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Energy bands, electronic properties, and magnetic ordering of CrB~
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The energy bands of the compound CrB, have been calculated by using the Korringa-Kohn-Rostoker
method in the muffin-tin-potential approximation. The bands near the Fermi level have mostly Cr d
character, and one of the bands gives rise to a very flat piece of Fermi surface perpendicular to the
hexagonal axis. We propose that this piece of Fermi surface stabilizes a spin-density-wave state which
manifests itself as antiferromagnetic ordering of the compound below 85 K. We also interpret the
excess specific heat and electronic-spin susceptibility as due to exchange enhancement.

INTRODUCTION

Barnes and his collaborators established by NMR
measurements that the compound CrB2 orders anti-
ferromagnetically below 85 K. ' The compound is
metallic, and furthermore, the temperature depen-
dence of the resonance amplitude resembles that of
Cr and its alloys rather than that of a classical
Heisenberg-type antiferromagnet. Therefore,
Barnes et al. concluded that CrB2 is an itinerant-
electron antiferromagnet like Cr itself.

Castaing and his co-workers studied a series of
transition-metal diborides: ScB2, TiB&, VB&, and

CrB2. They measured the specific heat and elec-
tronic-spin susceptibility of these compounds and
the elastic-neutron-diffraction pattern of CrBz.
It was found that CrB3 has an electronic-spin sus-
ceptibility which is an order of magnitude higher
than that of the other diborides and that its specific
heat is also a factor of 2 or more higher. The
neutron-diffraction pattern of a powder sample of
CrBz shows evidence of magnetic satellites at he-
lium temperature. These results demonstrate that
there is a large exchange-enhancement effect in

CrB3, one much larger than that in the other dibo-
rides.

As in the case of pure transition metals, large
exchange enhancement does not necessarily lead to
antiferromagnetic ordering. As was first shown

by Lomer, ~ a particular Fermi-surface geometry,
commonly called "nesting Fermi surfaces, " is
needed to stabilize a spin-density-wave state. We
calculated the energy bands and Fermi surface of
CrB2 in order to determine whether the Lomer mod-
el also applies to this compound.

An augmented-plane-wave (APW) band calcula-

tion for CrB& was done previously by McAlister
et a/. The calculation was done on too crude a
mesh for the purpose of Fermi-surface study, but
it was used with considerable success to compute
densities of states and soft-x-ray photoemission
spectra for a series of 3d-metal diborides.

We chose to perform the calculation by using the
Korringa-Kohn-Rostoker (KKR) method, '~0 for
reasons reviewed in a recent publication whose
authors included two of us. ' Briefly speaking,
when applied to compounds the APW method re-
quires the calculation and diagonalization of a very
large matrix in order to get accurate eigenvalues.
In practice one is limited to calculating the energy
bands at high-symmetry points, and one must rely
on interpolation schemes to generate bands at gen-
eral points in the Brillouin zone. The KKR method,
on the other hand, involves a much smaller matrix,
and there is no need to use any interpolation scheme
to determine the band structure throughout the
Brillouin zone. The disadvantage of the KKR method
is that it takes longer to compute the matrix ele-
ments, although recent work by Williams et al.
has overcome this problem for pure metals. We
were unable to apply their innovation because it
requires a larger memory capacity than we have
available.

DETAILS OF CALCULATIONS

The crystal structure of CrB2 is designated
C32 and is depicted in Fig. 1. It is simply a hex-
agonal lattice in which closest-packed Cr layers
alternate with graphitelike B layers. Using the
primitive lattice translation vectors as the basis,
the positions of the atoms in the unit cell may be
indicated by choosing the coordinates (0, 0, 0) for
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FIG. 1. Crystal strg. cture of CrB2.

Cr and (-,', —,', —,', ), (-,', —,', —,') for B. The lattice
parameters a and e have the values 2. S69 and
3.066 A, respectively. '3 The Cr-B and B-Bbond
lengths are calculated to be 2. 300 and 1.V14 A, re-
spectively.

The muffin-tin (MT) radii were determined by
the following observations. Jf the MT radius of Cr
is chosen to be one-half of a, or 1.484 P, and if
the sum of the Cr and B MT radii is set equal to the
Cr-8 bond length, fixing the 9 MT radius at 0. 816
A, then none of the muffin-tin spheres overlay.
Moreover, they either touch or almost touch along
all bonds, and about 80%%uo of the unit cell volume
lies within them. These radii are close to the
Bragg-Slater atomic radii, 1.40 g for Cr and 0. 85
A for B, which are»luite successful in reproducing
observed interatomic distances and which corre-
late well with computed radii of the maximum ra-
dial charge density in the outermost shells of the
atoms, 1.45 A for Cr 4s and 0. V8 A for B 2P.
The choice of MT radii is not crucial, as previous
calculations on compounds have shown the energy
bands to be»luite insensitive to small changes (-4%)
in them ""

The crystal potential was constructed by the ad
hoe method of Mattheiss'6 using the neutral-atom
charge densities. 7 The atomic configurations are
Cr: 3d'4s and 9: 2s 2P'. The full Slater exchange
potential was assumed. The average potential in
the interstitial region, which was found to be
—2. 041 Ry, was taken as the reference point for
the muffin-tin potential. Since the crystal is very
closely packed, we do not expect the non-muffin-
tin part of the interstitial potential to be important.
This crystal potential is the same as that used by
Mchlister et al.

The calculation is not self-consistent. This
might seem to call our results into question, es-
pecially since we find a significant shift from the
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FIG. 2. Bnllouxn zone of CrB2.

initial charge density. Our cause for confidence
comes from the following work. Snow and %aber,
Connolly, Papaeonstantopoulos et aE. ,

3' and
Anderson et g$. found from their respective self-
consistent calculations on Cu, Ni, V, and Nb that
the interylay of configuration and exchange led to
astonishing over- all agreement between non- self-
consistent results using full Slater (n= 1) exchange
and self-consistent results using less than full
Slater exchange. Recent calculations by Walch
and Ellis on MgO, Myron and Freeman on Ti82, 4'

and Moruzzi et »»l. on P-brass (CuZn), support the
same conclusion for compounds, even when there
is evidence of charge transfer.

The s, P, and d orbitals of all atoms in the unit
cell were included in the calculation, so the order
of the KKR matrix was 2V. The Harn and Segall 6

method was used to evaluate the matrix elements.
The Ewald parameter was chosen to be 0. 6, and
the real and reciprocal lattice sums were truncated
to 21 and 59 terms, respectively. The matrix ele-
ments were calculated within an accuracy of 10 '
Ry . The energy eigenvalues were calculated on
a mesh of six equally spaced layers from I toA in
the Brillouin zone (Fig. 2) with 21 points uniformly
distributed in each ~ sector of the basal plane in
each layer. Qver an energy range from 0 to 1.5
Ry we found from 9 to 12 eigenvalues for each wave
vector. The eigenvalues were evaluated by itera-
tion to an accuracy of 0. 002 Ry. The resulting en-
ergy bands are plotted in Fig. 3.

For calculation of the density of states and the
Fermi surface the coarse mesh for finding energy
eigenvalues was made finer by interpolation using
the method of "spline fits. " This method does
not involve a parametric fitting of the calculated
points to some assumed functional form. 3ueh
schemes, as are the QUAD and Slater-Koster meth-
ods, are esyecially useful on a coarser mesh where
the details of the band structure are not clearly
reQected in the calculated points. Starting from
a less coarse mesh it becomes important for a fit-
ting procedure to reproduce the smoothness of the
energy bands without introducing additional errors
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FIG. 3. Energy bands of CrB2 along the symmetry
axes.

FIG. 5. 6th-band Fermi surface of CrB2.
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at the calculated points. Spline interpolation is the
standard way to achieve this result. It essentially
makes a piecewise cubic fit which ensures continu-
ity of the values, slopes, and curvatures at the
points calculated.

To obtain the density of states we interpolated
the calcul. ated bands to a finer mesh of 18VOOO

points in the Brillouin zone, and counted in energy
increments of 0. 01 Ry. The integrated density of
states was calculated by counting in a finer energy
increment of 0. 001 Ry. The results are shown in
Fig. 4, where the scale for N(E) is on the left and
that for the integral, fN(E) dE, is on the right.
The bands must accommodate 12 electrons, 3 from
each boron and 6 from Cr. This fixes the Fermi
level at 1.29V Ry. The density of states has two
peaks: a narrow peak just above the Fermi level
due to the narrow Cr d bands, and a broader peak
at 0. 8 Ry from mixed Cr P, d and BP states. The
result of McAlister et al. has the same general
features. '

The Fermi surface was determined by first in-
terpolating the bands to a mesh of 1VOO points in
the Brillouin zone and then scanning between pairs

of nearest-neighbor mesh points. If a band was
found to cross the Fermi energy between two of
these points, the band was fitted to a quadratic
function of the wave vector, and the root of E(k)
=E~ was determined analytically. Numbering the
bands in ascending order of energy, bands 6, V,

and 8 cross the Fermi level. The Fermi surface
of band 6 consists of a hole pocket centered around
I and a large multiply connected piece as shown
in Fig. 5. The Fermi surface of band 7 consists
of two electron pockets around K and A as shown
in Fig. 6. Band 8 contributes a small electron
pocket around A with a shape very similar to that
of band 7 at A.

We also studied the wave functions of the occu-
pied bands to determine the character of the elec-
tronic states at the Fermi level and to gain some
notion about the charge redistribution accompany-
ing formation of the compound. The total popula-
tions of the three bands of CrB2 which cross the
Fermi level and their density of states populations
at the Fermi level are presented in Table I. Of
particular interest is the nearly pure Cr d charac-
ter of the highest occupied states: of the 20. 9
states/(Ry cell) at the Fermi level, 18.0 states/
(Ry cell) are Cr d. Table II presents the distribu-
tion of the 12 valence electrons in the unit cell ac-
cording to the same geometrical partitioning of the
crystal used to calculate the energy bands. These
numbers indicate a shift relative to the superposed
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FIG. 4. Density of states (histogram) and integrated
density of states (smooth curve) of Cr82. FIG. 6. 7th-band Fermi surface of CrB2.
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TABLE I. Density-of«states population at E& and total
band population of the three partially filled bands of CrB2.
The B contributions include both B atoms.

Band

Cr s
p

0.07
0.53
6.37

0.08
0.80

10.48

0.01
0. 06
1.16

Total

0.16
1.39

18.01

B s
p

0.05
0.28

0.08
0.76

0.01
0.16

0.14
1.20

Total

Total band
population

7.3

1.48

12.2

0.47

1.4
0.05

20. 9

2. 00

ELECTRONIC PROPERTIES

neutral-atom charge density of electrons from the
region about B to the region about Cr on formation
of CrB~. This shift is in the opposite direction
from that found by McAlister et a/. The small
number of points in the Brillouin zone at which
their calculation was performed could account for
this discrepancy. Qf perhaps more concern is that
this shift is opposite to that anticipated by chemi-
cal intuition. While arguments have been advanced
favoring either direction of the charge redistribu-
tion in the borides, ' ' we hesitate to make any in-
terpretation of this result before performing a self-
consistent calculation. The shift itself is evidence
of the lack of self-consistency in this work and,
since wave functions are more sensitive to self-
consistency than are energies, we now are engaged
in making this improvement.

a factor of 3.8 higher than our calculated value.
Although the calculation of the density of states
has some serious shortcomings, most notably the
lack of self-consistency, the use of interpolation,
and the neglect of the electron-phonon interaction,
we doubt that correcting all of these could signif-
icantly reduce the discrepancy between theory and
experiment. There must then be a large enhance-
ment factor due to spin fluctuations. Indeed, one
can estimate from the formulas in Ref. 33 that a
susceptibility enhancement factor of 8. 7 is con-
sistent with a specific-heat enhancement factor of
2. 3, which is a sizable fraction of 3.8.

We may use the rigid-band model and the energy
bands of CrB2 to estimate the electronic proper-
ties of ScB» TiB» and VB~ by simply making an
appropriate shift of the Fermi level. This was
also done in Ref. 8, and Fig. 7 shows our results
together with those of McAlister et al. and the
experimental results. There is good agreement
between the two calculations, and good agreement
with experiment except for CrB3. We have already
discussed the exchange enhancement effect in CrBz.
It turns out that when the Fermi level is shifted
downward, the partially filled bands very rapidly
lose their d character. This is the reason why the
enhancement factor due to spin fluctuations reduces
to almost unity for the other diborides.

The three bands near the Fermi level have ex-
ceedingly small boron s character in their wave
functions, no more than 1%. This means that, in
spite of the large spin susceptibility, the spin po-
larization can not reach the B nuclei effectively to
produce a Knight shift. The measured Knight shift
is in accord with this picture. '6

The paramagnetic susceptibility of CrB~ is only

slightly temperature dependent, and above the Neel
temperature it is approximately 600x 10 6 emu/
mole. Using the calculated density of states at
the Fermi level, N(Ez) = 20. 9 states/(Ry cell), we

find the unenhanced Pauli susceptibility to be 58
x10 ~ emu/mole. The discrepancy between this
and the experimental value is considerable. The
recent neutron form factor measurement on para-
magnetic Cr revealed that the total susceptibility,
160x10 emu/mole, comes 60% from orbital and

40% from spin contributions. If we make the
crude estimate that the orbital susceptibility of Cr
in CrB3 equals that of Cr in the pure metal, namely
100x10 6 emu/mole, then the spin contribution to
the susceptibility of CrB2 would be about 500&10 6

emu/mole. This, together with the theoretical es-
timate, gives an exceedingly large enhancement
factor" of 8. 7.

From the measured specific heat Castaing esti-
mated the effective density of states at the Fermi
level to be N*(Ez) = 79 states/(Ry cell), which is

MAGNETIC ORDERING

TABLE II. Geometrical partitioning of the valence
electrons of CrB2.

Number of valence electrons

For the free neutral atoms
Inside the MT spheres for the free

neutral atoms
Inside the MT spheres for the superposed

neutral atoms
Inside the MT spheres for the occupied

crystalline states.

Cr B CrB,

6 3 12
5.0 1.1 7. 2

72 14 100

84 . 06 96

The Lomer model for itinerant antiferromag-
netism requires two sheets of Fermi surface which

are nearly parallel. A study of the Fermi surface
of CrB2 reveals a rather large and flat piece of
Fermi surface around the lA axis due to the 7th
band (see Fig. 6). This piece may nest with its
counterpart in the negative momentum region of the
Brillouin zone. In Fig. 8 the 7th-band Fermi sur-
face is replotted to show this nesting feature. The
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separation between the two pieces varies between
Q& and Q2. There is another extremum dimension,
Q3, but there is no distinct nesting feature associ-
ated with it.

A quantitative way to demonstrate the nesting of
Fermi surfaces is to calculate the generalized sus-
ceptibility function. 7 The function is defined as

x(Q)=~ " (1)E„,~ —E„"

where ff is the Fermi distribution function. For
more than one band one also sums over band in-
dices for the two states E„p and E„.,p, z. This def-
inition of g(Q) leaves out the generalized oscilla-
tor- strength matrix elements between the Bloch
states. Gupta and Sinha showed for Cr that in-
clusion of these matrix elements affects the mag-
nitude but not the position of the calculated peak in
the susceptibility. We performed this calculation
for the 7th band with Q along the c axis of the crys-
tal. The band was first interpolated to a fine mesh
of 1000000 points in the Brillouin zone, and then
the sum was explicitly carried out for every pair
of states such that Ep is below the Fermi level and
Et"„0 above. If the two energies differed by less
than 0. 0001 Ry the pair was discarded in accor-
dance with the principal value integration. The
result is shown in Fig. 9.

If the nesting Fermi surfaces were planes or
exactly parallel surfaces, there would be a loga-
rithmic singularity at that Q which is the separa-
tion between the pieces. In the present case we
see a broad but distinct peak between Q, and Qz.
The wave vector of the spin-density wave is deter-
mined by the maximum of the X(Q) curve. Thus,
the predicted wave vector is Qo= 0. 26'„where
v, = 2v/c.

Castaing reported an elastic neutron experiment

H L

FIG. 8. 7th-band Fermi surface showing nesting
features.

on a powdered sample of CrB~ at helium tempera-
ture. He observed three very weak peaks that
are probably of magnetic origin. Their positions,
converted into units of r„are 0. 58, 0. 74, and
1.15. The peak expected at Qo lies buried beneath
the Bragg peak and cannot be detected, but the
strongest magnetic satellite at 0. 74m, may be in-
terpreted as z, —Qo. Unfortunately the satellite
then expected at v, + Qo falls beyond the range of the
experiment. The other two peaks are so weak they
may be untrustworthy, or they may be higher har-
monics of Qo.

The theory of itinerant antiferromagnetism shows
that a band gap, 2~, develops when the system or-
ders. The low-temperature value of the gap is
related to the Neel temperature, T„, by 24
= 3. AT„. We find from this relation 2h= 0.026 eV.
The band gap is in turn related to the amplitude of
the spin-density wave, or the average magnetiza-
tion o by ~= oV, where V is the effective exchange
potential. We can estimate from expression of the
enhancement factor as I1 —N(Ez)V] = 8. 7, where
N(Ez) = 20. 9 is the calculated density of states, that
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FIG. 7. Theoretical vs experimental density of states
at the Fermi level for ScB2, TiB2, VB2 and CrB2. The
circles are from Ref. 8, the triangles are our results,
and the crosses are deduced from experimental specific
heats.

l3—

l2
bJ
C3

II
Q

V)

IO

M
9—

OC

I I I

Q Q Q A

0/AVE VECTOR Q ALONG c AXIS

7
r

FIG. 9. Generalized susceptibility of CrB2 along the c
axis of the crystal.



3468 H. LIU, L. KOPP, W. B. ENGLAND, AND H. W. MYRON

V= 1.2 eV. This gives an estimate of the magne-
tization 0= 0. 01.p, ~. This value is consistent with
the experimental estimate of 0. 02 —0. 1p.~.

Finally, as a consequence of ordering, we can
use the relation kT„= 1.14D e to obtain an-
other estimate of the exchange energy V. The quan-
tity D is balf of the band-'7 bandwidth (-0. l Ry) and

N is the density of states per spin contributed by
band 7 to the nesting Fermi surfaces. Assuming
that about —,

' of the band-7 Fermi surfaces nest, we
obtain V—1.35 eV, in very close agreement with
our previous estimate of 1.2 eV.

In conclusion, we have shown through a band
calculation that Cra, has the required band struc-

ture for an itinerant antiferromagnet. The band
data correlate well with the electronic properties
of CrB2 if we include the exchange enhancement
effect in the Cr d bands. Using a rigid band model
we can also explain the systematic behavior of the
electronic properties of the diborides of Sc, Ti
and V.
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