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Crossover scaling functions for exchange anisotropy: X Y and planar models
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The crossover behavior of the susceptibility y"" of classical X Y and planar models with anisotropic
exchange coupling is studied .on the basis of the extended scaling hypothesis. The universality of the
scaling function with respect .to lattice type (fcc and sc) and model type (X Y and planar n = 2
models) is confirmed, The scaling function for y""(T,g) is obtained by analyzing the
high-temperature-series coefficients expressed as polynomials in g, the anisotropy parameter. The
crossover of y, the susceptibility exponent, is plotted, using the calculated scaling function, over a wide

range of temperatures.

I. INTRODUCTION

t= (&- T.o)/&.o, (1 2)

and y and T,o are the isotropic critical exponent
and the critical temperature, respectively. The
crossover exponent P is characteristic of the iso-
tropic system but, as usual, its value is not ex-

The theoretical study of critical phenomena has
relied heavily on the analysis of the exact series
expansions' and, more recently, on renormaliza-
tion-group techniques. From these studies it has
become increasingly evident that the main features
of the critical behavior (as characterized by the
critical exponents) depend on very few properties
of the system. In particular the symmetry proper-
ties of the Hamiltonian and the dimensionality play
important roles. Consider, for example, the
Heisenberg model with weakly anisotropic exchange
interactions. The asymptotic critical exponents
change from Ising-like to Heisenberg-like values
as the anisotropy vanishes, corresponding to an
abrupt change in the spin-space symmetry proper-
ties of the Hamiltonian.

A scaling theory to describe this crossover be-
havior was originally introduced by Riedel and
Wegner. It has been further clarified through an
extended scaling hypothesis introduced by Fisher
and Jasnow. ' According to the theory, one expects
that for weak anisotropy, measured by the small
parameter g, the system far enough from the cri-
tical point behaves as if it had the full isotropic
symmetry. However, on going closer to the criti-
cal temperature T,(g), the system starts to respond
to the anisotropy until, finally, the behavior crosses
over, and the asymptotic exponents are character-
istic of the lower symmetry. The above behavior
is embodied in the scaling hypothesis, which may
be written, for the susceptibility,

x(&, g)=&t "&(&g/f'),
where, in the extended form, 5

pected to depend on such details of the system as
lattice type.

Recently Pfeuty, Jasnow, and Fisher *~ analyzed
the high-temperature-series expansions for the
susceptibilities of the Heisenberg model (n= 3 spin
components), the XY model [three spin components
but one (z) completely uncoupledj, and the planar
model (n = 2 spin components) with nearest-neighbor
ferromagnetic exchange coupling on the three cubic
lattices. They obtained estimates for Q and verified
predictions of the scaling hypothesis. In addition,
they demonstrated the universality of scaling func-
tions with respect to lattice type and, for n = 3,
constructed accurate representations for the sus-
ceptibility valid in the scaling region.

In this paper a continuation of the program begun
in Ref. 7 is carried out for the XF and the planar
models, i. e. , for the e = 2 case. The outline of
the paper is as follows. In Sec. II, the anisotropic
Hamiltonian is introduced and a brief review of the
crossover scaling theory is presented (details are
presented in Ref. 7). In Sec. III, the expansion
for the scaling function is obtained through analysis
of the isotropic critical behavior. The study of the
critical behavior in the presence of small but finite
anisotropy is the subject of Sec. IV. In Sec. V,
we construct the closed-form approximants for the
scaling function and examine the crossover of the
susceptibility exponent based on this function.

II. THEORY

As has been discussed previously4'~ the general
scaling theory of the crossover behavior is applic-
able to many situations. ' In this section we will
present a specialized version suitable for the cases
at hand. We shall be dealing with cubic lattice ar-
rays of two- or three-component classical spins
which interact with a nearest-neighbor ferromag-
netic exchange in the absence of a magnetic field.
In the planar model the spin o (R) at a lattice site
R is a two-component unit vector, whereas in the
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XI" model it is a three-component unit vector (with
one component completely uncoupled). In either
case, the isotropic Hamiltorlian is given by

Ro=- ~J o„R o„R+5 +o, R o, R+5

(2. 1)
where ]5] are the nearest-neighbor lattice vectors
Rnd J is a positive exchange constant. The aniso-
tropy is introduced through BC= %0+Xi with '

t,(g)-g"" . (2. 6)

XI = ——,'gZ g g [o'„(5,)o„(R+5) —o„{R)o„(R+5)],
(2. 2)

where g is the strength of the anisotropy.
In the isotropic case (g= 0), the critical behavior

is described by the usual critical exponents n, P,
y, ... . Since the XF and the planar model have
the same syI11metry, viz, , the in&ariance of the
Hamiltonian with respect to rotations in the x-y
plane, the corx'esponding exponents are expected
to be the same for both models. This is indeed
borne out by analysis. ' In the presence of aniso-
tropy the critical temperature is shifted from 7,0
'to T (g) aIld tile cr1tlcal behavior is described by'

new exponents n, P, j, ... . If a reduced-temper-
ature devlRtlon from tI16 cx'ltlcRl temperRtul 6 ls
defined by

t= [7'- ~.(g)]/7'.0, (2 3)

then for small t and small g, the general scaling
hypothesis supposes for a given system the foBow-
ing form for the (reduced) zero-field susceptibil-
ity

x{T',g)=& "x(g/f') . (2. 4)

As usual, ~ the scaling function X will sa,tisfy cex'-

tain conditions for small and large arguments to
reproduce the proper behavior. The hypothesis
(2.4) leaves open the question of the variation of
the critical-point shift

f.(g}=[T.( }-T,]/T, , (2. 5)

withg, fox' smallg. One may, indeed, introduce
a new shift exponent g through

The scaling hypothesis (1.1) describes the be-
havior near the critical line T,(g}when g is small.
I11 tile iso't1'oplc li11Ht g = 0 we llave fl'onl (2, 8)

x(&, 0)=& t " (g = o), (2. 9)

t.(g)=~g'" as g - 0 . (2. 11)

Denoting the location of the singularity in the scaling
function by x, ere have

x=&g/[t. ( g))'=&/~', (2. 12)

x being a universal combination of the Donuniversal
parameters J3 and xb. Then (2. 10) results if the
asymptotic form of X(x) is

X(x)=X(1—x/x) "asx-x, (2. 13}

which yields the further identification

A(g)=A„g '" ""~ (2. 14)

gg(f -y)leXxh'-i)isy-i (2. 15)

The constants X Rnd x are universal, while A, A„,
B RDd sb Rre Donuniversal, The universality of x
and X and expectations (2. 11), (2. 13), and (2. 14)
are confirmed numerically in Sec. IV.

The above scaling hypothesis has been verjLfied

within mean-field theory and in a variety of situa-
tloDS . 1D the spilerlcal model, Renormallzatlon-
group techniques have also been used to discuss
the anisotropic cx'ossover behavior. Relevant for-
mulas are presented along with specific references
in Ref. V.

III. ISOTROPIC CRITICAL BEHAVIOR

High-temperature-series expansions of the form

a,s required. For a fixed, positiveg, however, we
x'6quir6

x(&, g) =&(g) f " (g 0), (2. 10)

as t-o, i.e. , 7- T,(g). To reproduce this be-
havior the susceptibibty in the extended form (1.1)
must be singular at t = i,{g) which, in accord with

the assumed equality $ = g, can be written

The exponents P and g are actually equal if an ex-
tended form of scaling obtains, in which case
(1.1) holds, where,

xee g an (p)(Ifi)A (3.1)

t=t t.(g)=-(I - T.o)/T. o .
The nonuniversal (lattice- and model-dependent)
scale parameters A. and B have been introduced in-

(1.1) so that the function X(x}, so defined, is ex-
pected to be universal. The scaling function X(x}
may be normalized by the requirement

x(o) =1=—(o) .
dx

(2. 3)

&a(P)= g &7&'
g=o

were derived from expansions based on the tech-
niques of Jasnow a,nd mortis in. Hefs. 6and V for the
XF and planar spin Hamiltonians

(3 2)

X= —~&' g g [o„(R)o„(R+5)+Pa„(R)o„(R+5)] .
R 5 (3.3)
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T~LE g. /educed susceptibility coefficients for X for the planar model on the sc lattice. [See Eqs. (3, 1)
and (3.2). ]'

apQ) =y
a~/) =g
a2(p) =3.9375 —0.1875p
a333(p) = 10.265 625 —1.078 125p2

a4$) =25.96875 —3.984375p —0.234375p4

as') =65.57421875 —13.29296875p —1.109375p
a~~(p) = 163.333 1299—40. 91784668p —3.251 586914p —0. 6363525391p
a~~(p) =406. 4460526 —121.5082626p2 —8.436744690p —3.027900696p
a~8(p) = 1003.897339 —347. 8473587p2 —19.143836 98p4-8. 798789978p6 —2. 104911804p
a~9(p) =2478. 016734 —977.293 1034p —37.58609887p —23.74466971p8 —9.984097291p
a/0(p) =6088.437435 —2689. 916 910p —54. 263 178 13p~ —60.38008060p6 —27.932469 lip —7.869092655p 0

'The form for a&p(p) has been provided by Van Dyke and Camp (Ref. 13).

As noted above, the spin o(R) at the lattice site R
is a classical unit vector (three-component for the
XF model and two-component for the planar model)
and 5 is a nearest-neighbor lattice vector. The
coefficients a f(p) were determined to ~ = 8 on the
fcc lattice and to k = 9 on the sc and the bcc lattices
by inversion of linear equations. ' Van Dyke and
Camp subsequently obtained directly the series
expansion coefficients [e.g. , ag(p)] up to tenth or-
der for a general class of classical spin Hamilto-
nians on two- and three-dimensional lattices. We
have utilized the full ten-term series in our anal-
ysis. In Tables I and II we present the expansion
coefficients for X'" for the planar model on the sc
lattice and the XF model on the fcc lattice. X" is
related to X through the identity

transformation linking the forms of Hamiltonians
(3. 3), and (2. 1) and (2. 2):

p = (1-Z)/(1+x),
K'=- J'/ks T=J(1+g)/ke T=K(1+g)-

This results in the relation,

K!(p)-=K.(a)(1+a),

(3. 5)

(3.6)

between the critical points of the two Hamiltonians.
Note that in the detailed analysis of Sec. IV we
shall determine directly K,'(p) for a range of aniso-
tropies p. However, the parameter w' (and the
exponent g) are defined in terms of the correspond-
ing values of K,(g) given in (3.6). Note also that
the identity (3.4) now appears as X'"(J, g) = X (J,
-g) as is evident from the forms (2. 1) and (2. 2).

x"'(~', p)= x""(~'p, 1/p) (3.4)
A. Methods of estimation

In the remainder of this paper we shall only be con-
cerned with X"" (,I', p), with p K1. But since g
[see (2. 1) and (2. 2)], and not p, is the proper scal-
ing variable, one will frequently need the following

In order to test the universality predictions and
to gain more information about the scaling function
X(x), one needs to analyze derivatives 4 of the type

TABLE D. I|educed susceptibility coefficients for X""for the XY model on the fcc lattice. [See Eqs. (3.1)
and (3.2). ]'

a~0(p) = 3
ax(p) —4

a2X(p) =5.066666667 —0.0888888889p
a3 (p) = 18.88 —0.699 259 2593p —0.118518 5185p
af(p) =69.48656085 —3.864832451p —0.9165432099p~ —0.275 1322751p4
a~~(p) =253. 6483830-18.74355052p2 —4. 988312757p3 —2. 022705299p4 —0. 651 061 7284p~
a~6(p) =920.5347093 —84.687023 10p —23.925482 94p —10.41854998p —4.728743764p5 —1.649738361p
cP'(p) =3326.346267 —365.8303610p2 —107.2282733p3 —47.31004927p4 —23.97648896p~ —11.82430945p

—4.390 573 79lp
af(p) = 11979.53279 —1531.966870p —460.3509255p3 —200.6869039p —107.3814568p —58.925 17326p

—31.233 007 52p~ —12.097 330 10p
a~g(p) = 43 028.222 19-6270.392 192p —1918.416 326p —814.494 9567p —449. 994 2522p' —259.958 8785p6

153 702 1015p' - 85 622 808 42p8- 34 268 819 10p
afo(f&) = 154213.3501—25218.55520p —7821.226077p —3202. 644327p —1805.636209p5 —1075.847824p

670.655 5287p —416.976 0032p —241.735 7660p —99.229 620 66p

The forms for a$(p) and a/0(p) have been provided by Van Dyke and Camp Q«. 13)~
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TABLE III. Isotropic critical parameters.

Parameter
Model
lattice fcc sc fCC

Planar
sc

7

K~p = J/Ip8Tpp

'kg 7~0/J

l.315
1.175
0.29926
3.3416

1.315
l.175
0.64430
l.5521

l.315
1.175
0.20738
4.822

l.315
l.175
0.4537
2.204

~'X'
="i(T)=

s pi =,y.r'p (3.7)

where the amplitudes are given by the scaling form
(1.1) as

C, =AB'(~~,. ) (3. 8)

The analysis of these and many other similar
derivatives (e. g. , those of the second moment of
correlations and the free energy) has been per-
formed by Pfeuty, Jasnow, and Fisher. ' The
lattice- and appropriate model-independence of
the crossover exponent Q was confirmed; numer-
ically the results for the XY and planar models
conform to

P = 1.175+ 0. 015 (n = 2 models). (3. 9)

Using the value of Q along with the previously de-
termined values of y and K,p

= J'/ks T,p, with the
isotropic critical temperature T,p (corresponding
to P= 1 org= 0), one can form the high-tempera-
ture series for the amplitude

C (T)= (I-&/&.0)""'=" (7') ~ (3.10)

Ci-1 C
C' (3. 11)

The critical amplitude C, = C, (T,p) may-then be
estimated by the usual methods. ' The estimates
will, of course, depend on the choice of the param-
eters Q, y, and K,p; in Table III we list our
choices. ' Direct Pade approximants to C, (T),
evaluated at T,o for the XY model on the fcc lattice
are shown in Table IV. The values of amplitudes
calculated this way are presented in Table V. From
these amplitudes one can form the universal ratios
[see (3.8)j

In (3. 12a) the subscript means the derivative is
evaluated in the isotropic limit g = 0. However,
the estimates formed from these will no longer
depend on the choice of y or P. They depend only
on the value of K,p (and our experience shows, only
weakly so). In Table VI, we show for the planar
model on the fcc lattice the direct Pade approxi-
mants to the series (3.12a) evaluated at K,p A
list of all the universal ratios is presented in Table
VII. For comparison we have also shown the exact
ratios for the mean-field and the spherical models.
The numbers in parentheses represent only the
confidence limits on the extrapolation, as we have
not included uncertainties in the parameters y,
and K,o.

The last column of Table VII presents the mean
ratios adopted for further calculations. It is evi-
dent from the table that the individual central esti-
mates are quite close to the mean. The extrapola-
tion uncertainty in the means is roughly + 0. 3%,
except for B4, which is uncertain to about +0. 8/0.
All of the ratios disagree with the mean-field and

the spherical model predictions, but the differences
seem to become smaller for higher-order ratios.
(The ratios agree closely with Pfeuty's renormali-
zation-group estimates presented in Ref. 7. ) These
universal ratio estimates compare well with those
obtained from C, 's (listed in Table V), but the for-
mer are more precise because of their indepen-
dence of y and P.

TABLE IV. Some Pade approximants for the critical
susceptibility amplitudes. Direct approzimants to the
C&(T) series I See Eq. (3.8)] for the XF model on the fcc
lattice. The critical parameters used are listed in Table
III.

(3.12a)

since scaling implies

~ p(T.o)=f~i ~ (3. 12b)

Alternatively the universal ratios can be directly
determined by a series analysis, for example, of
the functions

[2/2]
[2/3]
[3/2]
[3/3]
[3/4]
[4/3]
[4/4]
[4/5]
[5/4]
[5/5]

0.27499
0, 27438
0.27437
0.27432
0.27439
0.27438
0.27155
0.27344
0.27344
0.27337

1.0171
1.0121
1.0112
1.0107
1.0096
1.0138
1.0078
1.0091
1.0105

6.747
6.556
6.542
6.536

- 6.485
6.548
6.512

~Note that Ct(Ti = Cs{Ti//Kc

63.78
62. 34
61.94
61.68
61.47
61.25

787.6
769.0
757, 0
759.0

12 017
11748
11179
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TABLE V. Critical susceptibility amplitude estimates for the XY and the planar models. The
assumed isotropic critical parameters are given in Table III. The numbers in the parentheses are
the uncertainties in the last decimal place quoted.

Amplitude

XY, fcc
XF, sc

Planar, fcc
Planar, sc

Cp

0.2739 (5)
O. 30875 (6)

o.4569v(ls)
o. 5lo26 (24)

0.3023 (10)
0.38062 (20)

O. 54923 (41)
o.6921(20)

C2

0.5856 (26)
0.8167(1)

1.144V (V)

1.598 (9)

C3

1.651(9)
2.5eo(4o)

3.4ss(3)
5.431(42)

6.112(60)
10.15(48)

13.84 (2)
22. ev(41)

Cg

28. o(13)
55.5(l)

68.1(1)
136(3)

B. Expansion of the scaling function

Knowing the universal ratio amplitudes R, enables
us to find the expansion of the scaling function
X(x). Using the normalization (2. 8) and the ex-
pression (3. 11), X(x) can be expanded as

2 3 2

X(x)=1+x+, x +, x +, x + ~ ~
Ry 2 RyR2 3 R) R2R3

(3. 13)

+ 0. 5082 x + 0.412x + ~ ~ ~ (3. 14)

with extrapolation uncertainties of at most 0. 3%,
0, 8% 1, 6% 2, 6'%%up 4, 4% in the coefficients of x2

to x~, respectively. The normalization (2. 8) al-
lows us to evaluate the nonuniversal constants A
and B. The estimates are

Using the universal ratios from Table VII, we find

X(x)= 1+x+ 0. 8719x + 0.7417 x~+ 0. 6160x4

A = 0. 2739 + 0.0005 (fcc), 0. 30875+ 0. 000 06 (sc); B= 1.104+ 0. 040 (fcc),

1.2328+0. 0009 (sc) (XY model); A =0.4570+0. 0002 (fcc), 0. 51026+0.00025 (sc);

B = l. 2019+ 0. 0015 (fcc), 1.356 + 0. 005 (sc) (planar model)

(3. 15)

The large percentage differences in the parameter
A between the two models should be noted.

As already discussed in Sec. II, the function X(x)
is expected to diverge as x-x, i. e. ,

is well approximated by pure power-law divergence
as in Eg. (3. 16).

IV. ANISOTROPIC CRITICAL BEHAVIOR

X(x)=X(1-x/x) ~ . (3.16)

Even though we have only a sixth-order series for
X(x), it is interesting to obtain preliminary esti-
mates for the universal parameters x and X. For
example, (i) one can form Pads approximants to
[X(x)] "(for the specific value of y, see Sec. IV),
to find x; and knowing x, (ii) one can form Pade
approximants to (1-x/x)" X(x) evaluated at x = x,
to find X. On yerforming this standard analysis
we find the following preliminary estimates:

In Sec. III we studied the isotropic behavior,
that is, we determined the scaling function X(x)
near x=0. The expansion of X(x) is valid for small
enough x= Bg/t . In this section we analyze the

TABLE VI. Some Pads approximants for the universal
susceptibility ratios for the planar model on fcc lattice.
Direct approximants to the R, (T) series. [See Eq. {3.10).]

. The critical temperature used is listed in Table III.

l 1 2

x = 1.2V4, X= 1.030 (3. 17)

Of course, to obtain better values of these yaram-
eters (which depend on ".he secondary behavior),
one has to analyze the behavior for small, finite
g and extrapolate tog= 0. This is the subject of
Sec. IV. However, anticipating the results, the
difference between (3.17) and the final estimates
[see (4. 8) and (4. 16)] is only about 3/0. Presum-
ably, this means that the behavior of X(x) for x=x

[1/ll
[1/2]
[2/1]
[2/2]
[2/3]
[3/2]
I3/&1

[3/4]
[4/3]
[4/4]

l.8411
1.7416
1.7390
1.7413
1.7417
1.7403
1.7376
1.7392
1.7390
1.7384

1.4693
1.4640
1.4640
1.4640
1.4640
1.4640
1.4673
1.4609
1.4609

1.3005
1.3008
1.3008
1.3001
1.3021
1.3020
1.3038

1.2404
l.2402
1.2402
1.2429
1.2395
1.2395

l.1878
1.1870
1.1869
1.1882



SURJIT SINGH AND DAVID JASNO%

TABLE VII. Universal susceptibility ratio estimates for the XF and the planar models. The assumed critical
temperatures are given in Table III. (Uncertainties are in the last decimal place quoted. )

Ratio

Rg

R2
R3
R4
R5

Mean
field

2
1.5
1.33
l.25
1.2

Spherical
model

1.5
1~ 33
1.25
1.2
1.166

1.7537(84)
l.4657(124)
1.3021(5)
1.2398(9)
1.1887(2)

sc

1.7490(175)
l.4633(44)
1.3019(51)
l.2432 (90)
1.1720(240)

fCC

1.7398 (21)
l.4637 (37)
1.3014(24)
1.2404(25)
1.1875 (7)

sc

l.7326 (73)
1.4613(27)
1.3016(88)
l.2427(96)
1.1689(270)

Universal

1.7438
1.4635
1.3018
1.2415
1.1793

behavior in the other limit, i. e. , x=x or t~«g.
In particular, for fixedg &0 we determine the cri-
tical temperature T,( g) at which the susceptibility
diverges, and also find the amplitude A(g) in the
relation (2. 10). Relations (2. 12) and (2. 15) then
allow estimation of x and X.

Before proceeding, however, it is necessary to
comment on the values of j' to be used in the finite-
g analysis. Universality asserts that the value of
y should be independent of g (for given spatial di-
mensionality). One also expects the exponents to
be the same for all models with Ising-like aniso-
troyy so that the relevant order-parameter sym-
metry is reflection. ' ' In practice, however,
one finds that for the three-dimensional S= & Ising
model, y= 1.25, while for the three-dimensional
classical XY and planar models with Ising-like
anisotroyy, y= 1.23 and 1.24, respectively. Re-
cently, Saul, Mortis, and Jasnow and Camp and
Van Dyke have shown how to reconcile the ap-
parent failure of universality for the spin-S Ising
model by allowing for the presence of a fairly
strong, confluent singularity whose amplitude de-
pends on the spin magnitude. Such singularities
could also account for the values of y in the n = 2

models which are slightly low compared to the Ising
value, y= 1.25. However, it is not practicable to
try to include these effects at the present stage:
the crossover effect is making the apparent y vary
widely, and these subtle corrections, which are
operable even far from the crossover region (small
g), would be lost. Hence in our study of the cross-
over effects we use the respective values y= 1.23
(XY) and y= 1.24 (planar), including the value y
= 1.25 as a check on consistency. As has been
mentioned elsewhere, in the absence of a more
sophisticated analysis including, perhaps, the
presence of confluent singularities, the series are
expected to produce the smoothest results using
the favored (low) values of y.

been based on the coefficients a~(P) in (3. 1). Spe-
cifically, for the close-packed fcc lattice, we have
analyzed the sequence

(4. 1)

with

pl (p) = «(p)/at 1(p)- (4. 2)

346—

3.45—

10 8 6
I I I I I

(i) p= 0.84
(ii) p=0 86
(iii) p = 0.88
(tv) p = 0.90

pj(p)
XY Model, fcc

3.4 I

The shift 5 can be varied to check the consistency
and improve the over-all smoothness of the se-
quences. If the usual asymptotic forms for the
coefficients a,(p) are assumed, '

p, , (p) should ap-
proach [K,'(P)j linearly in the variable 1/l as
l -~. This is indeed verified, as can be seen from
Fig. 1, where, for several values of P, we present
the plots of p, (P) vs 1/f for the XY model on the
fcc lattice with y- y = 0.085.

For the loose-packed lattices, the above method
does not work well because of characteristic os-
cillations due to antiferromagnetic singularities.
In this case, conventional analysis ' using

A. Determination of critical points
I

0,02 0.04 0.06

To determine the critical temperature T,(g), we
have essentially used the techniques developed by
Pfeuty, Jasnow, and Fisher in their study of the
Heisenberg model. The actual calculations have

l/J'
FIG. 1. Estimation of k~T~(p)/O' = IE~(p) l from Pg(p)

defined in (4. 1) for 6 =0. The arrows correspond to the
estimates.
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TABLE VIII. Critical-point shifts for the XY model.
Uncertainties are in the last decimal place quoted.

I.08 0.02 0.04 0.06 0.08

0.96
O. 94
0.92
0.90
O. 88
0.86
0.84

0.0204
0.0309
0. 0417
0. 0526
O. 0638
0.0753
0.0870

K' (p)

0.295 77
0.294 81
0.293 99
0.293 23
0.292 57
0.291 97
0.291 42

fCC

Weff (g)

0.862 (22)
0.855 (15)
0.851(12)
O. 847 (1O)
0.842 (8)
0.838 (7)
0.832 (6)

K', (p)

0.63492
0.63211
0.62952
0.62755
0.62549
0.62383
0.62228

0.941 (30)
O. 932 (21)
0.927 (15)
0.915(12)
o. eoe (1o)
0.900(9)
0.891(8)

W

)w

o
1.00 .-

0.92

PIanar Model
Weff (g)

fCC

( )
-u.

(i
&.(z)

c0
(4. 4)

Tables VIII and IX also include w, «(g) calculated
from (4. 4). To obtain w we extrapolate w, «(g) vs
g ~ rather thang, because the more singular term
should always be present, except if there is an ac-
cidental cancellation (note I/Q (1). In Fig. 2, we
present a graph of w, tt(g) vs g o for the planar
model, in which case we conclude

w = 0. 928 + 0.020 (fcc),
w = l. 026+ 0.025 (sc) (planar model)

(4. 5)

TABLE IX. Critical-point shifts for the planar model.
Uncertainties are in the last decimal place quoted.

fCC

(4 3)

provides reasonable results as long as P is not too
close to unity (g too small).

In addition to series extrapolation methods we
have also applied the usual Pade approximant tech-
niques to the finite-g analysis. Specifically, we
have examined the Pade apyroximants to the series
d lng/dK and [lt] I". The results are presented in
Table VIII for the XF model and Table IX for the
planar model. The confidence limits in the critical
temperatures are about 0. 1% in each case; these
represent only the extrapolation uncertainties which
exclude the effect of uncertainty in the input pa-
rameters y, y, and%, 0.

Knowing K,' (P) we can calculate w from (3. 6)
along with (2. 5) and (2. 11). As has been noted
previously there are some indications that K,(g)
varies linearly with g ~ over a wider range than
its inverse ks T,(g)/J. To enable the extrapolation
to smallg, we define7

0.84
0 0.04 0.08 O. I2

I/p
g

FIG. 2. Plots of ao@f(g) vs g i~ to locate Jr. The
values of z'u, f&(g) a.nd g are listed in Table IX.

A similar analysis on the XY model yields

w = 0. 873 + 0. 020 (fcc)

w = 0. 960+ 0. 025 (sc) (XY model)
(4. 6)

From these we adopt the universal value for x,

x = 1.304 + 0.018 . (4. 8)

It is seen from (4. 7) and (4. 8) that the individually
determined values of x differ from the adopted uni-
versal value by at most about 1%.

In defining 6 above, we tacitly assumed the equal-
ity of the shift exponent g and the crossover expo-
nent P. Since the critical temperatures are avail-
able, one can attempt to determine the shift expo-
nent7 directly through, for example, a log-log plot
of [I—K,(g)/If', a] vs g. We find for the planar mod-
el on the fcc lattice, g = 1.19+ 0. 04, for the XY
model on the sc lattice, )=1.17+0.06 and similar
results for the other two cases. At present, it
does not seem possible to evaluate g with much
more precision. The results in any case are
quite consistent with g= Q —1.175.

B. Estimation of critical amplitudes

The values of w are obviously nonuniversal, but
using the definition (2. 12) and the nonuniversal val-
ues of B from (3. 15) we can, in each case, deter-
mine the universal parameter x:
x = 1.294 (fcc), 1.293 (sc) (XY model);

a = l. 312 (fcc), 1.316 (sc) (planar model) .

0.96
0.94
0.92
0.90
0. 88
0.86
0.84

0.0204
0.0309
0.0417
0.0526
0.0638
0.0753
0.0870

0.20458
0.203 73
0.203 01
0.202 35
0.201 76
0.201 29
0.200 80

O. 911(22)
0.907 (14)
o. coo (1o)
0.895 (8)
0.889 (7)
0.879(6)
0.873 (5)

K', (p)

0.4460
0.4437
0.4416
0.4398
0.4380
0.4364
0.4352

1.004 (24)
0.990 (16)
0.981(13)
0.969 (10)
O. 962(9)
0.954(7)
0.939 (6)

Knowledge of the values of the critical tempera-
tures T,(g) allows the critical amplitudes A(g) to
be estimated using conventional series analysis
and Pade approximant methods. '7 Specifically we
have examined the sequences

[~(g)]t-=I.~(~)]i=~t(~)1(r) I.A'.(~)]'/I" ', (4. 9)
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0, 0204
0.0309
0.0417
0.0526
0.0638
0.0753
0.0870

0.3215
0.315
0.310
0.305
0.302
0.2985
0.2965

0.243
0.245
0.246
0.2465
0.247
0.2475
0.248

0.359
0.349
0.3405
0.337
0.3315
0.3295
0.327

0.271
0.271
0.271
0.272
0.272
0.273
0.274

TABLE X. Anisotropic susceptibility amplitude esti-
mates for the XY' model, assuming j =1.23.

fcc

X= l. 0665~0. 013 . (4. 16)

The above amplitude analysis can also be applied
to the function

c—=A'(g)t ", t-O, g &0

1.06V+ 0.026 (sc) (planar model) . (4. 15)

The values of X are found to be universal within
the indicated uncertainties; the central estimates
in (4. 15) differ from one another by at most 0.8%.
Therefore, we adopt the universal value,

((&(z)jf=-(&(P)l(='i(P)((('l(u)]'/( '( ),
(4. 10)

as well as the sequences based on the partial sums
of the series

1-IK X(V', g)( K 'Y

(K~ g

(4. 11)

evaluated at K,(g). In addition, Pade approxi-
mants to the functions (4. 11)were constructed and
evaluated at K,(g). We present the results of the
entire analysis in Tables I and XI using y= 1.23
and 1.24, respectively. The tables also show

A,«(g) obtained from the relation

A.f«(g) =A(g)g'" "'" {4.12)

Although the tables list the estimates obtained using
y= 1.23 or l. 24, we have in addition studied the
amplitudes using y = l. 25. In all cases, changing
'

changes the estimates of A(g), but, fortunately,
he estimates of A, «(g) are relatively unchanged.
To obtain A from A,«(g), we extrapolate tog= 0
against g"~. The values obtained in this manner
are listed below.

A.„=0.242 a 0.005 (fcc), 0. 2VO + 0.006 (sc)

.(XF model);A„= 0, 403+ 0.010 (fcc),

0. 445 + 0.010 (sc)(planar model) . (4. 13)

Again the uncertainties reflect those in K,(g).
Once again we can test universality by evaluating
X using the separate nonuniversal constants A from
(4. 13), w from (4. 5) and (4. 6), A from (3. 13),
through the relation [see E(I. (2. 15)j,

X=A w(" "'Q"/A (4. 14)

The results for the four independent calculations are

X=1.065+0. 024 (fcc), 1.063+0.026 (sc)

(XF model); X= 1.OV1 + 0.028 {fcc),

and the ratio

)('. = f~(g) t (4. 18)

where, the scaling predictions for g-0 are

AI g-(y-y+e-&)('e (4. 19)

(4. 20)

Qne can again verify the universality by determin-
ing X from either

X=A' su" " 'P"'/Ay

X=A„A„k" " 'Q"'/Ay

(4. 21)

(4. 22)

TABLE XI. Anisotropic susceptibility amplitude esti-
mates for the planar model, y=1.24 assumed.

sc

0.0204
0.0309
0.0417
0.0526
0.0638
0.0753
0.0870

A (g)

0.5145
0.501
0.491
0.482
0.4755
0.471
0.466

A,ff fg)

0.401
0.401
0.401
0.3995
0.399
0.399
0.399

A (g)

0.568
0.553
0.541
O. 534
0.524
0.517
0.516

0.443
0.443
0.442
0.4425
0.4395
0.438
0.4415

Omitting the details, we conclude that

X=1.08+0.09 (fcc), 1.06+0. 10 (sc) (XF model)

(4. 23)
X= 1.10+ 0. 08 (fcc), 1.08 + 0. OV (sc)

(planar model) . (4. 24)
Universality appears to hold within the quoted un-
certainties. The entries in (4. 23) and (4. 24) differ
from the previously adopted value in (4. 16) at most
by about 3/„ the uncertainties noted allow consider-
able overlap. In general higher derivatives of the
scaling function become progressively more diffi-
cult to extrapolate accurately.

In concluding this section we note that we have
obtained universal values for the quantities x and

X and have confirmed the universality of the scaling
function near the limits x= 0 and x= x. %e now
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(Z„, Z„Z.)=(I+g, l-g, 0)Z,
(~. , ~„)=(I+g, I-g)~, (5. 2)

respectively. We have analyzed the high-tempera-
ture series expansions for lt""(T, g), in terms of
the extended scaling hypothesis

X *(t, g) =4 t »x(Bg/t~) (5. 3)

turn to the construction of an approximant for the
full scaling function.

V. SCALING FUNCTIONS

A. Construction of the scaling-function
approximant

To recapitulate briefly, we have discussed the
XF and the planar models with exchange couplings

(i}x = 1.304, X= l. 0665 . (5. 8)

In addition to these, we have also tried the values
of x and X determined from a direct analysis of
X(x) (see Sec. III). These are

smooth function of its argument. P(z) is deter-
mined as a power series in z (=x/x) to order zz

using the known power series for X(x) [See Eqs.
(3.14) and (5.6)]. It is natural to form two-point
Pads approximants [i.e. , the usual one-point Pade
approximants supplemented by constraints (5.7)]
to construct a representation of P(z) valid over the
whole range from g = 0 to 1.

Before presenting the approximants calculated in
this way, we note tQat the values of the universal
parameters x and X we have adopted are

with (ii) x = 1.274, X= 1.030 (5 9)

t= (T T 0)/T 0 (5 4)

X(x)~X[1-(x/x)] ", x-x . (5. 5)

Now, to determine X(x) more precisely and to
interpolate between the small x and large x behav-
ior, we write

X(x)= P (x/x)/[1- (x/x)]»,
where

(5. 6)

P(0)=1, P(l)=X .
By construction P(z) is expected to be a rather

(5. 7)

The nonuniversal scale factors A and B were de-
termined using the isotropic critical parameters

and K 0 given in Table III. We have obtained
an expansion for X(x) to order x and in the process
demonstrated the universality of the available coef-
ficients. We have also studied the "large"-x be-
havior and, in particular, have checked the uni-
versality of x and X defined in the asymptotic form

Since the series-determined "best" values of y dif-
fer slightly between the 2Q' and the planar models,
we have used the compromise value y= 1.235
throughout the following analysis. Alternate choices
change the shape of P(z) only marginally.

We have studied diagonal and the near-diagonal
approximants to P(z). For case (i) about half of
the approximants have a zero-pole pair on the real
axis for z &1. Since we have presumably taken
care of all the singularities of X(x), we expect P(z)
to be smooth as noted above. Only three defect-
free approximants, [3/2], [3/4], [4/3], remain.
The first one does not utilize the full P(z }series,
so we concentrate on the remaining two. These
are very similar to each other and, in fact, agree
within 0. 1% for 0 & z & 0. 65 and again for 0. 95 & z
& 1. Even for 0. 65 &z & 0. 95, the maximum differ-
ence is 0. 25%. The over-all confidence limits in
the scaling function allow wider variations, so we
adopt (somewhat arbitrarily) the [3/4] approximant,

with

1 —1.42806 @ —0. 435 632@ + 1.2q3 17g 3

1 —1.49706 z —0. 349 600z'+ l. 283 28z —0. 052 6775z

j = 1.235, x= 1.3040, X= 1.0665 . (5. 10)

For the assignment (ii) all the entries in the Pade table are defect free [Recall. that assignment (ii) re-
sults from a direct analysis of X(x).] In addition, all of them agree with one another to better than 0. 1%
for the full range 0 &z & 1. So we adopt the [3/4] approximant,

1 —1.2933@+10.1512m + 6. 6182@
1 —l. 332 03z+ 10.2162z + 6. 1974z' —0.090014z

with

y = 1.235, x = 1.274, X= 1.030 . (5. 11)
We have plotted P(z) vs z in Fig. 3, which also (iii) P(z) = 1+ (X- 1)z (5. 12)

shows the simplest approximation satisfying the
constraints (5.7), i.e. ,
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0 = 2 Models
I. IO—

1.05
0

1.00

0 0.2 0.4 0.6 0.8 l.0
Z

FIG. 3. Plot of the scaling function amplitudes P(g)
defined in (5. 10)-(5.12).

It is interesting to note that P(z) for case (i) shows
a characteristic maximum at s = 0. 80, which is
absent in the other two curves. (The maximum
was also found by Pfeuty, Jasnow, and Fisher in
the case of the Heisenberg model with axial anisot-
ropy. ) The maximum is absent in case (iii) by
construction. In case (ii), it is absent, we believe,
for the following reason. This approximant for
P(z) is obtained from the series for X(x) using the
parameter x = l. 274 which has been determined by
direct analysis as the singular point of X(x). Fur-
thermore the two-point Pade forces the approxi-
mant to pass through [z= 1, P(l)=X=1.030], this
value of X having been determined as the amplitude
of X(x) directly. In case (i), on the other hand,

P(z) is required to pass through the point [z = 1,
P(1)= 1.0665] obtained, along with the value of x
= 1.304, from an entirely different ( g x 0) analysis.
In any case, since the values of x and X have un-

certainties of about 1.5% and the maximum disap-
pears if x is reduced by about 2% [refer to case
(ii) above], the presence of the maximum in P(z)
is not certain.

B. Crossover of effective y

In Sec. IVA we obtained a representation of the
scaling function for the diverging susceptibility,
V1Z. ,

An "effective exponent" y,f, can be defined ana-
lytically through '

r.„(~, z) -=I T(z) - &)(, ) (5. 14)

Now asg 0 at fixed T, y„~(T, g 0) y. On the
other hand if g is fixed at a small, positive value
and T- T,(g), y,«(T- T,( g), g)- y. So, as guar-
anteed by the crossover form, y,ff(T, g) reduces
to appropriate values in the two limits. The de-
tailed behavior between these two limits will de-
pend on the nonuniversal parameters relating to
lattice type and model, and, of course, on the
choice of P(z).

We shall discuss only the XF model on the fcc
lattice. The other cases are similar and can be
studied by using the appropriate nonuniversal pa-
rameters. In Fig. 4 we depict the variation of

y„,(T, g) with respect to logt for g=10 . ( urve's

(i), (ii), (iii) correspond to the three choices of
P(z), that is, (5. 10), (5. 11), and (5. 12), respec-
tively. Curves (ii) and (iii) show the expected
smooth crossover behavior. Curve (i) shows ir-
regularities which can be traced back to the cor-
responding P(z). Because of the maximum in P(z)
for case (i) (see Fig. 3), the third term Qz P'(z)/
P(z) changes sign and this is reflected in Fig. 4,
curve (i). For the other two cases, every term in

(5. 15) is monotonic, so we see a smooth cross-
over. We shall concentrate on case (ii) in the re-
maining analysis because P(z) for this case uses

I.35

(t)
1.3 I 5—

(tt&) —————

I.30—

XY Model, fcc

jeff

(An essentially equivalent approach, plotting inl(

vs lnt, may be closer to an experimental deter-
mination. ) Using (5. 13) it follows that in the scal-
ing reg Erne

t . z zP'(z)
y~~( T, g) =

f y+ y41, + 0 P, (5 15)

X(T, a) =& f "[1-(x/x)] "P(z), (5. 13) l.25—

where z =x/x and x=8g/t'.
The isotropic parameters T,o, y, P are given in

Table I, and the nonuniversal amplitudes A and 8
are listed in Eq. (3.15). The set of universal con-
stants x and X and the corresponding universal
functions P(z) are listed in Eqs. (5. 10)-(5. 12).
It is to be noted that the representation (5. 13) is
valid only in the scaling regime, g «1 and t «1.

I.235

I.20
-l2

i

—IO

I

-8
Log t

FIG. 4. Plot o. pgff vs log g. Cases (i), (ii), and (iii)
correspond to the functions P{z) plotted in Fig. 3.
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map not be observable. In this regime, we expect
the effective exponent to have a smooth transition
from y to 1, without any intervening change to the
isotropic value y. Most critica1-point experiments
are conducted in the reduced-temperature range
10 —10; one is usually considered to be outside
the critical region when the reduced temperature
is greater than about 10 . In the intermediate
range of anisotropy, 10~&g& 10, the full cross-
over to the isotropic y is not completed before
reaching t- 10 ~. In such cases an intermediate
value of the y,«may be determined experimentally
as can be seen from the figure. In attempting to
use the crossover analysis one must remember
that it is not designed to describe the behavior out-
side the critical region; alternative analyses exist
to describe the behavior over the full high-temper-
ature region. It would seem that "weakly aniso-
tropic" real materials have anisotropy parameters
in the intermediate range noted above.

Log [(T-T, ) /T, j
FIG. 5. Plot of p,zz vs log t for various values ofg.

Also included is pet& vs log t for g=0

the full X(x) series rather than only its values at
x=0 and x=x.

Now, in Fig. 5 we show y,«as a function of t for
several values of g. In this figure we have also
shown the effective exponent for the isotropic case
[defined as in (5. 14) but using T,p]. It is seen that
the isotropic exponent starts to deviate from y
= 1.315 near t =10 and goes down smoothly to the
mean-field value 1. If one plots the effective ex-
ponent in the anisotropic case, (with large enough

g) without assuming scaling, one sees that for t

, y,« —-y while for higher t, y,«shows the
smooth transition to the mean-field value 1. For,
say, g-0. 02 the anisotropic rolloff in y,«will
merge with the isotropic when t- t & 0. 1.

The full curves of Fig. 5 show the crossover of

y,«(T, g) from y to y for fixed values of g. All the
curves start from y, rise smoothly and go to y, as
t increases. For g & 10, the exponent becomes
1.315 before the isotropic effective exponent has
started to decrease toward 1. So for g & 10 6, we
actually see a crossover from y to y in the critical
region. For g & 10, the crossover of the exponent

C. Conclusions

We have studied the crossover behavior of n = 2
classical spin models with weak exchange anisot-
ropy, on three-dimensional lattices. The scaling
hypothesis has been shown to provide a consistent
description of the system in the critical regime.
The scaling function X(x) has been studied near
x = 0 as well as near x = x. Near both these limits,
the function X(x) has been shown to be universal
with respect to lattice type (fcc or sc) and model
(XI' or planar). An accurate representation for
the scaling function valid in the whole critical re-
gion has been constructed [see (5. 10)-(5.12)].

The crossover of the effective susceptibility ex-
ponent y,«has been studied over a wide range of
temperatures for a range of anisotropies. The re-
sults indicate that the full crossover behavior may
be experimentally unobservable for physical anisot-
ropies of a few percent when the crossover expo-
nent Q is so close to unity.
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