I (4. 3e)

so that on using (4.29), we find

E (7;o')= —(e~) ' 'I &I'i'(y' —2)y ' for y'&2 .
(4. 3V)

In the limit h, - y -0, the second term in (4. 35) di-
verges, so that the more complete expression
(4. 2e) must be used and (4. 30) results.
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APPENDIX A: COMPARISON OF NOTATION

In this article, we use the notation

x,((u) = z, '(I - z', ) 'I 1+z,e"I'x(8) (Al)

E (r-, ~')= (e~)-'&'l. l'&'+2m-'x-'y-'c(2y'I~ -'x').
(4. 35)

X((d) = (v —z u)(v, +z u) ' . (B2)

Since z u((d) is nonnegative for all u& and 7; one
finds

((d)
I

-
I
v /v,

Furthermore, one can readily establish the in-
equality

2(v, —v)~ —Iwl(r +n (d ) '~

Combination of Eqs. (B3) and (B4) yields

I
x(~)

I
- 4+ r'c ' .

(B4)

Because X(&o) is bounded, we can expand the log-
arithm in (B1) to find

1

z, = (wn)'f dtd(( —~')'"x(~)e "'+ o(e '"') .
c/n (Be)

From (2. 14) and (B5), we find that

E, ~ (2n) '(4+ 7'c ')e "+0(e "),
so that E, is of the order e ".

APPENDIX C: ASYMPTOTIC EXPANSION OF Z, (~n ')

Since A.,(&u, wn ') is even in vn ', the function

1

Z, (Tn ') = d(d(1 —(() ) '~ Ink, ((d, &n ')

1

d(d(r n +(d )
0

(Cl)

1

E, = (wn)
' d(d(1 —(c )

'~ in[1+ X((d)e
" ], (Bl)

C/n

where

x ((o) =z, '(I —z', ) 'l1+z,e"I'x'(8),
in which the variable ~ is defined by

&o = sin(8/2),

(A2)

(A3)
z, (~n-') = z, (0)+-.'~'n-'z, "(0)+Z(~n-'),

in which

(C2)

is also even in tn '. Therefore, it has the asymp-
totic expansion

and the functions X,(ru) are defined in (2.4), and

X(8) and A, '(8) are given'~ by Eq. (3.14) in McCoy
and Wu's paper. We also write

1 I
Z, (0) = d(d(l —(d ) ~~~Ink. ,((u, 0) —2 d(u (u

0 0

v.(ar) = 2v'(8),

v ((d) =2v"(8),

u((d) = —2v('fv )zg c

with

(A4)

(A5)

(Ae)

1

d(d(1 —&o )
' In[1+2(d +2+(1+uP)' ] —1

0

(C3)

1 1
Z", (0) = d(u(1 —(d )

'
[A.,"((d, 0)/A. ,((()) 0)] —2 tu 'd(()

0 0

c=2fsin8II+e"I ', (AV) 1
4 «.1/2 (C4)

APPENDIX B; THE CORRECTION TERM E 1

where v, (~), and u(&u) are defined in (2. 5) and (2.6),
2 d(() (d [(1 (o ) 1]—ln2 .

0

while v(8) and v'(8) are given by Eq. (3.19) in Ref.13. The remainder A(7'n 'j in the expansion (C2j can
be put in the form

The correction term E, defined in (2. 19) can be
written as

B(~n ') = d(u 7 ((d, ~n '), (Ce)
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in which E1(7'n ') =2G-1+ 21' n 'ln2+ O(n '/'), (C16)

T ((o, vn ') = (1 —ro') '/2[in', ((o, ~n-') —in', ((g, 0)

——.'7 2n-'x."(~,0)/x, (&o, o)]

—[2(7 n + (d ) —2(d —t n (d ] . (C6)

Consider first the contribution due to the integra-
tion over the interval [0, c/n], namely,

c f'n

B1= de) T ((d~ Tn ) .
ln this interval, X = (v n + 1o2)'/2- c/n is much
less than unity and so we can expand ink, (&u, 1 n ')
as a Taylor series in (7 n 2+ aP)'/2. (Note that
ink, is analytic in X.) This yields

quoted in (2. 22).

APPENDIX 0: THE CORRECTION TERM E,

The correction term E2, defined in (2.44), can
be decomposed as

E, = (vn')-'(E,"+E,'),
where

E,"= dg[(l —g'n') '/'-l]ln(p+qe ' ), (D2)

and, with &u = $/n,

EB dg (1 (2 2)-1/2

ink, ((o, 1'n ') = 2(v n + (u )'/ + ~ (& n + (u2) /

+ O(c'n-'),

and, in particular,

(C6)
x(in[v, +1/ e "2+22u(1 —e "2)]—in(l+p 1qe 4~)].

(»)
Evidently one has the bound

inn, ((o, O) = 2|o+ —", (u2+ O(c4n ') . (C9)

On substituting (C8) and (C9) into (C6), we get

T (~ 7.n-1) (1 ~2)-1/2 11 [(v2 -2 2)$/2 2]

+ 2[(1—(e )'/ —1][(1 n + (u )'/2 —(o]

——.'v'n 'f 2co[(1 —(u')-'/2-1]] -n-2r2(o .
(clo)

Therefore 8, defined in (CV) is of the order n 'c2,
so that

(Cll)

Consider next the contribution due to the rest of
the lntegl atloQ rangep namely~

X.((g, 1/n) —X,((o, 0) ——,
' 7'n 2X",((u, 0)

2(&2 -2 ~2)1/2(1 &2 -2 2)1/2

R2= d(o T ((0& &n ), (Ci2)
cfn

When co & c/n, we may expand X,(&o, r/n) as a Tay-
lor series in 7'/n to find

iE"i-[(1—c n )
' -1] dgiln(P+qe )i .

(D4)
Let us define

p2(() = 1+7'/X(() and q2(() =1- v/X(5) . (D5)

One sees that po and qo are nonnegative for all 7'

and g. Since (1 —e ' ) ~ 4X and o'/X& 0, we find

111(p+q e ) =111[p2+q2 e +0' /X(1 —e )]
~in(P2+q2+4o'2) =in(2+4o' ) .

Moreover, as qo is also nonnegative, we have

ln(p+ q e x) & lnp2 .

~
E,"

~

= c2n-2(1 —"n-')-'/'in(4+ 2c2) . (Ds)

On the other hand, when T & T, (v' &0), we have p,
&1, so that

npo-0 (D9)

When T& T, (7 & 0), we can see froin (D. 5) that p2
exceeds unity, so that lnpo ~ 0. Therefore
I ln(p+qe )I =in(p+qe ) for T& T,. On substi-
tuting (D. 6) into (D. 4), we get

—2&v(1+ (o')'/' —1'n '(1+ (o') '/'(u '(1+2a)')

-f -3 .-5 /3)
0

We also find

(cia)
The bounds (D6), (D7), and (D9) yield

iln(p+qe ~)i-ln(4+2o2) —lnp, .
A straightforward integration then leads to

(Dlo)

-5/3
3 (C15)

This shows that the total remainder in (C5), which

iS a Sum Of 8, and R~, iS Of the Order N5f~. ThuS

we have established the result

2(v'n'+aP)'"-2&o- ~'n 2&v '-n 'c'-n '"
(C14)

Consequently the balance of the remainder satis-
fies

f
C

d(»pa= —c(c 'inc) as c-~.
0

(Dll)

Hence, when T&0, the error term E,"of (D4) sat-
ls fles

~
E,"

~

- c2n-2(1 —c2n-2)-'/2[in(2+ 4c2)+ O(c-'inc)]

-n-'fa . (D12)

To discuss E~ we put
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Q($, r) = Q(urn, r) = v, + v e "~+z u(l —e "~),

Q.(0= Q(&, o),
a11d

R([, ~)=p+qe '-, Ro(~)=R(t, ~) .

Consequently, we can write E~ in the form

(D13)

(ol4)

in which

v', ((g) = v, ((o, 0) = I+M (o(1+ or' )-'r',

Y (g) = Qo(])/v. (]ln)Ro(g) 1—,

(D16)

(olv)

C

Eo —— d((1 —$ n ) ' ' (lnv, ($/n)+in[1+ Yi(g)]
0

+in[1+ Y, (g, ~)]),
(D16)

I

Y (g) = Q(g, 7')R (g)/Q (g)R(g, 7 ) —1 . (o18)

We shall consider first the contribution to E~~

arising from the integration of in[1+ Y,(g)]. By
(D1V) we have

where g and u denote g(or, v) and u(u&, v) evaluated at r = 0. It is easy to show that

IR, (g) I= I, v'/v'. -1,
I
v'/v', -1I- 2& g/n,

(D20)

(D21)

Yi($) =Ro($) [(v /v, —1) e ~+ (v /v, ) e ~(e " —1)+ (z u /v, -o /$)(1 —e "~ )+ (o /$) e 4~(e ~ "~ —1)],
(o19)

z'u'/v'. —c'/g = c'/g((l —or' )/[(I+ (u')' '+W (o] —I) = (o'/g) W or =W(a'/ ) . (D22)

Furthermore, when n 'X is small, the function
e "~' ', given by (2.13) and (2. 14), has a conver-
gent Taylor expansion. Therefore, one finds

On substituting (D20)-(D22) and (D24) into (D19),
we have

I Y, (g) I
(Wn '(e-"+n '('Me-4'

+4X-nC
+2(o /n)+n $ Mo (D26)

This implies that there exists a positive constant

M, such that

I
e""-"'-1I-«n-'X'm (o24)

= exp(4X —2n in[1+ 2n X + 2n 'X (1 + n X )' r ]] 1—
', n X+O—(n X). (D23)

Because ge ~(l, and $o ~c =n, we see that I Y, ($)l
is of the order n '. Therefore

r
C

in[1+ Y,($)]dg = cl Y;(g) I-cn '=n 'r
(D26)

We shall next show that Yo($) of (D18) is also of
the order n '. We write Yo(g) as

Y, (5) = Q, (5) 'R(5) '[(z'u — /c)X(1—e "')+ (o'/X)e ' (1 —e "')]R,(().Q.(~)- R(~)-'([.,".-"'- (p q.-")]R.(~) —["..".-"' —(I"-")]R(~, )]
—Qo(g) '[(z u —o /$)(1 —e " )+ (o' /t') e ~(1 —e4~ "~ )] .

As po, qo, o /X, and (1- e ) are all nonnegative, we find

R(g) =p+qe 4") (1c-e ~)/X,

R(~) -po+ qo e

(D2v)

(D28)

(D29)

R($) & po) og /X

Using (2.6), we can show

I"»/~-1I-"n'[1+I «'I+(~" '+»'"]+2I«'I+2~'n '-n '
~

Moreover, from (D23) we find

(1 —e"')-(I —e' ) .

(oS0)

(D31)

(D32)



and by (D28), (D31), and (D32), we have

R (a)(z n-o2/X)(l —e "~) -n '.
Using (D24) and (D29), we find

IR '(a, &)e o'(1 —e' " )/Xi «o' Mn Xa«Mo'n (7'+o )-n'.
Fllx'thex'Inol e~ lt 18 tx'1vlal to estaMlsh

Q, '(a) «1 and IR, (a) I&4+ 2o' .
Combining (DSS)-(D35), we find that the first term of Yz(a, 7') in (D2V) is of order n

Similarly, we can show that the last term of 1'3(a, v), in (D2V), is also of the order n '.
Sin«(&, —po) =- (o —qo), and Qo'(a) «1, the second term in (D2V) becomes

e, (a) 'R(a, ~) '4R.(a)[(.-p, )(l-e "') ~,(."'-e.")]-R(;a)t(",-1)(1-e"')+(e "' — ")]]
l~.—p, —~'.+ 1 l+R-'(a, .)I..—p, [I {1+e-«)(1—e-"') - {1—e-"~ )'(1+e )

+ (1 —e "')o'(1 —e ")/a+x '{o'+
I

&
I )(1 —e "~ )(1 —e ' )]+ (e ' "' —1)R '{a,v)

~[le"-e"I""I"o' (1-")/»""R{a,~) '[l~ix '("'"'-»IRO(a)l
+ (1+e )ie " - e " I+0' (e " —l)(l —e )/a] .

(DSS)

(D36)

From {2.5) and (D5), we can show

Io, -P, +~'. ll-2—n a~+2l~ln-'+O(n-')-n-' (DSV)

U, -p 2n'ax '. The bound (D24), leads to

X '(e'x-"'- 1) «Mn 'X'-n ', (D45)
Using (D30) and (D38), we find,

IR-'(a, ~)(~, —p, ) I-4n-'x . (DSO)

Because ae ~&1, and x«lvl+ a, we have

I
(1- e- &){1+ e")- {1- e-"' )(1+ e-' ) I

- 4e-"
(D40)

Fux'thermox'e, me can ferrite

(1- ")a'=(1- ")(x "a'-x')
-X-'+ a 'X-'r'(-1 e-") —X-'(1+4~).

(D41)
By (D25) and (DSO), we get

a-'R-'(P ~)(e"-"' —1) «2Mn~X'- n-'

We also have the bound

e-44
I
«2ae&f«1 (D43)

Finally, by (D23), we have R(a, &) 'e «1 and also

and, with (D41), to

(e4x-nl' 1){1 -4E)/a n-1

This shows that every term in (D36) is of the or-
der n '. Therefore we have &z(&o, v)- 'n, 'and

hence obtain

da(l —a'n')in[1+ 1'2((o, ~)] -cn '-n '~'.
0 (D4V)

Consequently, @re have established the estimate

c/n
E, = (vn) ' d(o (1 —(u')'~'inn, (o), 0)+ 0(n '~'),

0 (D48)
and, since by the definition (2. 33), we also have

c/n
F, = —(vn) ' d(o (1- (o')'I'lnv. (&u, 0), (D48)

we conclude that (E, + Z, ) is of the order n '~'.
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