
PHYSICAL REVIEW B VOLUME 11, NUMBER 9 1 MAY 1975

Exactly solvable model for tricritical phenomena*
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An n-component continuous-spin model with a tricritical point is solved exactly in the limit n ~ ao.

Its properties are derived and are compared with the results of experiments and approximate

calculations. The model leads to an analytical description of the features of tricritical points and

suggests the use of an approximation procedure for discrete spin systems which is a substantial

qualitative and quantitative improvement on mean-field theory.

I. INTRODUCTION

This paper is concerned with an n-component
continuous-spin model which may be solved exactly
in the limit n-~ and has a tricritical point. It is
a generalization of the Blume-Emery-Griffiths'
(BEG) model, and the tricritical point is obtained
by varying a "nonordering" field & (analogous to a
crystal field in a magnetic problem) or its conju-
gate variable x, which is,comparable to the He

concentration in helium mixtures. A simpler ver-
sion of this model has previously been discussed
by Amit and de Dominicis who used the renormal-
ization-group method to determine some of the
properties of the disordered phase near to the X

line and the tricritical point. However, we shall
obtain an exact solution which not only does not re-
quire the fixed-point assumption of the renormali-
zation-group method, but also is valid for all tem-
peratures and, in particular, for the ordered phase
and for first-order phase transitions. This is es-
sential for a complete description of the tricritical
region.

The following properties are obtained: (1) The
critical exponents are spherical along the X line and
Gaussian at the tricritical point for fixed 4. (2)
The concentration susceptibility (Bx/&&)r diverges
at the tricritical point with an exponent of 2 for
constant ~ and 1 for constant x or along the coex-
istence curve. (3) For d=3, the phase boundary
has a discontinuous slope at the tricritical point in
the (x, T) plane. (4) The tricritical exponents re-
main Gaussian to order n '. (6) There are no loga-
rithmic singularities at d=3. (6) In general, there
is no tricritical point for d&3.

The first two results have been obtained by the
renormalization-group method~ 4 and the fourth
could be derived in the same way. The second and
third agree with experiments' on helium mix-
tures and FeClz, and with series approximations'
for the BEG model. They are not obtained from
mean-field calculations' for the disordered phase,
or the classical theory of phase transitions. In ad-
dition to these properties the wave-vector-depen-

dent concentration susceptibility for the model has
the expected scaling form and is in agreement with
light-scattering experiments in both the ordered
and disordered phases.

The model and the method of solution are de-
scribed in Sec. II. Upper and lower bounds for the
free energy are obtained and shown to become equal
to each other in the limit e- ~. The consequent
free energy is a generalization of the Hartree ap-
proximation, and it could alternatively have been
obtained by making an integral representation for
the statistical operator and then using the method
of steepest descents. The approach of bounding
the free energies is similar in spirit to the Kac-
Thompson discussion' of the classical Heisenberg
model, and it has a number of advantages when
compared to the method of steepest descents. It
can be made rigorous and, in particular, when there
are %lattice sites, the limits n-~ and N-~ can
be taken in either order or both together. The self-
consistency condition is simpler and also rather
more convenient to use in the first-order region
where it is necessary to distinguish between two
different solutions. This is one of the main prac-
tical reasons for giving a more careful discussion
of the Hartree approximation, which is not usually
shown to provide a bound on the free energy. Ex-
pressions for correlation functions are also derived
in Sec. II, and the solution of the self-consistency
condition leading to properties of the model is given
in Sec. III. Finally, in Sec. IV, it is pointed out
that there is an approximation method for physical-
ly relevant discrete-spin systems, which leads to
qualitatively the same results as this exactly solv-
able model and to a potentially good quantitative de-
termination of phase diagrams and physical proper-
ties. It is therefore a substantial improvement on
mean-field theory, although it is scarcely more
difficulty to apply.

II. DEFINITION AND FORMAL SOLUTION OF THE MODEL

The model has n spine S, (n=1, 2, . . . , n) taken
to be the components of a vector S, at each site i.
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The Hamiltonian is
N

J,-,8,. ~ S,+ n &, n-'82,. + H ~ 8, 2. 1

The spins vary continuously from —~ to +~ and
the temperature T is absorbed into J,.&

and (t), so
that the partition function is

A. Upper bound on the free energy

To obtain bounds on the free energy, define

K =g(sr+elf, r)S,. St+JH S, , (2. 3)

avoided by working in a finite magnetic field and
only allowing it to become zero after the limit N- ~
has been taken.

S„=I j gds;„e*. (2. 2)
so that, from Eqs. (2. 1) and (2. 3),

The parameter ~ plays the role of the crystal-field
splitting of the BEG model, ' and variation of ~ is
one way of producing a tricritical point. The mag-
netic field H is assumed to be in the (1, 1, . . . , 1)
direction which is necessarye for general n-compo-
nent systems for large n, although it will be seen
that, with the model of Eq. (2. 1), the more usual
convention of having a field of order g along one
direction could also be used. There are two ways
of viewing the Hamiltonian. It may be regarded as
a generalization of the n-component continuous-
spin model used by Wilson, "with the function
n(t)(&, n 'S, ) replacing the fourth-order form [y S2

+ (u/n)(S;) ] The. factors of n are necessary to ob-
tain a well-defined limit as m- ~, and both the in-
clusion of higher-order terms and the parametric
dependence on ~ are essential for the discussion of
tricritical points. Alternatively a one-component
version may be obtained from the BEG model' by
making a Gaussian integral representation of the
exchange term, leading to Eq. (2. 1) with g--1 and
a particular choice of (t). The derivation is given
in the appendix. In either case, J,,- is taken to be
short ranged, ferromagnetic, and translationally
invariant, and it may then be diagonalized to p; by
Fourier transformation. It is assunled that gp = 0

. and P;&0 for all q&0, which may be arranged by
subtracting a diagonal term from J,&

and adding it
into P so that the Hamiltonian is unchanged. The
principal assumption for (t) is that it is well behaved
and analytic so that all singularities may be attrib-
uted to critical phenomena.

For n-~, Z„may be evaluated by making a dou-
ble integral representation of e"~ after which the

8, integrals become Gaussian and the representa-
tion integrals may be carried out by t1"e method of
steepest descents. This is described for more gen-
eral Hamiltonians in Ref. 9. Here, however, the
model will be solved by proving upper and lower
bounds on the free energy which become equal as
n-~. This approach is rather more convenient to
use in practice for first-order transitions, and it
can be made rigorous, with the final result inde-
pendent of whether N-~ before or after e-~ or
n., N- ~ together. It also leads to a rather simpler
self-consistenty condition. The analog of the "stick-
ing" problem of the steepest-descents approach is

N 2
tt- Ste = n g S (tt, n rS') - e—S,')

t

(2. 4)

Then if the free energy per site per degree of free-
dom is

Il = —(1/Nn) lnZ„,

the thermodynamic variation principle gives

(2. 5)

Il = Eo+ (1/nN) (X—Xo ) (), (2. S)

limEO=, dqin(g;+v ) — 3 —ln))'
I ~ 2 II I/2

16m . ' 4' (2.7)

using 80=0. To determine (X —Xo), it is simplest
to use a double integral representation of (t):

(S(tr, n"Sr))e=S . J rtt

8 joo

dy y(n f)est(e )tn 8)))-

wahoo

(2 3)

This equation may be proved by first completing
the A. integration to obtain 5(t - n 'S&), after which
the t integral is trivial. The integrals which come
into the statistical average in Eq. (2. 3) are prod-
ucts over ~ of g identical terms so

(e '" 't), = dsne(S)e'" ' ),
~t nts()O

(2.9)

where )to(S) is the single-spin distribution function
for the one-component Gaussian model. By trans-
lational invariance )t, (S) is independent of p, and
it is also of order unity, with a well-defined limit
as N-~. Then the limits N-~ and n-~ may be
taken in either order in Eq. (2.9) to give

t ()0

lire(e'" r), =esp —i ~i Ssret(s)s ),
ff m ()0 a(so

(2. 10)

where nNEO is the free energy for Xo and (X—Xo)0
is the thermodynamic average of X-Kp taken with
weight e ~o. Since Xo in Eq. (2.3) is quadratic, the
integrals for the partition function are Gaussian and
I'p may be evaluated exactly to give, in the limit
N~ oo
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FH = Ep+ Q(~, Eo(v ))—(c Eo(v ). (2. 11)

The strongest form of inequality is obtained by
minimizing EH with respect to v to give

The right-hand sides of these equations involve al-
ternative ways of writing the mean value of S&. If
Eq. (2. 10) is substituted into Eq. (2. 8), the X and
f integrais may be carried out and, using Eq. (2. 4),
the inequality (2.6) becomes

limE =E„,
f/' oO

N~~

where

form of cu(T) is 6(T- T,) and, with this, Eq. (2. 1V)

becomes

(2. 18)

The minimization is now to be carried out by using
Eq. (2. 1&) to eliminate v from (2. 16) and minimiz-
ing with respect to variation of To. Since Eq. (2. 18)
gives a one-to-one correspondence between y and

To, this is completely equivalent to using Eq. (2. 18)
to eliminate To from (2. 16) and minimizing with re-
spect to v. The right-hand side of (2. 16) then be-
comes equal to E„as in Eq. (2. 11) and thus

F =E~(co),

where gp satisfies

(2. 12) This is true for any n and N but when combined
with (2. 12) it shows that

limE = E„(go).
few oo

Nw oa

(2.20)

which gives a. minimum provided

where, now, the average of ~—3C is taken in the
distribution e . From Eq. (2.4), the integrals
over the S& may be carried out in n-dimensional
polar coordinates leaving only the integral over
7 =

I S~l to be carried out. Then, using transla-
tional invariance, Eq. (2. 15) may be written

E =SO(~')+
~

dT CO(T)[y(&, T) —~'T]
~Q

Here w(T) is a single-site distribution function and
it is a property of the exact distribution e ~. The
right-hand side of Eq. (2. 16) may be maximized
with respect to variation of & by choosing & to be
the solution of

Fo(K ) = dT u&(T)T
~p

(2. 1V)

since, from Eq. (2. V), Eo'(v~)&0. This gives the
strongest form of inequality. With I( given by Eq.
(2. 1V), the right-hand side of (2. 16) is a functional
of zv(T) only. Then if w(T) is replaced by the func-
tion wo(T) which minimizes the right-hand side of
(2. 16), the inequality still holds. The extremal

This is a stability condition on &f&, which is as-
sumed to be satisfied. A more explicit version of
(2. 14) will be given in Sec. III. Equation (2. 11) for
E„is a generalization of the Hartree approximation,
with the self-consistent field vo given by Eq. (2. 13).

B. Lower bound on the free energy

If the roles of Xp and X are interchanged in the
thermodynamic variation principle, it becomes

It will be seen in Sec. III that, in the first-order
region, 8 p(&, T)/BT &0, and it is important that
this is not excluded by (2. 14), since E'0'(v ) &0. In
order to achieve this condition it was necessary to
maximize (2. 16) with respect to v before minimiz-
ing with respect to w(T). Reversing the order re-
quires that p(b, T) have an absolute minimum in the
region of interest and therefore gives a weaker in-
equality which also could have been obtained more
directly by replacing X-~ by its minimum value
in the integral (2. 2) for Z„. The method of steepest
descents gives a condition similar to Eq. (2. 13)
but with g dependent upon i so that there are N
equations. The derivation given here shows direct-
ly that the optimum solution of these equations is
uniform.

(2.21)

Using Eqs. (2. 7), (2. 12), and (2. 13), m becomes

m = H/2~'. (2.22)

If go is determined from Eq. (2. 13) and substituted
into Eq. (2. 22), the equation of state is obtained.
In the ordered phase (m&0), v -H/2m for small H
and therefore, when H-O, m reflects the existence
of g. In Eq. (2. 22), m is formally identical to that
of the Gaussian model, but it will be seen that, at
a normal critical point, & is constrained by Eq.
(2. 13) leading to a change in its critical behavior.

To obtain the spin- and square-spin correlation
functions, imagine there are fields g", &,S, and

C. Magnetization and correlation functions

The basic equation to be solved is Eq. (2. 13),
and the free energy is then given by Eqs. (2. 7) and
(2. 11). In the ordered phase, it will be seen that
the role of & is taken over by the magnetization per
site per degree of freedom
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using Eqs. (2. 11), (2. 13), and (2. 20). Then with
(2. 23),

ij 2 J 2 (a. as)

which may be diagonalized by Fourier transforma-
tion to

/&HE ~ &~ appliedto the system. Then, in finding the
free energy, & has to be replaced by a site-depen-
dent function g,- and I'0 becomes

NFO = 2 Tr In(Z+ f2+ X) —4
H' (J + g + A)

~ H, (2. 23)

where J, g, and A. are matrices with elements J,»
&;6,» and %&6&» respectively, and H is a column
vector with elements II+ II;. The spin-correlation
function in zero magnetic field is then

G&&
——n '((S; ~ Sz) —(S&) ~ (S&))

=-(:-",'-;)„... (2. 24)

B NE
(2. 25)

c-,= c'-,/(1+ y" c'-,), (2. 34)

where C; and C; are the Pourier transforms of C, &

and C,-» respectively. The interest in C; is that it
is the correlation function for nonordering fluctua-
tions which become critical at a tricritical point.
This will be shown explicitly after the solution of
the self-consistency condition has been obtained in
Sec. III.

N

&(K- X ) = 'nP"—g (S;/n —(S,)/n), (a. 35)

where P" is defined in Eq. (2. 33), and the change
in the mean value of K- + is

D. Corrections of order n

The discussion so far has regarded the model as
one which is exactly solvable as ~- ~, but it may
equally well be taken to be one in which e is large,
and the free energy is evaluated as a series in n '.
If we expand Eq. (2. 4) is powers of (S /n —(S /n)),
using Eq. (2. 13), ' then, in lowest order, the change
in X-~ is

G;=z(y;+~~o) '. (2. 2V) (~(x-x,))=y"pc, , , (a. 36)

Similarly the square-spin correlation function is

c,, = n-'(&s',.s,'.) —&s',.) (s,'.)), (a. as)

/8 NFH

Xp, e~o
(2.29)

N 2
0 0 8/(p

C)y= C)J+ C)p
j

(2. 30)

and it is related to the density-density correlation
function in helium mixtures, which has been ob-
tained from light-scattering experiments. It is of
order unity, whereas (S;SJ)/n and (S;) (S&)/n are of
order n.

Substituting Eqs. (2. 11) and (2. 23) into Eq. (2. 29),

using Eq. (2. 28). The correction to the free ener-
gy is obtained by introducing a coupling constant A,,
multiplying Q, and integrating over it in the usual
way. Using Eq. (2. 34) for C, we obtain

F= F„+ dqln(1+ &f&"Co),
16 n-

(2. 37)

which gives the free energy to order n '. This is
the generalization of the form used by Ferrel and
Scalapino to obtain order e ' corrections to criti-
cal exponents near to an ordinary critical point.
We shall consider the consequences near to a tri-
critical point in Sec. III.

III. SOLUTION OF THE SELF-CONSISTENCY CONDITION

where

C,.~—- 2G;~+2m G, , (2. 31)

The self-consistency condition is given in Eq.
(2. 13). It involves F o(w~) which may be evaluated
in terms oi m and z from Eqs. (2.7) and (2.22):

8Q~
2

BXy

with

„8'e(~,F',)
&(F o)'

(2. 32)

(2. 33)

Equations (2.30) and (2. 32) may be solved by Fouri-
er transformation to give

is the square-spin correlation function of the Gauss-
ian model. On differentiating the site-dependent
version of Eq. (2. 13) and using Eq. (2. 29), it is
found that

F,'(~') = (16m') ' ' dq(gg+~') '+m'. (S. 1)

To bring out the I(; dependence, this equation will be
rewritten

Fo(~') = W- y(~)+ m', (3.2)

~(~) = r~~' ' (3.3)

where W is the value of the integral in Eq. (3. 1)
for g = 0, and is a Watson integral for the lattice in
question. For short-range forces, g, -q for small

q and it is easy to see that
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for small K and 2 & d & 4.
Equation (2. 22) shows that when H-O, either m

-0 or K-0 or both. Across a X line, the transition
from K ~0 to m &0 takes place continuously and it
must be the line m =0, K = 0, which according to
Eqs. (2. 13), (3.2) and (3.3) is

tions

yell + [y3(gll)2 4gt(1 y2glll/2)]1/2
0 2(1 y2ygtg/2)

(3. 7)
m=0,

9$(A, W)

8N
(3.4)

Kp
——0, (3.8)

Since both &f& and W depend upon T, this is the equa-
tion of a line T= T,(n) in the (&, T) plane. Equation
(2. 13) is an equation of constraint'4 on the Gaussian
free energy I'0, and hence the critical exponents
are those of the spherical model. This requires
that Q(&, 7) is analytic at ~ = W so that Eq. (2. 13)
may be expanded for small m and K, using Eq.
(3.2), to obtain, in second order,

(3.5}

(3.8)

From Eq. (3.3), it is clear that for m =0 and d& 4,
the first two terms on the right-hand side of Eq.
(3.5) dominate, and if P3 is proportional to T- T„
then K- (T- T,)~~~ 3, as in the spherical model. "
The other exponents may be obtained in a similar
way.

However, Eq. (3.4) is only a necessary condition
for a continuous transition. If, for Pt =0, the solu-
tion (K3=0, m =0) of Eq. (3. 5) does not give the low-
est free energy, the transition takes place away
from the X line, and hence it cannot be continuous.
The condition for this to occur depends upon the
number of space dimensions, and it is convenient
first to study the most important case d=3, for
which it will be shown there are additional solutions
when P" & 0, and that there is a tricritical point
where the line Qt' =0 intersects the X line. The
situation for dt 3 will then be considered separately.
In this discussion, it is assumed that there are no
solutions of Eq. (2. 13) for large I

m' —y(K) I and
that Qt" &0. Then it is sufficient to use the expan-
sion of Eq. (2. 13) up to the order given in Eq.
(3.5). This is exact if P is at most sixth order in
the S&, as frequently assumed in the discussion of
tricritical points. ' In the general case, it is pos-
sible to obtain a wide variety of phase diagrams,
which we do not wish to consider here.

A. Three dimensions

1. Tricritical point and coexistence curve for H= 0

In three dimensions, y(K) = y3K for small K When.
po' &0, Eq. (S. 5) has no solution with K=0 for $0
&0 or with m =0 for $t &0, and a continuous transi-
tion across tbe X line Q3 =0 is the only possibility.
On the other hand, when $0 &0, there are two solu-

provided 1($3') /$0! is large enough for real roots.
For the KooO solution to exist with pt&0 and arbi-
trary Q,", it is necessary that

y2glll & 2 (3.9)

and it is easily verified that this is also the condi-
tion for stability of the model at small K, according
to (2. 14), and it is assumed to be satisfied. Then
there is a first-order transition along the line in
the (6, T) plane for which the solutions (3.8) and

(S.9) give equal free energies.
Along the X line, the solution (3.7) gives

y4(g I I)3(]y2$ I I Il/2)2

for m = 0, whereas, with Eq. (3.8),

2(gf f)3/3(/If I )2

(3.10)

(3. 11)

for K0=0. Here 6F is the difference between the
free energy I"H and its value for K=O m =0. If
y3pt" &1, Eq. (3.11) gives the lower free energy
and the first-order transition has taken place above
the X line, otherwise it occurs below. As Qo -0,
the two free energies become equal and hence the
coexistence curve meets the X line at the point Q3'

=0. It is then a tricritical point and its position in
the (6, T) plane will be denoted by (b.„T,). For
some purposes, it is useful to regard ($0, $0 ) as
the coordinates of a point in the (n, T) plan, e near
to the tricritical point, where both quantities are
sma. ll.

In genera. l, in order to have the freedom to equate
tbe free energies, it is necessary that neither Q3
nor Po" be negligible in the solutions (S.7) and (3.8),
which means that the coexistence curve must have
the form

40 = o(40')', (3.12)

for small I &j&tt I and I $3"I. The two free energies
are of order ($0 )3 and o may be determined by
equating them. The result will not be written down
since only the general form of Eq. (S.12) will be
important for the subsequent discussion.

2. Concentration susceptibility and tricritical exponents

The analog of the concentration x of He- He mix-
tures is the variable thermodynamically conjugate
to a, that is x= —(SE„/SA)3,. Since F„ is stationary
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with respect to variation of v, it follows that

Bg(a, F,')
86 (3.13)

The concentration susceptibility is given by

(
Bx 8'p (n, F,') 8'g(a, F,') BF,'
86 z' Bb BEBFo 86 T'

where, using Eqs. (2. 13), (2. 33) and (3.2) for m =0,

BF(') —y'(h(o) 8 Q/Bh( BFo
B~ r 2xo+y'(&o}y" (s. is)

Along the X line, (Bx/Ba)r is a, nonordering suscep-
tibility and it is finite since zo vanishes but y (h(o)

and Q" do not. At the tricritical point (h(o =0, (t)"
=0), (BFo/M )r diverges and hence so does (Bx/86)r.
The critical exponents depend upon the path of ap-
proach. For ~ constant and equal to A&, Eqs.
(2. 33}, (3.2), and (3.3) show that the denominator
on the right-hand side of Eq. (3.15) is 2xo(1 ——,'yoo

x (j)t")+y, Po which is positive because of the sta-
bility condition (3.9). Then, since both ()h)o and (t)t'

are proportional to T- T, near to the tricritical
point, Eq. (S. 5) gives xo (T- T, )'h aond hence from
Eqs. (3. 14) and (3. 15), (Bx/Ba) r(T - T,) 'ho.

These are Gaussian exponents and the same results
may be obtained from renormalization-group argu-
ments ' or high-temperature series expansions
of the BEG model. On the other hand, a,long the
coexistence curve, Eqs. (3. 5) and (3.12) show that
~-(T- T, ) and hence (Bx/M ) r(T —T, ) . Also,
for x a, constant and equal to its tricritical value
x„b, varies and expansion of Eq. (S.13) near to
the tricritical point, using Eqs. (S.2) and (3.3),
gives

8'&o 84'o

86 85o (b, —6,) — y(h(') =0. (S.16)

Now if Eq. (3. 5) is expanded to first order in a —a,
and Eq. (3.16) is used to express b, —6, in terms
of h(o, it follows that ~- T- T, since y(h(') = y, h(:, and
again (dx/d T)r - (T —T,) '. Another way of looking
at these results is to see that the tricritical expo-
nents are Gaussian because when Qo" - T T„po—- T- T„ the constraint (3. 5) does not renormalize
the exponents as it does at other points of the X

line. But, when Eq. (3.12) is satisfied, or x
= const. , the constraint (3. 5) is significant and the
exponents are renormalized. The exponents for
the susceptibility divergence at the tricritical point
are in agreement with experiments on liquid-helium
mixtures. 'o Of course it is a property of the model
that the unrenormalized exponents are Gaussian

. along the X line as well as at the tricritical point.
Later it will be shown how Eqs. (3.14) and (3. 15)
may be obtained from. the wave-vector-dependent
susceptibility and the corresponding results for
mt 0 will be given.

3. Slope of the phase boundary

Suppose tha, t the phase boundary in the (b., T)
plane is T= To(h). Along the coexistence curve,
To(h) is obtained by solving Eqs. (3.12) and

(S. 1V)

»nce po' =0 at (&„T,). But this is exactly the re-
sult for the & line (t)o =0 and hence the sloPe of the
phase boundary in the (b,, T) plane is continuous at
the tricritical point. However this is not true of the
phase boundary in the (x, T) plane, where the first-
order region has two values of x for every T, one
for each of the two coexisting phases. The phase
boundary for mt 0 makes a large angle with the X

line, but the other branch has only a small discon-
tinuity in slope. This discontinuity does not appear
in mean-field theories, but it is seen in experi-
ments'7 on helium mixtures and FeCl~, as well as
in series solutions of the BEG model. It has been
speculated that in some way it is associated with
critical fluctuations, but in the model under con-
sideration it is a consequence of the variation of
~0 along the coexistence curve. Suppose the m =0
phase boundary is x=xo(T) in the (x, T) plane. Then
from Eqs. (3.2) and (3.13),

«o(& )=-,«&~(«))8'&o

Bpo dW, ada—
B~ dT-'('IdT „ (3.18}

G(r) = e "o'/8((r (s. i9)

Here (dz/dT)» is the derivative of v with respect
to T taken a,long the phase boundary. The deriva-
tives of (t)o, W, and y(h() are assumed to be contin-
uous in defining the model and To(b, ,) has just been
shown to be continuous. However (dhc/dT)» is dis-
continuous at the tricritical point, since I( is con-
stant and equal to zero along the ~ line but ~- T- T,
along the coexistence curve. In three dimensions
y'(h(') = yo; so the discontinuity in xo(T, ) does not
vanish. The value of the discontinuity depends upon
(t)o"; so there is not much point in evaluating it for
this model to compare with experiment.

4. Correlation functions

The correlation function with the interesting struc-
ture is C~ of Eqs. (2. 28) and (2. 34), since it re-
fers to fluctuations in a nonordering density which
become critical at the tricritical point. In order to
evaluate the integrals, it will be assumed that P,
= q . The exchange constant and numerical factors
have been absorbed into q by choice of units. If r
is the separation of two lattice sites, the Fourier
transform of G~ in Eq. (2. 2V) is
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0 are tan(q/2»o) tpP

Smq q +&o' (S.20)

Substituting this expression into Eg. (2. 31) and
Fourier tx ansforming gives

(S.23), but it is necessary to expand the second
term to first order in (n'S; —Fo) as in Sec. IID,
'to obtain

If Eti. (8.20) is substituted into Eq. (2. 34), the
resultant expression fox' C~ is valid in the ordered
and the disordered phases and it satisfies tricriti-
cal scaling with Gaussian exponents. 6 Thi.s expres-
sion for Ce in the disordered phase (m =0}was ob-
tained by Amit and de Dominicisa who used it to
discuss crossover from eritieal to trieritical be-
havior and to evaluate the crossovex exponent. In
the ordexed phase F0=0 and

m +q/16
q~+ P"(m'+ q/16)

(8.21}

In particular, along the coexistence curve neax the
tricritical point, both m and Q" are proporbonal
to T- T& and C~ has the form

(8.24)

Now from Eps. (2. 84) and (3.20),

(Sv)-'2m'/»,
2», + P"[(6v) '+ 2m'/», j

' (S.25)

When m=0, Eqs. (3.24) and {8.25) give the same
expression for (ex/Sb. }r as Eqs. (S.14) and (3.15),
since y'(»~) =(Bv) ~ for d=S, when g, =q~. On the
other hand, in the ordered phase where I('0 =0,

Cg=o=(4") ', (S.26)

and„ from Eqs. (8.24},

a(T- T,)+ q/16
qa+ab(T- T,)~+ b(T- T,}q/16' {S.22) (

ax 8'p s'p
84 r 8b, 858EO

(S.2V)

This may be compared with the calculation of Fur-
man and Blume, who evaluated C~ using mean-
field theoxy. Their result does not have the texm
of order q in the numerator and denominator of Eq.
(8.22). However, the coefficient of this term is
small, and existing light-scattering experiments
are well fitted without it.

At T= T„C~={16)q~-~ as q-0, reflecting the
divergence of Cg fox' 7 ~ Tgy In contrast» mean-
field theox'y' gives a term of order q in the nu-
mera, tor of C~ in place of the linea, r term, and a.t.
T= T„C~ remains finite as q-O. This is related
to the fact that mean-fieM theory fails to give a
divergence in the nonordering susceptibility as the
tricritical point is approached from above.

It is also of i.nterest to consider the limit q-o,
since C~ 0 is related to the concentration suscepti-
bility {&x/84)r. This may be seen formally by dif-
ferentiating E= —(nN) ~ 1nZ„, using Egs. (2. 2) and.
(2.1),

ex i. e e a, n-' ';

4 e~'

n e an'S';

( g BA(a, n'iP) )' (3.23)

To order unity, n '8'; may be replaced by Eo(»')
in the first term on the x ight-hand side of Eq.

Along the eoexistenee curve this diverges as
(T- T, ) ' near the tricritlcai point since Q" = Pg
+ @0"m which is proportional to T- T,.

Order n '

The correction of order n ' to E was evaluated in
Sec. IID and was given in Eg. (2.SV}. Along the A.

line» there is an ordinary critical point and the crit-
ical exponents have an order n correction, as
evaluated by Ferrel and Scalapino. ' For & = b»

Qt' —pg»$0 and lt becomes negative above
the tricritical point, but the stability condition {S.9)
ensuxes that the argument of the logarithm in Eq.
(2. SV} remains positive. Since Pt' = 0(T- Tt, ), the
logarithmic coxxeetion evaluated by Ferrel and
Scalapino~s disappears and the tricritical exponents
are Gaussian to order n ~. This shows, in particu-
lar, that when a, tricritieal point comes about by
va,riation of a, nonordering field such as 6» unusual
forms of exchange integxals do not give rise to non-
Gaussi. an tricritieal exponents to order n ~.

6. Logarithmic singularities

%egner and Riedel pointed out that there may be
logarithmic corrections to the Gaussian exponents
at a, trieritical point for d = 3 just as there are at an
ordinary eritieal point for d =4. In particular they .

appea, xed in the magnetization as 7- T,-. Accord-
ing to their argument, the singularities should be
there for n- ~. In the present model, when d =4,
y(») in Eq. (S.3) acquires a factor of log» which
gives rise to the Usual logarithmic singularities.
For d = 3, y(») is given correctly by Eq. (3.3) for
small », and m may be obtained from ~q. (3.8).
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1. d)3
For this case, many of the above results are un-

changed and, in particular, there is still a tricriti-
cal point. The main qualitative changes are in the
determination of the coexistence curve and the ex-
istence of a discontinuity in the phase boundary at
the tricritieal point.

Using Eqs. (3.2) to expand Eq. (2. 11) in powers
of m for I(=0,

&F= Q,'m'+ —,'P,"m'+,'-P,"'m'. (S.28)

This expression has a minimum at nz = mo with 6I'
equal to its value at m =0 if Eq. (S.28) can be writ-
ten as a constant +Am (m —mo), that is if

(3.29)

This is the point at which an ordered phase can
first be contemplated. The phase transition does
not take place there because there is a solution
with ~0+ 0 which has a still-lower free energy.
However, for d& 3, the transition is close by. If
$0 and po" satisfy Eq. (3.12) with n just less than

3/Bent", the minimum of 5E in Eq. (3.28) is of or-
der (Qt ) . On the other hand, the solution of Eq.
(3.5) is still ~- $0 and then Eq. (2. 11) gives 5E of
order (Pt')' which is much smaller than (Qo')3 close
to the tricritical point. Thus, n ——,'$0 is small,
and expanding Eq. (3.28) shows that it is of order
(y t s )d-3

The absence of a discontinuity in slope of the

phase boundary in the (x, T) plane may be seen from
Eq. (3.18). There is still a discontinuity in (dz/
dT)», but it is multiplied by y (z) which is propor-
tional to ~" and vanishes as ~-0.

2. d&3

The nature of the phase diagram changes quali-
tatively when d is decreased below 3. This may be
seenfrom Eq. (S. 5) since, at the point $0=0=go',
there is a solution zo = (-,'y2~&j&0")~~'8 2 ', with a lower
free energy than at ~0 =0. It follows that, along
the X line (Po =0), there is a discontinuous change
from zo =0 to ao 0 0 at some value of $0' & 0, and the
X line ends at that point —a critical end point. [In
general, higher derivatives of &j&o should be included
in this discussion but Eq. (S. 5) is exact for the
usual sixth-order model. ~'4] It is interesting to
consider the implications of this result for the ex-
pansion of tricritical exponents in powers of 3 —d
obtained by Stephen and McCauley, ' who obtain
well-defined non-Gaussian tricritical exponents in
the limit n- ~. Presumably a more detailed calcu-

There are no logarithmic singularities. The source
of this disagreement with the conclusions of Wegner
and Riedel is not understood at present.

B. Other than three dimensions

We have described an exactly solvable model
which enables us to calculate tricritical properties
analytically and to obtain explicitly many of the fea-
tures of tricritical points such as crossover from
non-Gaussian to Gaussian exponents, divergences of
correlation functions and the discontinuity in slope
of the phase boundary in the (x, T) plane. Clearly,
it would be desirable to have an approximate meth-
od with these features that could be applied to mod-
els which have finite n and are directly related to
discrete-spin models as described in the Appendix.
Such a method is suggested by the discussion of
Secs. IIA and IIB. The Hartree approximation is
a lower bound on I' for all n and the variational up-
per bound could have been evaluated for finite n.
Clearly, for finite n., both would have the same
properties as the n- ~ limit, and therefore would

be qualitatively much superior to mean-field theory.
With the form of Q given in the appendix, the be-
havior of the BEG model may be obtained in this
way. This will be described in a separate publica-
tion.

The thermodynamic variational principle which
gives the upper bound in Sec. IIA was first used for
the spin- —, Ising model by Miihlschlegei and Zit-
tartz, ' who showed that it is equivalent to quite
elaborate summations of diagrams in perturbation
theory applied to the original discrete-spin prob-
lem. The discussion of Secs. II and III gives a new

perspective on this method by showing that it is
exact as n-~ and that it does not realize its full
potential until it is applied to models with higher
spin.
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APPENDIX

The BEG partition function may be written in the
form

A

eg (a' Ea- ha' o'-h' h, )

(a) )
(A I)

A

where K is a matrix with elements K;; equal to the
exchange coupling, a is a column vector with ele-
ments o;. for lattice sites i, and h is a column vec-

lation might reveal that the tricritical fixed point
is not stable for large n and d& 3 and show at which
value of n (if any) it becomes absolutely stable.
[For long-range forces, y(~) has a different behav-
ior for small ~ and it is possible to have a tricriti-
cal point with non-Gaussian exponents. ]

IV. CONCLUSIONS



x'o-8{6c'c+h'c)

{at)
(A2)

To show that this is ellual to Z in Ell. (A l), make a
displacement x =x'+PRo which removes the linear
terms in the exponent in Ell. (A2) and adds (Pg'Ee).
Then the integral over the x~ may be completed to
give Eq. (Al). In Eq. (A2), the exponent is a sum
of site-diagonal terms; so the sums over the 0&

may be carried out to give

tor with all elements equal to the magnetic fieM h.
The o& are summed over values +1 and 0. Ferro-
magnetic coupling is assumed so k is positive
definite. The crystal-field splitting is 6 and bi-
quadratic exchange has been omitted for the mo-
ment. Now make a Gaussian integral representa-
tion of the exchange term:

~dO

g ~d t /~1/2 ~

'
d~ e-(1/B&xlE x

Z= idetvpZi " dx)
sss ~CO

&f&(h., S&) = —ln(l+2e ~ cosh2S&)

+ (I/KV) In(detPvZ), (A4)

~1/ =(I/O)(& ');/.
(A5)

The inclusion of a biquadratic exchange term re-
quires an additional integral representation analo-
golls 'to Ell. (A2) and leads to a continuous-spin
model with two order parameters.

-1xsxs x'X——'x+ hc[t+Ss s cosh(hx, —hh)]) .
t

(A3)
Now change variables to S; = x; —Ph/2 and obtain
Eg. (2. 2) with n = 1 and

*~01kperformed under the auspices of the U. S. Atomic
Energy Commission.
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