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Apparent superconductive fluctuation conductivity ("paraconductivity") oaf has been observed in very
"dirty" (short electron-mean-free-path), bulk, type-II superconductors in applied magnetic fields H up to
twice the zero-temperature upper critical field H„o. Peaks observed in the isomagnetic field

paraconductivity as a function of temperature at H & H„o are attributed to the suppression of
paraconductivity as T approaches either zero or values high in comparison with the zero-H transition
temperature T, . In the (H-T) region well beyond the upper-critical-field curve H„(T), the
experimentally derived kerf(H, T) is smaller, less dependent on the orientation of H with respect to
the measuring current density J, and decreases more rapidly with H than suggested by current theory.
As H is increased isothermally in the 80-140-kG region, the positive magnetoresistance associated with

the H quenching of paraconductivity gives way to a small negative magnetoresistance which is

probably not explicable on an ordinary static-localized-magnetic-moment basis.

There has been recent interest in the study of the
effects associated with thermodynamic fluctuations
of the superconductive order parameter, especial-
ly those effects which occur' ' at temperatures T
and/or applied magnetic fields H well outside the
(H- T) realm usually associated with equilibrium
superconductivity. In this regime, standard theory
often breaks down and new insight into supercon-
ductive interactions may be attained. In the pres-
ent article' we report on the investigation of super-
conductive fluctuation conductivity ("paraconductiv-
ity") in very "dirty, "bulk, type-II superconductors
in applied magnetic fields H up to 140 kG. The
present 2. 5-fold increase in the H-field capability
over that of previous work' has allowed the ob-
servation of near H quenching of the paracon-
ductivity and the resultant determination of a rea-
sonably accurate normal-state conductivity c„(H, T).
The more accurate base line o„(H, T) has then al-
lowed a better determination of the absolute magni-
tude of the paraconductivity &oz(H, T) = v(H, T)
—v„(H, T) and thus a better comparison of data,
with theory than was previously possible, especial-
ly well above the upper-critical-field curve H,~(T)
where ho&(T) is small. In addition, we have ob-
served (apparently for the first time in bulk,
type-II superconductors): (i) paraconductivity up
to about twice the zero-temperature upper critical
field H,zo (the paraconductivity does not appear to
be correctly described by current theory); (ii)
peaks in the isomagnetic-field Aoz(T) curves at
H& H,20, which we attribute to the suppression of
paraconductivity as T approaches either zero or
values high in relation to the zero-H transition
temperature T„(iii) a small negative magneto-
resistance in the 100-140-kG range, which is
probably not due to the presence of ordinary static
localized magnetic moments.

Figure 1 shows magnetoresistive characteristics
as measured for a typical, ' very dirty, paramag-
netically limited, "superconducting alloy Ti»Ru8
in the (H- T) region beyond both the upper- and
surface- critical-field curves shown in Fig. 2.
Magnetoresistive curves very similar to those of
Fig. 1 have been measured for Ti84Mo,8, Ti»Fe„
Tig20s8 Ti75V25 t Tl8eMn14, and Veo Ti30 Cl 10 and
will be reported in a subsequent paper. The mag-
netoresistance measurements were made with a
precision of about 3& 10 ', employing a standard
dc 4-lead technique, ' with an H-field homogeneity
of one part in 10' over the specimen volume.
The positive, saturating magnetoresistive curves
of Fig. 1 are attributed to the H quenching of
superconductive fluctuations ("magnetoparacon-
ductivity") rather than to ordinary normal-state
magnetoresistance. This interpretation is con-
sistent with (a) the high electrical resistivities of
the present alloys (p& 10 Qcm) which suggest,
on the basis of Kohler's-rule arguments, ' negligible
ordinary magnetoresistance, and (b) the nearly
flat magnetoresistive characteristics observed in
liquid neon at 27 K (= ST,), where near absence of
fluctuations would be expected. '

The field H&(T), indicated in Fig. 1, is defined
as the field at which the slope of an isothermal
magnetoresistive curve is zero, and is regarded
merely as an experimentally convenient measure
of a least upper bound for the existence of detect-
able paraconductivity under the present experimen-
tal conditions. It should be emphasized that H&
serves only as a rough measure of the highest H
at which paraconductivity could be investigated in
the present work and has little or no analytic sig-
nificance for fluctuation theory. Plots of H&(T),
such as Fig. 2, yield Hz( T) /H, 2-02. 0+ 02 for
TlgpRu8 Tl 84MO 18 and Tlg2Fe 8 . As far as we
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are aware, the present H& values represent the
highest fields, in relation to H,~o, at w'hich effects
associated with superconducting fluctuations have
thus far been observed in type-D superconductors.

A prominent feature of the magnetoresistive
curves of Fig. l is their progressive sharpening
vrith decrease of temperature, along with the as-
sociated decrease of II& shown in Fig. 2. We at-
t 'h t these effects [and related peaks in &ez {7',II
& 0 ) shawn in Fig. St to the decrease in fluctua-c20
t -f rming thermal energy kT as T decreases.son- o

koTh rossover in the curves of Fig. I at H=60ec
dis related both to the sharpening of the curves an

to the anomalous increase in the resistivity [higher
(V- V,)/V, ] at the highest II as temperature is re-
duced. The negative slope of the curves (negative
magnetoresistsnce) at the highest H has apparently
not been previously observed in alloys of the pres-
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FIG. 2. Besistively determined upper critical field

&,2n')»d sur«ce clitical field &,(&) fo»i92~u8.
theoretical, nonpararnagnetically limited, upper-critical-
field curve H~~(T) is in accord with Ref. 7 and the pres-
ently measured (dHc2/gT)& (see Pef. 6). H& ls merely
a rough measure of the highest H at which paraconductivity

ssedcould be investigated in the present work, as discusse
in the text.
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FIG. 1. Magnetoresistive curves fox' Ti92Rue as dis-
cussed in the text. V is the resistive voltage and V~ is a
constant nulling voltage applied with a six-dial, pV poten-
tiometer [V~(H IIJ) = 4392.50 p V, V~ (H z4) =4110.00 pV j.
V~ is chosen so as o o8 to offset most of the resistive vo tage

d th liow a large amplification of the off-balance
signal with. con8equent lnclease in the pl"ec1810Il 0 e
measurement. The normalized difference voltage (V
—V~}/V~ vs H is traced fx'om X-F recorder plots o (

netoresistive f' ld nsor The lower plot indicates the
extrapolation procedure fox' dex lvlng f/ sV/V and thus~ /0' = (& V /V~)(V, /V) asdiscussed inBef. 19. Thevari-
ous isothermal curves were measured at di er
peratures which are indicated along the right-hand side
of the figure. The curves shown for T=27 K have been
elevated by about 2x 10
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PIG. 3. Experimental normalized paraconductlvlty
her&(2'/T~}/o„ for various constant normalized measuring
fields II/H, 20.
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ent type.
The weak, high-H, negative magnetoresistance

shown in Fig. I is especially noteworthy because
standa rd localized- magnetic -moment behavior
(which is usually associated with negative mag-
netoresistance in metallic systems) has never, to
our knowledge, been observed in bcc Ti-base al-
loys, even though calorimetric, ' susceptibility, "
magnetization, ' and electrical-resistance" ~

measurements have been made on many different
specimens, some containing more than 5-at. Vo Cr,
Mn, or Fe ~ We suggest that the presently ob-

FIG. 4. Experimental normalized paraconductivity
ho~/a„ for various constant measuring temperatures,
plotted as a function of (H-H~2)/H~~. The theoretical
curves represent the Maki expressions (Ref. 22), based
on the Aslamazov-Larkin diagram, corrected for the
paramagnetic limitation as discussed in the text. The
theoretical Ao& values have been divided by the measured
o„(4.2 K, 140 kG) =7 ~ 0&& 103 0 cm- . In order to avoid
complications due to the sheath, the experimental 4o&/cr„
curves are derived from data taken only at H&H~(T),
where H~(T) is the apparent measured surface critical
field shown in Fig. 2.

served negative (BP/~T)„and negative (BP/SH)r
at 1.2 ~ T» 27 K and 0 ~ II» 140 kG may both re-
sult from conduction-electron interaction with
highly compensated or very rapidly fluctuating
localized spins, '6 as might also account for the
characteristic' high p (hence high H, ac) and nega-
tive' (sp/a T)„a at = 10 & T&300 K.

Figure 3 shows experimentally derived nor-
malized paraconductivity ~oz(T)/o„= (a —o„)/o„
at various normalized measuring fields H/H, ac.
Here o„(H, T) is the normal-state conductivity
and ~a~(T)/o„ is derived from the isothermal curves
of Fig. 1 by the linear extrapolation procedure in-
dicated in that figure. ' The maxima in the nor-
malized paraconductivity curves of Fig. 3 (Ref.
20) are not unreasonable: above H ac isofield
superconductive Quctuations should die out as T
approaches either zero or values high in relation
to T, ." Paraconductive peaks of this nature were
apparently first predicted by Thompson~' for thin
films and are implicit in the three-dimensional ex-
pressions for ~a'(T, JllH) derived by Maki a and by
Usadel ' and based on the Aslamazov-Larkin (AL)
diagram.

Figure 4 shows normalized experimental para-
conductivity curves ~oz/a„plotted as functions of
(H-H, a)/H, a. Curves for J=3 A/cm are nearly
identical to the 7=30 A/cm curves shown in Fig.
4. The rather minimal anisotropy~' for JIIH and
Jl H, and the rapid decrease of paraconductivity
with increase of H are notable. The theoretical
curves of Fig. 4 represent the &cr& expressions of
Maki based on the AL diagram but corrected for
the paramagnetic limitation in a manner consistent
with that suggested by Fulde and Maki ~

~6 The in-
clusion of (a) the Maki term, 7 (b) higher Landau-
level contributions to the AL term, ' ' and (c)
other possible terms which are nondivergent at
II,3, would only serve to elevate the theoretical
curves and thus increase the discrepancy with ex-
periment. Thus it appears that current microscop-
ic theory ' '"'7 does not properly describe the
present observations of paraconductivity well out-
side the upper-critical-field curve, where the ef-
fects of high-energy, very-short-wavelength
fluctuations should become especially ™portant.~
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