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Accurate calculations of the thermodynamic properties of a system near its critical point are now

possible using finite-lattice approximations to renormalization groups. In order to investigate some

features of such approximations, we introduce a linear-renormalization-group transformation appropriate

to a system of continuous spins like the Gaussian model of Berlin and Kac. We solve the

renormalization-group equations for the Gaussian model exactly, and then study in detail a finite-lattice

approximation to the renormalization group for the three-dimensional case. The renormalization-group

transformation contains a parameter b. The exact transformation has fixed points only for b = 2 '".
The approximate transformation has fixed points for a range of values of b around 2 '". Eigenvalues

of the transformation, which determine critical exponents, depend on the value of b used in the

calculation. We study the problem of identifying the correct value of b.

I. INTRODUCTION

The modern renormalization-group approach'
provides a very useful framework within which to
study the singular behavior of systems near their
critical points, but exact renormalization-group
equations from which the critical behavior can be
derived are usually too difficult to work with. Vari-
ous approximation schemes have been developed to
simplify the equations. These include the approxi-
mate recursion formula of Ref. 1, the E expan-
sion, ~'3 and, more recently, what we shall refer
to as the finite lattice ap-proximation, of which one
of the first and most successful examples was given
by Niemeijer and van Leeuwen. Other work in
this area has been reported by authors in Refs.
5-10.

These approximation schemes tend to comple-
ment one another. For instance, the & expansion
has revealed much about the structure and behavior
of the renormalization-group equations, and has
provided a fundamental explanation for many of the
qualitative features of critical phenomena; but with
our present computational skills it cannot yield
critical exponents to many-digit accuracy, The
finite-lattice approximation, on the other hand, al-
lows one to work with a renormalization group
tailored to the particular system under considera-
tion, and can determine critical behavior with an
accuracy that is very satisfying indeed, even though
the structure of the exact renormalization group is
obscured in the approximation scheme. There is
also considerable pedagogical appeal in these cal-
culations, because they are closer in spirit to the
physical picture introduced by Kadanoff"'~ to ex-
plain the scaling laws for critical phenomena.

Before discussing the finite-lattice approxima-
tion further, it will be convenient to review the
basic ingredients of the renormalization-group ap-
proach. We shall assume the physical system
which exhibits critical behavior to be a system of

spins with ferromagnetic interactions described by
a Hamiltonian $C, which includeh the temperature
factor —1/ke T. A renormalization-group trans-
formation V' appropriate to the problem is con-
structed, which converts the old Hamiltonian K into
a new one,

x'= v(x) . (1.1)

The transformation 1' must preserve the partition
function of the system: The partition functions cal-
culated from K and $C' are the same. It is through
this connection that one can relate the critical be-
havior of the original physical system to what one
learns about the Hamiltonians generated by 1'.

The renormalization-group transformation ~ de-
termines the critical behavior of the original sys-
tem if, with successive iterations of the transfor-
mation, it carries the original Hamiltonian X.=$C,
(with all parameters such as temperature and mag-
netic field at their critical values) to a sontrivial
fixed point X.* of the transformation, which satis-
fies the equation t'{K*]=X*. When the parameters
of the original system are changed slightly from
their critical values, so thatBC=X', +cC, the iter-
ated transformation of the Hamiltonian $C may be
written, for large k,

(1.2)

where & represents k iterations of the transforma-
tion, the numbers A, & A~ & ~ ~ ~ are eigenvalues of
the transformation, and (R~, Q, etc. , are eigen-
operators.

In ferromagnetic systems, if the perturbation
~8 is due to a shift in the temperature, then there
is ordinarily only one eigenvalue in the expansion
(1.2) larger than 1, called the thermal eigenvalue
A, . If the perturbation &6 is instead due to a shift
in the magnetic field, then the corresponding eigen-
value larger than 1 in the expansion is called the
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'0 = d+ 2 —2(lnA„)/1n2 . (1.Sb)

It is not necessary to confine oneself to computing
the critical exponents of the system. Nauenberg
and Nienhuis have described a more ambitious
program in which entire thermodynamic functions
can be obtained from the renormalization group. '

In the finite-lattice approximation, calculations
are carried out in coordinate space instead of the
Fourier-component space used in the other ap-
proaches, and the approximation is based on ne-
glecting the effect of distant regions of the lattice
on each other in calculating 3C' from $C. The valid-
ity of the approximation rests on the same founda-
tion as the renormalization-group approach as a
whole. One assumes that the coupling strengths in
&' are analytic functions of the coupling strengths
in', because the interactions among the spin vari-
ables in R" in one region of the lattice are not ap-
preciably affected by distant regions of the sys-
tem, even though the infinite correlation length at
the critical point invalidates such an approxima-
tion in the calculation of the partition function it-
self.

The renormalization-group equations are simpli-
fied in the finite-lattice approximation, because
interactions in X' that involve spins beyond a cer-
tain range are not kept, thereby reducing the in-
finity of possible interactions to a finite set; and

the interactions in K' that are kept are determined
by a bounded portion of the lattice, and so can be
obtained by graphical methods "' or by actually
working with finite sections of the lattice. ' ' ' lf
the fixed point 3C* and the interesting eigenopera-
tors I,,* and (R„are sufficiently localized, this
truncated set of equations will produce very ac-
curate eigenvalues.

It is frequently possible to formulate the renor-
malization-group transformation so that its action
depends on one or more parameters. Indeed, for
transformations which relate the new spin variables

magnetic eigenvalue A„. If more than one eigen-
value larger than 1 is found, one must consider the
possibility of "redundant" eigenoperators discussed
by Wegner, '3 and use the eigenvalue left after these
unphysical eigenvalues have been identified and dis-
carded.

The exponents which characterize the behavior
of the physical system near its critical point are
determined by these eigenvalues. For example, if
the scale change in the system caused by the re-
normalization-group transformation is by a factor
of 2, as it will be for the renormalization group
discussed in most detail here, then the critical ex-
ponents v and p are given by

v = 1n2/lnA,

and

to the old ones linearly ("linear-renormalization-
group transformations"), at least one such param-
eter is essential, since its value determines
whether or not a fixed point will be reached. "
Because of the truncation of the renormalization-
group equations in this approximation scheme, one
sacrifices certain general properties of the exact
renormalization group, the most troublesome of
which are related to these parameters. For ex-
ample, a linear-renormalization-group transfor-
mation should carry the critical Hamiltonian SC, to
a fixed point for only one value of the parameter
just mentioned; but in the finite-lattice approxima-
tion, fixed points will be reached for a variety of
values of this parameter, and the critical exponents
obtained will depend on what value of the parameter
is chosen. Nonlinear renormalization groups have
a similar problem. One expects the critical ex-
ponents calculated from the nonlinear renormaliza-
tion group to be independent of the choice of param-
eters in the transformation, within certain lim-
its. ' ' But the exponents will depend on these pa-
rameters in the finite-lattice approximation.

It is therefore necessary to establish criteria
with which to identify a best choice for the param-
eter values. In order to test some of these criteria
for a linear renormalization group, we have in-
vestigated a model for which the exact renormal-
ization-group equations can be obtained, and for
which we can also obtain equations in a finite-lat-
tice approximation. The model also serves to il-
lustrate many features of the finite-lattice approx-
imation.

It may help to summarize our results before
entering into a more detailed discussion in the fol-
lowing sections. In Sec. II we introduce a linear-
renormalization-group transf ormation suitable for
a system of continuous spins on a lattice. We in-
dicate how a parameter in it must be properly
chosen if the transformation is to carry a critical
Hamiltonian to a fixed point, and show that the
existence of one fixed point implies the existence
of a line of fixed points of the transformation (with

the same value of the parameter). In Sec. III we

study the Gaussian model of Berlin and Kac, "and
derive the exact renormalization-group equations
and their fixed points. In Sec. IV we obtain the
finite-lattice equations analytically, and show that
the most interesting eigenvalues depend on the pa-
rameter in the transformation.

In Sec. V some criteria for selecting the param-
eter are discussed. It is noted that one criterion
for choosing the parameter —requiring that a rela-
tion between the eigenvalue A„and the parameter,
which is known to hold for the exact renormaliza-
tion group, be satisfied in the approximation —fails
to single out the correct value of the parameter,
no matter how large a lattice is used in the approx-
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imation. In Sec. VI it is found by numerical means
that the finite-lattice equations in three dimensions
have fixed points for a range of values of the pa-
rameter, but that searching for a vestige of the
line of fixed points —a marginal eigenoperator-
provides an unambiguous, and correct, choice of
the parameter. Further discussion of the results
appears in Sec. VII.

II. THE TRANSFORMATION

The renormalization group for which a finite-
lattice approximation will be studied is defined for
a system of spins 0,» on 8, d-dimensional lattice.
The vector n labels the lattice sites, and the clas-
sical spin variables 0; range over all real numbers.
We shall assume the system to have only spin-spin
interactions, like the Gaussian model of Berlin and
Kac, ' and to be governed by a Hamiltonian of the
form

(2. I)

The quantity h is proportional to an external mag-
netic field, and both h and p(r) include a factor of
—I/ks T in their definitions. The vectors r and n

run over all lattice sites. The partition function
for the system is

(2. 2)

We shall define the renormalization-group trans-
formation for the case of a simple-cubic lattice.
The lattice sites are divided up into cubic blocks,
each block containing 2 sites. An illustration of
the two-dimensional case appears in Fig. 1. As
in Kadanoff's picture, "with each block is asso-
ciated a new block-spin variable S;., the vector
n' = (n'„n~, . .. , n~) labels the sites of the block-spin
lattice. (Quantities defined on the block-spin lat-
tice will always be distinguished by primes. ) The
renormalization-group transformation is written
as

with

X'ts ] T [g]
x(p'I (2. Sa)

(2. Sb)

2

r„,[S,o] -=- -,' aQ S;, —b Q o;
n' )en'

(2. Sc)

The term g&,-,, o& in Eq. (2. Sc) means the sum of
the spins o g included within the block labeled by n'.

Many of the properties of this transformation
can be deduced without specific knowledge about the

where J, denotes integration over all spin variables:

FIG. 1. Original lattice, illustrated here by a two-
dimensional array of dots, is divided up into blocks with
two sites on a side, 2" sites altogether.

Hamiltonian $C. First, the transformation pre-
serves the partition function of the system:

x ~s&

S

e &g,yt:S efy~+ IlL ty&

fy "$

Z =constxZ,

(2. 4)

x'fxs3. T [g]e &LE 3 (2. 5)

Thus, if one knows the outcome of the transforma-
tion T„, for all Hamiltonians R[o] differing only in

where the constant is independent of the Hamilto-
nian X and might have been absorbed in the defini-
tion of T„~ as an uninteresting normalization fac-
tor. These factors will be ignored in all of the
equations that follow, since they do not affect any
of the results. We shall also omit all spin-inde-
pendent constants in the Hamiltonians $C' generated
from $C, since these constants should not contain
any information about the singular behavior of the
system near its critical point. (It is by keeping
track of these terms that Nauenberg and Nienhuis'
are able to obtain the complete thermodynamic
functions in their calculations. )

A second property of the transformation (2. 3) is
that the parameter a in the transformation is nearly
superfluous, since one may easily relate results
obtained with one value of a to those obtained with
another value. In fact, by changing integration var-
iables in Eq. (2. 3b) to o-„=Xa;, one readily shows
that, if the Hamiltonians %[a] and 3C'[S] are related
as in Eq. (2. Sa), then one also has
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r-.elec]-=s ' f;; *". (2. 7)

By proceeding in a manner very similar to that
used in Ref. 14, one may show that a useful fixed
point can be reached only if b satisfies the condition

b - 2-«+2-&&~2 = b* (2. 8)

A discussion of this argument can also be found in
Ref. 18. Since the critical exponent g is also re-
lated to the magnetic eigenvalue A)2 by Eq. (1.4b),
the condition (2. 8) establishes a relation between
A„and b:

(2. 9)

Finally, because of the form of the transforma-
tion T„[,defined in Eq. (2. 3), one can show that if

T;,~+ has one fixed point 3C satisfying the equation

2, [3]e22 f(2] ex [sl (2. 10)

then there must in fact exist a line of fixed points
of T„~*.' This is readily demonstrated if a sec-
ond transformation U can be found that commutes
with T„,* in the sense of

T„~+Ue = UT„,*e

For if such a transformation exists, then one has
immediately

T, ,*[Ue~ ]= Ue

and the Hamiltonian generated by U is also a fixed
point of T„*.

the over-all normalization of the spin variables 0,
then one also knows the outcome of the transforma-
tions T~3„~ for any X.

In the limit a- ~ the Gaussian functions of S;.
—bg&-, -„.of in Eq. (2. 3b) approach 5 functions (when
the transformation is appropriately normalized),
and one has

)imp'. „[2]e"= lip S.;—pge;)e" (2 2)
+~OO J j en'

Such a transformation has been considered in de-
tail by H[[(ye'6 and Jona-Lasinio. '7 The physical in-
terpretation of the transformation for g- ~ is
clear: The new block-spin variable is just propor-
tional to the average spin in the block. However,
we shall be more interested here in the transfor-
mation with finite a.

A more important property of the transformation
involves the parameter b. The transformation is
"linear, " in the sense defined in the Introduction,
and this leads to a condition which must be satis-
fied by the para. meter b if the transformation T„,
is to carry the critical Hamiltonian to a useful fixed
point. This condition is easily derived by con-
sidering the spin-spin correlation functions deter-
mined by X[o] and X'[S], which are defined by

and

Ue.aTa, o
= &eaf(a+I g),gs

Tat~ U+, g
= TCLa/(%+2~/ p) epQ

(2. 12a)

(2. 12b)

which are proved by carrying out the Gaussian in-
tegrals over the intermediate spin variables. (Note
that we continue to ignore normalization factors. )
For given a and b*, then, U, ~ commutes with

~w for

a+ a p
~ = c(+ 2 (b*) a

or

~ = a[1 2'(b*)'-]/(1- P') . (2. 13)

Thus, the set of Hamiltonians
ofc

e xl(I) e U e x
aug (2. 14)

with n given by Eq. (2. 13) and &* a solution of Eq.
(2. 10), are all fixed points of T„~*. Note that n
becomes infinite for P-1, and that the form of the
transformation U, ~ is such that it becomes just an
identity transformation in this limit, and $C&, =&*.

The relation between 3C~* and the original fixed
point $C* can be understood by considering the cor-
relation functions for the two Hamiltonians. The
generating functional for correlation functions is
convenient for this purpose:

2[PI fexp Q-=P:S.-eppee[S])
S n

exp ~J„-S; Uo, &e
~eg n

= f exp Q (px;S; e -', e 'Pe) exp'[2]) .
S n

This result and the definition of the correlation
function in (2. 7) imply that

r-„;[X,*]= P'r„-;[X*]+n-'8;; .
One may thus interpret the action of the transfor-
mation U~, &

to be simply a change in the normaliza-
tion of the spins by a factor P, as well as a change
in the Hamiltonian that affects only the self-cor-
relation of the spins (such as the o.' '5

~ [[ term), not

the long-range correlations of the system.
Many properties of the renormalization-group

transformation T„,can be derived by means of the
transformation U„,&. For example, it can be shown

A transformation that serves this purpose is

P„ee -=f exp —-', pZ(s; —()S )'+-.xe[S]) . (2. 11)
S n

Note that evt. ~ old spin variable S-„ is associated
with a new spin variable S;, in contrast with the
reduction in the number of variables effected by
T„~. The commutation of U ~ with T„~*is most
easily shown by first verifying the identities
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that if T, ~~ carries the Hamiltonian 3C, to a fixed
point fox' a given value of the parameter a, then it
will carxy $C, to fixed points for any value of a, and
the eigenvalues obtained will not depend on a (though
the eigenoperators will, of course). Nor will the
eigenvalues depend on which Hamiltonian on the
line of fixed points one chooses to work with. The
transformation U, z can also be used to generate
several redundant eigenoperators of T„,+. How-
ever, we shall content ourselves with deriving
these results explicitly for the Gaussian model, to
which we now proceed in Sec. III.

tice parameters.
The original lattice will be assumed to be a cube

with N spins on a side, or N" spins altogether. Vfe
shall eventually obtain the exact renormalization-
group equations by letting N tend to infinity. Since
the lattice will be subdivided k times into a final
lattice with

(s. 5)

block spins on a side, we must assume that N is an
integral multiple of L, . Sums over all lattice sites
may be written as

III. RENORMALIZATION GROUP FOR GAUSSIAN MODEL

A. The iterated transformation

Z=EZ "Z-=Z (s. 6)

y() &
I!(a3 [~ ]()&

Il(el
o»5 c»5 (S. 2a)

~V'~~, g&8 ~e&+ 3*I:c3

The results of Sec. II did not require knowledge
of the specific form of the Hamiltonian X[o]. '

In
this and the following sections we shall limit our-
selves to Hamiltonians of the form (2. 1). In order
to find fixed points of the transformation T„» we

' shall wani to know the effect of iterated transfor-
mations of the original Hamiltonian, given by

es ~ (S3 [T ][eX)(al (s. I)

Because the transfoxmation T,z involves only
Gaussian functions of the new and old spins, the
iterated transformation [T,,(,] also has such a
form. It is shown in the Appendix that it is given
by

p(r+ f(['e ) = p(~), (S.Sa)

(s. sb)0'+ + —IJ~ 441-n+Ne -II & '" 1I ~ ~ ~ & d
m

whex'e e is a lattice vector in the mth direction.
The periodicity makes it convenient to introduce
Fourier components defined by the equations

The transformation kernel E"„(,[8,o] defined in Eq.
(S.2c) may now be written as

ar»-j.
3

v'. „[s,v)= —-', a, Q s-„. —b, go'~;„-), (8 '))
n'=0 m=0

where the summations g-, 0' and g~
0 are defined as

in Eq. (3.6).
Because we shall assume periodic boundary con-

ditions for the lattice, the quantity p(r) and the spin
vaxiables o; satisfy

where we find
pQr = X ' Q e""'p(q}, (s. 9b)

K'. ,,[8,el = - -'. a.Q 8; - ~. Z r()
II $5II

with

~ =.(I-2'I')/[I- (2'l3)'l

(3.2c)

(3. Sa)

(s. sb)

The sum gI„-. includes all I~ spine a
&

now repre-
sented by the block spin 8;. with

(s. 4)

where I. is the length of the side of one of the blocks
of old spins which is associated with a single new
block-spin variable after 0 transformations.

Although the exact renormalization group is de-
fined fox an infinite lattice, we shall later wish to
know the results of the transformation for a finite
lattice. In order to evaluate $C'~' for a finite lat-
tice, we shall require a more detailed character-
ization of the quantities above in terms of the lat-

s-„, = (x')-' ge*"'"s;, , (s. 9c)

where the vector q may only take the values q
= (2m/Ã) n and the summation g; means

Zf(~) -=Zf('„'"), (s. (0)

and where the vector q is similarly defined, with
X replaced by N'. One may now proceed to carry
out the transformation in Eq. (3.2) using the sim-
plifications that appear when all quantities are ex-
pressed in terms of their Fourier components.
Details of this calculation are given in the Appendix.
One finds

~(k)[3] L(~ )-0 QIp(k) (q&)S 3 „ I (k) Q g
n'=0

(s. II)
where the new intexactions p'~' and h'~' are given
in terms of the old ones p and h by
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and

p"'(q') = a, /[I+ a, f,'(o "'(q') ]

n~' = (2'5}'[p'"(q' —0)/p(q —0)]h

with

and

l„(-„)l~
-=- [s (I ~/2)l'

[sin(xq/2)]'

(y)( p) gg luz [(q'+ 2w&)/L]I
p[(q'+ 2.1)/L]

(s. 12)

(3. 13)

(s. 14)

(3. 15)

Many of the properties of the fixed points p*(q)
given in Eq. (3.19) are readily discovered. We
note first of all that the fixed point reached depends
on the original Hamiltonian only through the param-
eters z and e, and that for small q, p*(q)-z lqI "
behaves just as pQq did. The renormalization-
group transformation therefore has nonlocal (e o0)
fixed points; but these fixed points are inaccessible
to the transformation if the initial Hamiltonian Xfa]
is a local one (e =0). In fact, as we have just men-
tioned in the derivation of Eq. (3.19), if the initial
Hamiltonian is local (c =0), then a nontrivial fixed
point is reached for only one choice of the param-
eter 5,

B. Fixed points of the transformation
(4+2) /2 (3.22)

2p(q) t'0+ zing + ~ ~ ~ (s. 18)

The Hamiltonian becomes critical for Qp= 8= 0.
Because we shall later be interested in considering
Hamiltonians with long-range interactions, we shall
admit the possibility of more general behavior of
p(q) for s~all q,

p(q) -~,"lql"" ~ ~ ~ . (s. 17)

The parameter e characterizes how p(r) decreases
with distance for large r, as p(~) - 1/r ' " (e &0).
Note, however, that interactions with small-q be-
havior like (3, 17) for positive e will be rather ar-
tificial, since any short-range interaction is likely
to dominate with a term proportional to q .

With the choice (3.17) for pQq, and x, =h=0, it
is not difficult to find the limiting form of p'~'(q).
One finds that a nontrivial fixed point is reached
only if one chooses

2-( e+ 2+a)/2 (s. 18)

and that with this choice p'~'(q) approaches the
fized point

p'(q) = ~*/[I+ (s*/z)fl.*(q)l, (s. 19)

with

a*=a(I —2 b') (s. 20)

lit, [sin(~, /2)] /(q, /2+ vl&) (3 21)
[g+2mi ['-

With these results in hand it is relatively
straightforward to determine the fixed points of
p, , , for an infinite lattice, by setting the parame-
ters in X[o] to their critical values and finding the
limiting form of K' '[S] for k- ~. We first note that,

I

in the infinite-lattice limit (N- ~), the Fourier-
transform variable g becomes continuous and sums
over g become integrals, as N "g;- (2v)~fd~q.
If the interaction strengths p(r) in K[v] are short
range, then p(g) for small Q must have the form

for other values of b the iterated transformation
T, ~ carries the original Hamiltonian either to zero
or to a fixed point describing a completely noninter-
acting system of block spins, and not to any of those
given in Eq. (3.19) with &IO.

Let us therefore ignore the nonlocal fixed points
for the moment. We note next that there is a line
of fixed points of T, ,*, as was predicted in Sec. II;
these fixed points are parametrized by the param-
eter z. The range of the interactions described by
p" (r), the Fourier inverse of p~(q), varies along
this fixed line. A rough estimate of the range may
be obtained by locating the pole in p*Qq nearest the
real-q axis. Using Qg(q) -1/q' for small q, one
quickly ascertains that there is certainly a pole at
qa= —a*/z if a~/z is small enough, and so the range
of interactions described by p*(r) is roughly (z/a)'+.
The fixed points become less and less local as a/z
-0. This estimate fails for large a/z, but numeri-
cal inversion of p*(q) indicates that the range of
p~(r) continues to decrease until a/z = 8, and then
increases to a finite limit for a/z- ~. Note that in
the limit a- ~, when the transformation T, , ap-
proaches the form given in Eq. (2.6), all fixed
points described by p*(Q in Eq. (3.19) (still with
a =0) have the same range, and differ from one an-
other only in the over-all normalization factor z.
As we shall see later, it is this fact which makes
tht. transformation T, ~ with finite a more interest-
ing to us.

Finally, we note that the fixed points p*(r) of T, ,
for small e cannot be qualitatively distinguished
from the local fixed points for r smaller than the
range of interactions of the local fixed point; in
fact, the distinction does not become obvious until
the local fixed-point interactions, which decline
exponentially with r, have dropped sufficiently in
size to become comparable with the strength of the
'nonlocal fixed-point interactions, which behave as
z/x"'~" for large distances.

Let us summarize what one finds for the behavior
of the renormalization-group transformation T, ~
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for an infinite lattice: There is a line of local fixed
points for 5 =5*, but with varying range of interac-
tions {unless a-~). For bob*, there are nonlocal
fixed points, which cannot be distinguished from lo-
cal ones unless one looks at interactions involving
sufficiently large separations, but which are inac-
cessible to the transformation when the orlglnRl
Hamiltonian is a local one.

Finally, we must discuss the eigenvalues one
finds for perturbations about the fixed point. These
eigenvalues are easily obtained by introducing per-
turbations of the original Hamiltonian X~ and look-
ing for the behavior indicated in Eq. (1.2) when the
transformation is iterated many times. %hen the
Hamiltonians are local and 5 = 5*, one finds the
eigenvalue s

(S.23)

T@ y8 = exp —gg ~S ~~
'.te|:ag

gC

x exp aQ 9;. 0&+$C,~~ o (4. 1)

with

R.„[rr]-=rs[v]—-',as'Q Q tfr),
n' )en'

and define the bracket operation

(4 2)

{6[a])= e[o]s~ «"/Z

Z =— e@eff E&)
eff

The renormalization-group transformation dis-
cussed here provides a particularly good example
of how this decoupling of distant regions of the lat-
tice from each other occurs. Let us rewrite the
transformation in Eq. (3.2) in the form

Aq=l . (3.24) Then Eq. (4. 1) becomes

2(d+2) /2 {3.25)

as we could have predicted from Eq. (2.9). This
implies rl =0 from Eq. (l.Sb), as expected.

IV. THE FINITE-LATTICE APPROXIMATION

A. Justification for approximation

Now that we know the behavior of the exact re-
normalization group, we are ready to investigate
the finite-lattice approximation for it. As we men-
tioned in the Introduction, a successful renormal-
ization-group transformation generates recursion
relations for the interaction strengths in the new
Hamiltonian in terms of analytic functions of the old
intexaction strengths, even though the thermody-
namic functions may be singular; the recursion
relations are analytic because the interactions
among flock spins in one region are scarcely af-
fected by regions of the lattice far distant from the
one of 1nt61 est~ 1n spite of the possibly 1nflnlte cox'-
relation lengths of the system. This same phenom-
enon-effective isolation of distant regions of the
lattice from one another —provides the justification
for the finite-lattice approximation.

The eigenvalue A, =4 determines the critical expo-
nent v= —', from Eq. (1.3a), as expected. The eigen-
value A, =1 corresponds to a "marginal" eigenop-
erator. It is associated with perturbations along
the direction of the line of fixed points (i.e. ,
changes in@), which are, of course, stationary
under the renormalization-group transformation.
Eigenvalues A =4', m =2, 3, . .., are found which
are smaQer than one and therefore irrelevant. The
eigenvalue corresponding to the addition of a mag-
netic field can be calculated from Eq. (S.13), and
it is found to be

=exp —~a@ Sn. +lnZ„~
X~ t:S)

n

x exp ab 8,» 0& (4.3)

(4.4)

where the subscript e of the bracket indicates that
only the "connected part" of the expression is to be
kept. If the original Hamiltonian X[cr] is quadratic
in the spin variables cr „-, then the only nonvanishing
term in the sum in Eq. (4.4) is the p =2 term, so
that we have

X'[S]= const- —,'ag S;, + —,a'b'
n'

the subscript c is no longer necessary. One ean
now see that the range of interactions between block

'spins is determined by the degree of correlation of
the spins cr; dictated by X,«[o] (not X[a]). But
X,«[o] is considerably different from X[a] because
of the additional local interactions between spins
introduced by the (g;o&)2 terms in it, and the long-
range correlations characteristic of the critical
point are unlikely after such a modification of the
Hamiltonian. This means that the interaction be-
tween block spins is largely determined by the be-
havior of the original Hamiltonian in the vicinity of
these spins.

The cumulant expansion of the bracketed exponential
Rbove gives

X'[8]= const ——,'aP 8;,
n'
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If the Hamiltonians involved in the calculation
are sufficiently local, and if the interactions among
block spins are determined only by their immediate
environment, then one is quickly led to approximate
the renormalization-group equations by keeping
only a confined set of interactions and ignoring con-
tributions to them from distant spins. We have al-
ready indicated the variety of methods that have
been introduced to take advantage of the local de-
terminism of the renormalization group.

B. Exact results for finite-lattice approxin&ation

In our calculation a lattice of a certain size N is
used. Although the periodic boundary conditions
used here in the realization of the finite-lattice ap-
proximation may appear artificial, from a graphi-
cal point of view they can be seen to introduce er-
rors of the same order as would be introduced by
other forms of truncation at the boundaries of the
lattice. However, the particular errors introduced
by the periodic boundary conditions tend to cooper-
ate to produce results that are especially simple.

Only the interactions p~(r) that fit within this lat-
tice of size N are kept. The renormalization-group
transformation T, , generates a new set of interac-
tions pz&2(r') defined on a lattice of size ,'N. The-
recursion relations for the Fourier components of
these interactions can be obtained directly from
Eqs. (3.12) and (3.14) by setting 0=1:

trivial. We first note, from Eqs. (3.15) and (4. 7),
that

N(q =0) = 2 /ppr(q =0)
q (4 9)

M[S] = ——,'a(1 —2 b )QS;, (4. 12)

and so we shall not consider it further.
Second, if a fixed point exists, then the magnetic

eigenvalue can be determined immediately by using
Eqs. (3.12) and (3.13). We find

A„=a2~b/[p*„(q =O)+a2 "b'], (4. iS)

and if the fixed point is nontrivial, then we must
have

and, from the definition of the Fourier components
in Eq. (3.Qb), that if the nonvanishing interactions
satisfy Eq. (4. 8), then their Fourier components
must satisfy

pz(q =0) =pe»(q —0) ~ (4. io)

At a fixed point, where one has p'„(q) = pz(q) = p*„(q),
Eqs. (4.6), (4. 9), and (4. 10) require

p+~(q=0) =0 or a(l —2~b~) . (4. 11)

The second, nonzero possibility can be shown to
correspond to a trivial fixed point with p~(q Wo) =0,
representing a completely noninteracting system
with Hamiltonian

p„'„(q') =a/[1+ab'~(q')], (4. 6) A„—b (4. 14)

with

( I) -gg la2[(q +2+1)/2] l

p~[(q'+ 2')/2]
Since it is assumed that p'„»(r') is a good approx-

imation to the interactions that would have been
generated by an exact calculation, we set

(4 6)

in order to iterate the transformation. ~0 Those in-
teractions which are possible in the larger lattice
but cannot fit in the smaller lattice are assumed to
vanish, which would be a good approximation if the
interactions are sufficiently local. Note that we
use the prime now in two ways: The prime on p'
distinguishes it from the interactions p from which
it was generated by the transformation T, „ the
prime on r' and q' distinguishes vectors defined on
the smaller block-spin lattice of size 2X from those
of the larger lattice.

Some features of the fixed point and associated
eigenvalues within this approximation can be deter-
mined exactly, without resorting to numerical
methods.

First, if the finite-lattice equations have a fixed
point, then pg(q =0) is determined —infact, we shalll
see that it must vanish if the fixed point is non-

Aq =2 "b (4. i6)

V. CRITERIA FOR SELECTING A FIXED POINT

In Sec. IV we obtained the relevant eigenvalues
of the finite-lattice approximation to the recursion
relations for the Gaussian model, in terms of the
transformation parameter 5. But we have neither
determined this parameter nor demonstrated the
existence of a nontrivial fixed point of the approxi-

Note that the significance of this equation is entirely
different from that of the identical relation given in
Eq. (2. 9). Here it is a consequence of the finite-
lattice approximation for the recursion relations of
the Gaussian model. There it was a consequence
of the exact renormalization group.

Finally, we can determine the thermal eigenvalue
A, in the finite-lattice approximation from the'rela-
tion

p„'(q =0) =a/[1+ 2'b'a/p„(q = 0)], (4. 16)

which follows from Eqs. (4. 6), (4. 9), and (4. 10).
: The deviation of p„(q =0) from zero is proportional
to the deviation of the temperature from its critical
value; when p„(q=0) is small but nonzero, Eq.
(4. 14) shows that it is increased with each iteration
of the transformation by a factor
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mate renormahzation-group equations. We learned
in Secs. II and DI that for an infinite lattice, if the
renormalization-group transformation has a fixed
point related to the original system, then i.t will
only be found fox one value of the parameter b = b*,
and that there mill in fact be a line of fixed points,
mith the same eigenvalues but with different ranges
of intexaction. Hom much of this will survive in
the approximation scheme 'P

Since the approximation does not permit interac-
tions beyond a certain range, it can accurately rep-
resent the behavior of the transformation for only
the most localized of fixed points. It is therefore
unlikely that the approximate renormalization-group
equati. ons will have a line of fixed points, since the
approximation will break down where the range of
interactions for the Hamiltonians on the fixed line
exceeds the limit imposed by the approximation.
Furthermoxe, there is no reason to suppose that
the approximate renox malization-group equations
will not have fixed points for b 0 b*. Fixed points
for b W b* exist for the infinite-lattice transforma-
tion as well, but they are nonlocal and do not inter-
fe"e with the determination of critical exponents of
a system governed by a local Hamiltonian, because
they cannot be reached by renormalization-group
transformations of a local Hamiltonian. The pa-
rameter b ean therefore be fixed in an exact calcu-
lation by requiring that the iterated renormaliza-
tion-group transformation take the original critical
Hamiltonian to a nontrivial fixed point. But in the
finite-lattice approximation, fixed points for b t b
mill be accessible, starting from a local, eritieal
Hamiltonian, and so some other means for choosing
the parameter b must be found.

Criteria for choosing b that immediately suggest
themselves all require that some property expected
of the infinite-lattice calculation be searched for in
the finite-lattice approximation. For instance, one
might hope that the approximate renormalization-
group equations have fixed points only for b = b*,
but me have already suggested that this is unlikely;
in actual calculations it is not observed.

A possible criterion might be the locality of the
fixed-point Hamiltonians. Of course, in the finite-
lattice approximation all fixed points are local, but
one would choose the fixed point for which the i.nter-
actions seem to fall off most quickly. This can
provide an excellent clue to the proper value of b,
but appears rather arbitrary when fox mulated quan-
titatively, for the Gaussian model it is found to be
not so accurate, in fact, as another criterion to be
discussed later. As we have noted in Sec. III, the
nonlocal fixed points cannot be qualitatively dis-
tinguished from the local ones unless the Long-range
tail of the interaction can be examined, and when b
is in the neighborhood of b* this is impossible in
any px actical approximation.

Another such criterion might be provided by a
relation between the eigenvalue A„and the param-
eter b in the transformation, which is given in Eq.
(2.9) and is a eonseguenee of the linearity of the
renormalization-group transformation. One would
require that this relation, knomn to be true for the
exact renormalization group, be satisfied as nearly
as possible by the eigenvalue A„obtained from the
finite-lattice calculation. Since A„will depend on
the value of b used in the calculation, one would
hope that the relation A„= b ' might work mell for
b = b*, and not so mell elsewhere. Such a criterion
was introduced by Subbarao, without much success,
though that might be attributable to the size of the
lattice used in the calculation. In our model, as
we have seen in Eq. (4. 14), the relation A„=b ' is
in fact satisfied for every value of b for which a
nontrivial fixed point of the finite-lattice equations
exists, and therefore completely fails to distinguish
one value of b from another. That the relation is
satisfied in this approximation for every value of b
ls to be sux'e a consequence of the perlodle bound
ax'y conditions used in the calculation, but it seems
likely that, with other boundary conditions, the val-
ue of b selected by this criterion would prove to be
more dependent on details of the approximation than
on the correct value of the parameter. We may
conjecture that this criterion fails because the in=
finite-lattice relation A„=b" is derived without as-
sulIllng the locality of the fixed-point Hamiltol11an)
and so will be true for nonloeal as well as local
fixed points of the transformation. Since it does
not distinguish the "correct" value of b from others
for the infinite-lattice equations, there is no guar-
antee that the relation mill work better for b =b*
than fox other values in the finite-lattice approxi-
mation.

Although the criteria suggested above fail to dis-
tinguish the proper value of b from other values,
there does seem to be a criterion that is eminently
successful for the Gaussian model. %e have already
mentioned that the line of fixed points expected for
the infinite-lattice equations cannot be seen in the
finite-lattice approximation for them, because only
the most localized of local fixed-point Hamiltonians
mill be adequately represented in the finite-lattice
approximation. But if the neighborhood of this most
localized of fixed points is treated accurately enough
by the approximation, then, when the eigenvalues
and eigenoperators for perturbations about this fixed
point axe obtained, a nearly marginal eigenoperator,
(with eigenvalue A, = 1) should be found among
them —a vestige of the line of fixed points of the in-
finite-lattice equations.

At first sight it might appear that this criterion
should be found as inadequate as the one using A„
= b ' discussed in the previous paragraph, and for
the same reason, for the exact'renormalization-
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group equations should have lines of nonlocal fixed
points as well as lines of local fixed points, just as
the exact equations had nonlocal fixed points satis-
fying A„=b ' as well as local ones satisfying the re-
lation. The crucial difference between the two
cases seems to reside in the local or nonlocal na-
ture of the eigenoperators. The eigenoperator as-
sociated with the magnetic field eigenvalue A„ is
highly local (for the Gaussian model it is just
g;8;) for both the local and nonlocal fixed points;
but the eigenoperator with eigenvalue A, =1 is local
only for the local fixed points. It would appear
from our calculations that the nonlocal marginal
eigenoperators are not at all well represented in
the finite-lattice approximation, and that as a con-
sequence the fixed point with Q = Q+ is distinguished
in the approximation from the other fixed points by
being the only one associated with a marginal eigen-
operator.

VI. NUMERICAL RESULTS

Fixed points of the finite-lattice equations (4.7)
and (4. 8) were searched for numerically for a three-
dimensional lattice, with N= 6 in the first case (that
is, a 6x6x6 lattice) and N=10 in the second. All
spin-spin interactions p'„~, (r') generated by the re-
normalization-group transformation were kept. Be-
cause of the periodic boundary conditions assumed
for the lattice, only four independent interactions
p(r) can be accommodated in the three-dimensional
—,'N =3 block-spin lattice, and only ten independent
interactions p(r) in the ,'N=5 block-—spin lattice.

0.5

0.4

0.3

0.2

Q. l

-O. I

-0.2

6L

3—
At

A
A'2

0
-0.6 -0.4 -0.2 0 0.2 0,4 0.6

FIG. 3. Eigenvalues associated with the fixed points
given in Fig. 2 for the 6&&6&&6 lattice.

The transformation parameter a in T, , may be
chosen arbitrarily, since the relation (2. 5) holds
as well for the finite-lattice approximation as for
the exact equations. In our calculations the param-
eter was assigned the value a =8. In the first case,
with N=6, fixed points exist for a considerable
range of values of 5 around Q*. Coupling-constant
strengths are plotted in Fig. 2 as a function of the
parameter c defined in Eq. (3.18) (that is, 5
=2 '~""'~2). The value 5=5* corresponds to @=0.
The eigenvalues associated with these fixed points
are plotted as a function of E in Fig. 3. It is ap-
parent that nothing significant happens near & =0;
in particular, no marginal eigenoperator appears
(except possibly where the fixed point vanishes
trivially). Evidently the number of interactions al-
lowed by the smaller lattice is not large enough.

When the lattice is increased in size to N=10,
no nontrivial fixed points are found for e &0 (more
precisely, no fixed point was found for -0.5
& c ~ —1.Ox 10 "). At e =0 a, fixed point appears,
with the interaction strengths p*(r) given in Table
I. For e&0, two fixed points are found. Some
representative interaction strengths are plotted as
a function of E in Figs. 4 and 5.

At &=0 we see the first sign of a line of fixed
points. The point c=0 where the slope is infinite
is a signal that, for P =2 ', a sufficiently local

-0.3

-0.4—
I I I I I I

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

TABLE I. Fixed-point interaction strengths p*(r) for
~=0, N=10.

FIG. 2. Fixed-point interaction strengths p (r) in the
finite-lattice approximation using a 6 && 6 x 6 lattice, as
a function of c (b=2 "'" ). Note that the interaction,
strength p*(5) has been plotted reduced by a factor of 10.

p*(0, 0, 0) =4. 0276
p*(1,0, 0) = —0.3922
p*{1,1, 0) = -0.1120
p*{1,1,1) = —0.0389
p*(2, 0, 0) = —0.001 51

p*(2, 1, 0) = —0.000 88
p*(2, 1,1)= —0.000 29
p*(2, 2, 0) = 0. 000 62
p* (2, 2, 1) = 0. 000 39
pw(2, 2, 2) =0.00015
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ever. Many of the renormalization groups intro-
duced for dealing directly with the Ising model are
nonlinear, and all possess at least implicitly one
or more parameters. Recent work"'~ suggests
that critical exponents calculated from these non-
linear renormalization groups will be independent
of the parameters in the group, within certain
limits, but this independence will be lost in a finite-
lattice approximation. The reason for this loss is
basically the same as for the disappearance of the
line of fixed points in the finite-lattice approxima-
tion to a linear renormalization group. Although
the nonlinear renormalization group will not have
a line of fixed points, it will have different fixed-
pointHamiltonians for different values of the param-
eters of the transformation, and the range of inter-
actions in these Hamiltonians will vary with the
transformation parameters. The finite-lattice ap-
proximation will therefore represent the renormal-
ization-group equations best when the transforma-
tion parameters lead to the most local of fixed
points. This suggests one means of choosing the
parameters in the transformation: One would choose
the transformation parameters to minimize the de-
pendence of the thermal eigenvalue on the param-
eters. In order to smooth the transition from lin-
ear to nonlinear renormalization groups, a better
form of the criterion might be to minimize the de-
pendence of the thermal eigenvalue on the fixed
point. But such a criterion would only begin to
function adequately for lattice sizes of the same or-
der as is necessary in order that a nearly marginal
eigenoperator appear for a linear renormalization
group, unless the nonlinear renormalization group
has much more localized fixed-point Hamiltonians
than has the linear renormalization group.

Another criterion has been proposed by Kadanoff
and Houghton. ' They obtain a relation between the
magnetic eigenvalue A„and the parameter of their
renormalization group (a generalization of relations
of the sort A„= b

' which hold for linear renormal-
ization groups) and choose the renormalization-
group parameter so that the eigenvalue A„, which
in the approximation depends on the parameter, sat-
isfies the relation as well as possible. However,
we have seen above that, for a linear renormaliza-
tion group, such a relation completely fails to dis-
tinguish from other fixed points the fixed point that
gives the best values for critical indices, and there-
fore cannot be used indiscriminately as a criterion
for choosing transformation parameters.

With the criteria so far available for choosing the
parameters in the renormalizahon group in order
to obtain the best values for critical indices, calcu-
lations with the finite-lattice approximation must
usually be large enough to require the aid of a com-
puter, but are well worth the effort, since the
method offers quantitative results from the renor-

malization group where no other method is avail-
able.

dg ... dg exP —2M)P']x~+hP';

(Al)
It is easy to show the value of such an integral to
be

I= (2~)""
i i

M
i ~

-'"Max„[exp(- -,'M„x,z, +I,z,.)],
(A2)

where [ tM j I is the determinant of the matrixM, ,
and Max„[ ] means the maximum value of the quan-
tity in brackets with respect to the variables x, .
The factors multiplying Max„[ ] in (A2) will always
prove to be irrelevant normalization factors or con-
stant spin-independent contributions to a Hamilto-
nian, and will in the future be omitted.

In order to verify Eqs. (3.2) and (3.3), consider
the equation

Z"I+' 3'=T Z'~
a~5 ahab ayb~

and assume that the form of T,' ~ is

(A3)

~w 2
7'k k[S] e~~" = texp ——,'akim S;.—bkg o', +K[o]

~y
ty n' $6n'

(A4)
Equation (A3) may then be written

2.';p,
' ' lepj"= J exp ——,'eg p ., —e g pp

~tS n'i $'en"
2

exp ——,'a~ S;.—b~ 0 y

+X[o]

If each integration variable S;, is shifted by
bkg"„;, o"„ the equation above becomes

efe k+1[St] eX

with

't 2

exp ——,'a iS;„—b ~ S;, i

g "S nee

—nake S e+X [o] (A5)
n

I;"=S;"—bbk Q o) . (Ao)

Now one makes use of Eq. (A2) to carry out the
integrations over the spin variables S „. in Eq. (A5).
The maximum of the Gaussian occurs for S &. satis-
fying the equations

~b 3;"—b S";. -a -, =0, n'&]K".
)I gnI I

(A'l)

APPENDIX: DETAILS OF CALCULATION

In verifying Eqs. (3.2), (3.3), and (3.11)-(3.15),
one must evaluate numerous integrals of Gaussian
functions of the form
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r "',[s']e.' azp=--',a„.,Qs.';., +z[v]),
"fy

(Ae)

a„,=aa,/{a, +2~b'a) . {A9)

Because the form of Eq. (A6) for T,'", agrees with
the assumed form of 7 ~

~ in Eq. (A4), the identifi-
cation of a~„ in Eq. (A9) is a legitimate one, and,
from Eq. {A6), we may further identify

(Alo)

The recursion relations (A9) and (A10), with the
initial conditions a1 =a and b1 ——b, may readily be
solved for a~ and 5» the solution obtained has been
given in Eqs. (3.3).

Verification of Eqs. (3.11)-(3.15) proceeds in a
similar fashion. If the Fourier expansions of o;

The set of equations implied by (AV) may be solved
for 8&, by first summing the equation over all n'(= n"
to get an equation for the quantity g &, „"„8i, in terms
of 8„;., and then substituting this result back into
Eq. {AV) to obtain the solutions 8][, that maximize
the Gaussian in Eq. (A5). After some algebraic
simplification, one obtains

and p(r) given in Eqs. (S.9) are substituted into
Eq. (2. 1) for X[o], one finds

3C[o] =- —,'N ~g p(q)o,"o;+ho; 0, (A11)

where the summation over q is defined in Eq. (3.10).
We require the Fourier expansion of Eq. {3.V) for
v'~, [8, o] as well. One finds

¹ 1

+8',, =(N')-&+8;,8 -, , (A12)
ni -0 qI

where N' is defined in Eq. (3.5); and¹1 L1
g 8; go„;,.=N-"gu, (-q)8~a;, (A13)
n'=0 m 0 q

'

I 1

u (q) -=pe*"='[][' (A14)
m=0

1-
the identity 8;.,2„- =8~. for any lattice vector n' has
been used in obtaining (A13).

After the terms involving o'3 in Eq. (3.V) are
likewise expanded in texms of their Fourier com-
ponents, and the integrations over o- performed
using Eq. {A2), one has

X&'&[8] =Max, ——,'a, (N')-'g8;, 8;,+a,bp -'gu, (-q)8„-o;
Q

L

,a„b„N ~—uz(-ggI
~. uz q+ o;o;+„«z- ,N ~p{-q)o;o;+ho;,

q 1=0

The maximum occurs vrhen the spin variables a~
satisfy the equations

1

a]ib], N u~(-q)8z," —a~b~N uz(-q)L" ~uz q+
27rl

1-"0

vrith

„g I u, (q+ 2~7/L) i'
p(q+ 2]]'1/L) (A19)

&«,".a.iis -N p{q)o;+b6,",o =O .
In order to solve these equations for o; one uses
the same device employed in the solution of Eqs.
(AV). Let us define

+~1
2ml

q + I +
q,+2ff1 /L

1=0
(A1V)

Then multiply Eq. (A16) by uz{q)/p(q) and sum the
equation over the set of vectors @+2@1/ Lto get an
equation for y»:

Once one has obtained r; from Eq. (A16) and used
this to find the solutions of Eq. (A16) for o;, one
can obtain the maximum required in Eq. (A15). The
algebraic simplification of the result is facilitated
by use of the periodicity of y ~=qg+2, »z and of S~t
=8;„„;,as well as the identity

I 1 ~I
N 'g fQq = (N') ' g L "pg q

I Iq Q

Equations (3.11)-(3.15) are obtained by setting

a,b,{N')-'q;8„-—a,b', (N')-"y;~; (N')-'~;— ) =%au ~
{0) (A21)

uz(0)+&
(q 0) r 6.".a.r~z=O (A16)

The term of order Ii2 in K'~'[8] has not been included
since it is a constant independent of the spin vari-
ables 9,.
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The argument given below is similar to one given in
Ref. 6 for a linear-renormalization-group transforma-
tion for Ising models.
Because of the periodic boundary conditions, one must
be a bit more careful when 2N is an even integer. In
fact, it can be seen by comparison of the lattice calcula-
tion with a graphical expansion that if any component
of r' is of magnitude 4N, then one should use p&{r=r')
=~2p&g2(r') instead of Eq (4 8) Since we shall only
use lattices with 2N odd, this exception need not con-
cern us.


