Fluctuation superconductivity at high magnetic fields*

J. W. Lue, A. G. Montgomery, and R. R. Hake Indiana University, Bloomington, Indiana 47401 (Received 22 July 1974)

Apparent superconductive fluctuation conductivity ("paraconductivity") $\Delta \sigma_f$ has been observed in very "dirty" (short electron-mean-free-path), bulk, type-II superconductors in applied magnetic fields H up to twice the zero-temperature upper critical field H_{c20} . Peaks observed in the isomagnetic field paraconductivity as a function of temperature at $H > H_{c20}$ are attributed to the suppression of paraconductivity as T approaches either zero or values high in comparison with the zero-H transition temperature T_c . In the (H-T) region well beyond the upper-critical-field curve $H_{c2}(T)$, the experimentally derived $\Delta \sigma_f(H, T)$ is smaller, less dependent on the orientation of H with respect to the measuring current density J, and decreases more rapidly with H than suggested by current theory. As H is increased isothermally in the 80–140-kG region, the positive magnetoresistance associated with the H quenching of paraconductivity gives way to a small negative magnetoresistance which is probably not explicable on an ordinary static-localized-magnetic-moment basis.

There has been recent interest in the study of the effects associated with thermodynamic fluctuations of the superconductive order parameter, especially those effects which occur¹⁻³ at temperatures T and/or applied magnetic fields H well outside the (H-T) realm usually associated with equilibrium superconductivity. In this regime, standard theory often breaks down and new insight into superconductive interactions may be attained. In the present article⁴ we report on the investigation of superconductive fluctuation conductivity ("paraconductivity") in very "dirty," bulk, type-II superconductors in applied magnetic fields H up to 140 kG. The present 2.5-fold increase in the H-field capability over that of previous work³ has allowed the observation of near H quenching of the paraconductivity and the resultant determination of a reasonably accurate normal-state conductivity $\sigma_n(H, T)$. The more accurate base line $\sigma_n(H, T)$ has then allowed a better determination of the absolute magnitude of the paraconductivity $\Delta \sigma_f(H, T) = \sigma(H, T)$ $-\sigma_n(H, T)$ and thus a better comparison of data with theory than was previously³ possible, especially well above the upper-critical-field curve $H_{c2}(T)$ where $\Delta \sigma_f(T)$ is small. In addition, we have observed (apparently for the first time in bulk, type-II superconductors): (i) paraconductivity up to about twice the zero-temperature upper critical field H_{c20} (the paraconductivity does not appear to be correctly described by current theory); (ii) peaks in the isomagnetic-field $\Delta \sigma_f(T)$ curves at $H>H_{c20}$, which we attribute to the suppression of paraconductivity as T approaches either zero or values high in relation to the zero-H transition temperature T_c ; (iii) a small negative magnetoresistance in the 100-140-kG range, which is probably not due to the presence of ordinary static localized magnetic moments.

Figure 1 shows magnetoresistive characteristics as measured for a typical,⁵ very dirty,⁶ paramagnetically limited, ^{5,7} superconducting alloy Ti₉₂Ru₈ in the (H-T) region beyond both the upper- and surface-⁵ critical-field curves shown in Fig. 2. Magnetoresistive curves very similar to those of Fig. 1 have been measured for $Ti_{84}Mo_{16}$, $Ti_{92}Fe_8$, $Ti_{92}Os_8$, $Ti_{75}V_{25}$, $Ti_{86}Mn_{14}$, and $V_{60}Ti_{30}Cr_{10}$ and will be reported in a subsequent paper. The magnetoresistance measurements were made with a precision of about 3×10^{-5} , employing a standard dc 4-lead technique, ⁵ with an *H*-field homogeneity of one part in 10^3 over the specimen volume. The positive, saturating magnetoresistive curves of Fig. 1 are attributed³ to the H quenching of superconductive fluctuations ("magnetoparaconductivity") rather than to ordinary normal-state magnetoresistance. This interpretation is consistent with (a) the high electrical resistivities of the present alloys ($\rho > 10^{-4} \Omega$ cm) which suggest, on the basis of Kohler's-rule arguments, ³ negligible ordinary magnetoresistance, and (b) the nearly flat magnetoresistive characteristics observed in liquid neon at 27 K ($\approx 8T_c$), where near absence of fluctuations would be expected.^{2,3} The field $H_f(T)$, indicated in Fig. 1, is defined

The field $H_f(T)$, indicated in Fig. 1, is defined as the field at which the slope of an isothermal magnetoresistive curve is zero, and is regarded merely as an experimentally convenient measure of a least upper bound for the existence of detectable paraconductivity under the present experimental conditions. It should be emphasized that H_f serves only as a rough measure of the highest Hat which paraconductivity could be investigated in the present work and has little or no analytic significance for fluctuation theory. Plots of $H_f(T)$, such as Fig. 2, yield $H_f(T_c)/H_{c20} = 2.0 \pm 0.2$ for Ti₉₂Ru₈, Ti₈₄Mo₁₆,⁸ and Ti₉₂Fe₈. As far as we

11

3393

are aware, the present H_f values represent the highest fields, in relation to H_{c20} , at which effects associated with superconducting fluctuations have thus far been observed in type-II superconductors.

A prominent feature of the magnetoresistive curves of Fig. 1 is their progressive sharpening with decrease of temperature, along with the associated decrease of H_f shown in Fig. 2. We attribute these effects [and related peaks in $\Delta \sigma_f$ ($T, H > H_{c20}$) shown in Fig. 3] to the decrease in fluctuation-forming thermal energy kT as T decreases. The crossover in the curves of Fig. 1 at $H \approx 60$ kG is related both to the sharpening of the curves and to the anomalous increase in the resistivity [higher $(V - V_s)/V_s$] at the highest H as temperature is reduced. The negative slope of the curves (negative magnetoresistance) at the highest H has apparently not been previously observed in alloys of the pres-

FIG. 1. Magnetoresistive curves for Ti₉₂Ru₈ as discussed in the text. V is the resistive voltage and V_s is a constant nulling voltage applied with a six-dial μV potentiometer $[V_s(H \parallel J) = 4392.50 \ \mu \text{V}, \ V_s(H \perp J) = 4110.00 \ \mu \text{V}].$ $V_{\rm c}$ is chosen so as to offset most of the resistive voltage and thus allow a large amplification of the off-balance signal with consequent increase in the precision of the measurement. The normalized difference voltage (V $-V_s$ / V_s vs H is traced from X-Y recorder plots of (V $-V_s$) vs V_{mr} , where V_{mr} is a voltage generated by a magnetoresistive field sensor. The lower plot indicates the extrapolation procedure for deriving $\Delta V_f/V_s$ and thus $\Delta \sigma_f / \sigma_n = (\Delta V_f / V_s) (V_s / V)$ as discussed in Ref. 19. The various isothermal curves were measured at different temperatures which are indicated along the right-hand side of the figure. The curves shown for T=27 K have been elevated by about 2×10^{-3} .

FIG. 2. Resistively determined upper critical field $H_{c2}(T)$ and surface critical field $H_s(T)$ for $Ti_{92}Ru_8$. The theoretical, nonparamagnetically limited, upper-critical-field curve $H_{c2}^*(T)$ is in accord with Ref. 7 and the presently measured $(dH_{c2}/dT)_{T_c}$ (see Ref. 6). H_f is merely a rough measure of the highest H at which paraconductivity could be investigated in the present work, as discussed in the text.

FIG. 3. Experimental normalized paraconductivity $\Delta \sigma_f (T/T_c)/\sigma_n$ for various constant normalized measuring fields H/H_{c20} .

FIG. 4. Experimental normalized paraconductivity $\Delta \sigma_f / \sigma_n$ for various constant measuring temperatures, plotted as a function of $(H - H_{c2})/H_{c2}$. The theoretical curves represent the Maki expressions (Ref. 22), based on the Aslamazov-Larkin diagram, corrected for the paramagnetic limitation as discussed in the text. The theoretical $\Delta \sigma_f$ values have been divided by the measured σ_n (4.2 K, 140 kG) = $7.0 \times 10^3 \Omega \text{ cm}^{-1}$. In order to avoid complications due to the sheath, the experimental $\Delta \sigma_f / \sigma_n$ curves are derived from data taken only at $H > H_s(T)$, where $H_s(T)$ is the apparent measured surface critical field shown in Fig. 2.

ent type.

The weak, high-H, negative magnetoresistance shown in Fig. 1 is especially noteworthy because standard localized-magnetic-moment behavior⁹ (which is usually associated⁹ with negative magnetoresistance in metallic systems) has never, to our knowledge, been observed in bcc Ti-base alloys, even though calorimetric, ¹⁰ susceptibility, ¹¹ magnetization, ⁵ and electrical-resistance^{3,5,12-15} measurements have been made on many different specimens, some containing more than 5-at.% Cr, Mn, or Fe. We suggest ¹⁵ that the presently ob-

*Supported in part by National Science Foundation Grant No. GH 33055.

- ¹R. E. Glover, Phys. Lett. A 25, 542 (1967); G. Bergman, Z. Phys. <u>225</u>, 430 (1969); L. B. Coleman, M. J. Cohen, D. Sandman, F. J. Yamagishi, A. F. Garito, and A. J. Heeger, Solid State Commun. 12, 1125 (1973).
- ²J. P. Gollub, M. R. Beasley, R. Callarotti, and M. Tinkham, Phys. Rev. B <u>7</u>, 3039 (1973).
- ³R. R. Hake, Phys. Rev. Lett. <u>23</u>, 1105 (1969); J. Appl. Phys. 40, 5148 (1969); Phys. Lett. A <u>32</u>, 143 (1970); Physica 55, 311 (1971).
- ⁴A preliminary account of this work has appeared: J. W.

served negative $(\partial \rho / \partial T)_H$ and negative $(\partial \rho / \partial H)_T$ at $1.2 \le T \le 27$ K and $0 \le H \le 140$ kG may both result from conduction-electron interaction with highly compensated or very rapidly fluctuating localized spins, ¹⁶ as might also account for the characteristic ¹⁷ high ρ (hence high H_{c20}) and negative ¹⁸ $(\partial \rho / \partial T)_{H=0}$ at $\approx 10 \le T \le 300$ K.

3395

Figure 3 shows experimentally derived normalized paraconductivity $\Delta \sigma_f(T) / \sigma_n = (\sigma - \sigma_n) / \sigma_n$ at various normalized measuring fields H/H_{c20} . Here $\sigma_n(H, T)$ is the normal-state conductivity and $\Delta \sigma_f(T) / \sigma_n$ is derived from the isothermal curves of Fig. 1 by the linear extrapolation procedure indicated in that figure.¹⁹ The maxima in the normalized paraconductivity curves of Fig. 3 (Ref. 20) are not unreasonable: above H_{c20} isofield superconductive fluctuations should die out as Tapproaches either zero or values high in relation to T_c .^{2,3} Paraconductive peaks of this nature were apparently first predicted by Thompson²¹ for thin films and are implicit in the three-dimensional expressions for $\Delta \sigma_f(T, J \parallel H)$ derived by Maki²² and by Usadel²³ and based on the Aslamazov-Larkin (AL) diagram.²⁴

Figure 4 shows normalized experimental paraconductivity curves $\Delta \sigma_f / \sigma_n$ plotted as functions of $(H - H_{c2})/H_{c2}$. Curves for J = 3 A/cm² are nearly identical to the J = 30 A/cm² curves shown in Fig. 4. The rather minimal anisotropy²⁵ for $J \parallel H$ and $J \perp H$, and the rapid decrease of paraconductivity with increase of H are notable. The theoretical curves of Fig. 4 represent the $\Delta \sigma_f$ expressions of Maki²² based on the AL diagram but corrected for the paramagnetic limitation in a manner consistent with that suggested by Fulde and Maki.²⁶ The inclusion of (a) the Maki term, ²⁷ (b) higher Landaulevel contributions to the AL term, 23,28 and (c) other possible terms^{23,27} which are nondivergent at H_{c2} , would only serve to elevate the theoretical curves and thus increase the discrepancy with experiment. Thus it appears that current microscopic theory^{22,23,26,27} does not properly describe the present observations of paraconductivity well outside the upper-critical-field curve, where the effects of high-energy, very-short-wavelength fluctuations should become especially important.²

Lue, A. G. Montgomery, and R. R. Hake, Bull. Am. Phys. Soc. <u>19</u>, 349 (1974).

⁵R. R. Hake, Phys. Rev. 158, 356 (1967).

⁶From the measured helium-temperature normal-state resistivity $\rho_n = 1.44 \times 10^{-4} \Omega$ cm, the resistively measured upper-critical-field slope at the zero-field transition temperature T_c , $(dH_{c2}/dT)_{T_c} = -35$ kG/K, and standard formulas and assumptions (Ref. 5), we deduce the "dirtiness" parameter $\xi_0/l \approx 290$, where ξ_0 is the BCS coherence distance and l is the electron mean free path. Also of interest here are $H^*_{c20} = 0.69T_c (-dH_{c2}/dT)_{T_c} = 81$ kG, $\xi(0) = (c\pi/2eP_{c20}^*)^{1/2} = 64$ Å, and $D = \frac{1}{3} V_F l = \varphi_0 \Delta_{00} (2\pi \pi H^*_{c20})^{-1}$

- = 0.30 cm² sec⁻¹, where H_{c20}^* is the theoretical zero-*T* nonparamagnetically limited upper critical field (Ref. 7), $\xi(0)$ is the zero-*T* Ginzburg-Landau coherence distance, *D* is the electronic diffusion constant, V_F is the Fermi velocity, φ_0 is the flux quantum, and Δ_{00} is the zero-*T* BCS half-energy gap.
- ⁷N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. <u>147</u>, 295 (1966); K. Maki, Phys. Rev. <u>148</u>, 362 (1966).
- ⁸Since both H_{c20} and T_c peak at Ti₈₄Mo₁₆ in the Ti_xMo_{100-x} system, the magnetoresistive and paraconductive characteristics in Ti₈₄Mo₁₆ (similar to those of Figs. 1-4) cannot be ascribed to H quenching of superconductivity in localized high-upper-critical-field regions.
- ⁹For reviews, see, e.g., C. Rizzuto, Rep. Prog. Phys. <u>37</u>, 147 (1974) and M. D. Daybell, in *Magnetism V*,
- edited by H. Suhl (Academic, New York, 1973), p. 121. ¹⁰R. R. Hake and J. A. Cape, Phys. Rev. <u>135</u>, A1151 (1964); L. J. Barnes and R. R. Hake, Phys. Rev. <u>153</u>, 435 (1967).
- ¹¹J. A. Cape, Phys. Rev. <u>132</u>, 1486 (1963).
- ¹²R. R. Hake, D. H. Leslie, and T. G. Berlincourt, J. Phys. Chem. Solids 20, 177 (1961).
- ¹³J. C. Ho and E. W. Collings, Phys. Rev. B <u>6</u>, 3727 (1972); E. W. Collings, Phys. Rev. B <u>9</u>, 3989 (1974).
- ¹⁴T. S. Luhman, R. Taggart, and D. H. Polonis, Scr. Met. 2, 169 (1968); V. Chandrasekaran, R. Taggart, and D. H. Polonis, J. Mater. Sci. 9, 961 (1974). The latter authors also review the literature and conclude that negative $(\partial \rho / \partial T)_{H=0}$ in Ti-base alloys of the present type is a singular property of the bcc phase and is not caused by reversible athermal ω transformation, as has sometimes been suggested in the literature.
- ¹⁵J. W. Lue, A. G. Montgomery, and R. R. Hake, in *Proceedings of the 20th Annual* Conference on *Magne tism and Magnetic* Materials, San Francisco, 1974 (to be published). It is suggested that bcc Ti-base alloys are characterized by Kondo or spin-fluctuation temperatures $\theta > 300$ K, corresponding to Kondo or spin-fluctuation fields $\Re \equiv k_B \theta / \mu_B > 4.6$ MG.
- ¹⁶Spin-disorder scattering was suggested in Ref. 12 as a mechanism for negative $(\partial \rho / \partial T)_{H=0}$ in bcc Ti-Mo alloys. Localized-spin fluctuations have previously been invoked in the case of bcc Ti-V alloys: (a) by A. F. Prekul, V. A. Rassokhin, and N. V. Volkenshtein, Zh. Eksp. Teor. Fiz. Pis'ma Red. <u>17</u>, 354 (1973) [JETP Lett. <u>17</u>, 252 (1973)], and V. A. Rassokhin, N. V. Volkenshtein, A. P. Romanov, and A. F. Prekul, Zh. Eksp. Teor. Fiz. <u>66</u>, 348 (1974) [Sov. Phys.-JETP (to be published)] to account for negative $(\partial \rho / \partial T)_{H=0}$; and (b) by K. H. Bennemann and J. W. Garland, Int. J. Magn. <u>1</u>, 97 (1971) and AIP Conf. Proc. <u>4</u>, 103 (1972), to account for the magnitude of T_c .
- ¹⁷See, e.g., Refs. 12, 14, and 15.
- ¹⁸The recent survey of J. H. Mooij, Phys. Status Solidi A <u>17</u>, 521 (1973) shows that for all disordered transition-metal alloys with low-temperature coefficients of resistance (considering data at $\approx 300-350$ K) (a) a negative $(\partial \rho / \partial T)_{H=0}$ is found in nearly all materials with ρ >1.3×10⁻⁴ Ω cm, and (b) $\rho^{-1} (\partial \rho / \partial T)_{H=0}$ is roughly proportional to ρ . Both (a) and (b) are consistent with the high Kondo or spin-fluctuation temperature model suggested in Ref. 15.
- ¹⁹It is assumed that for each isothermal magnetoresistance curve the linear magnetoresistance at $H > H_f$ is a good

approximation to the normal-state curve $(V_n - V_s)/V_s$, and that the normal-state magnetoresistance is linear over a wide-field range. (The latter assumption is supported by the linearity of the 27-K data shown in Fig. 1.) Thus, for example, the dashed-line linear extrapolation shown in the bottom portion of Fig. 1, near the curve difference label " $\Delta V_f/V_s$ ", is taken to represent $(V_n - V_s)/V_s$ for $H < H_f$ at T = 1.2 K, $H \perp J$. The labeled curve difference is then $\Delta V_f/V_s = [(V_n - V_s)/V_s] - [(V - V_s)/V_s] = (V_n - V)/V_s$. Multiplication of this curve difference by V_s/V (where V is, of course, a function of H and T) yields $[(V_n - V)/V_s](V_s/V) = (V_n - V)/V = (\sigma_n^{-1} - \sigma^{-1})/\sigma^{-1} = (\sigma - \sigma_n)/\sigma_n \equiv \Delta \sigma_f/\sigma_n$, since for constant measuring current density J and potential-lead spacing d, $V_n = \sigma_n^{-1}Jd$ and $V = \sigma^{-1}Jd$.

- ²⁰Related *minima* in *resistance* versus temperature curves of thin Al films have been observed by P. M. Tedrow and R. Meservy, Phys. Rev. B <u>8</u>, 5098 (1973) and K. Aoi, R. Meservy, and P. M. Tedrow, Phys. Rev. B <u>9</u>, 875 (1974) (see also Ref. 26). In that case the effects appear to be related to the onset of first-order uppercritical-field transitons, whereas here neither resistive measurements near H_{c2} nor direct magnetization measurements (Ref. 5) yield any evidence for first-order transitons. Tedrow *et al.* also observed a negative temperature coefficient of resistance and a linear negative magnetoresistance in Al films at high *H*.
- ²¹R. S. Thompson, Physica <u>55</u>, 296 (1971).
- ²²K. Maki, J. Low Temp. Phys. <u>1</u>, 513 (1969). In contrast, Maki's equation (16) for $\Delta \sigma_f (J \perp H)$ yields a $\Delta \sigma_f$ $(T, H > H_{c20}^*)$ which increases monotonically with increase of T.
- $^{23}\mathrm{K.}$ D. Usadel, Z. Phys. <u>227</u>, 260 (1969).
- ²⁴L. G. Aslamazov and A. I. Larkin, Fiz. Tverd. Tela <u>10</u>, 1104 (1968). [Sov. Phys.-Solid State <u>10</u>, 875 (1968)].
- ²⁵Near H_{c2} the theoretically predicted (Refs. 22, 23, and 28) $\Delta \sigma_f(H \parallel J) > \Delta \sigma_f(H_{\perp}J)$ and related *H*-induced one-dimensionality has apparently been observed: R. R. Hake, in *Low Temperature Physics-LT*13, edited by K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel (Plenum, New York-London, 1974), p. 638; R. F. Hassing, R. R. Hake, and L. J. Barnes, Phys. Rev. Lett. 30, 6 (1973).
- ²⁶P. Fulde and K. Maki, Z. Phys. <u>238</u>, 233 (1970). In the present case $\Delta \sigma_f$ is calculated from Eqs. (6), (11), and (16) of Ref. 22 [the right-hand side of Eq. (11) was multiplied by a factor $\frac{1}{4}$ H so as to make it consistent with Eq. (31) of Ref. 26] and then plotted as in Fig. 4 versus $(H - H_{c2})/H_{c2}$. Here the resistively-measured paramagnetically-limited upper-critical-field H_{c2} merely replaces the theoretical non-paramagneticallylimited H_{c2}^* , the field at which the theoretical $\Delta \sigma_f$ would diverge in the absence of the paramagnetic limitation. This method of treating the paramagnetic limitation is consistent with the Fulde-Maki prescription for $H \geq H_{c2}$ in that H_{c2}^* is replaced by H_{c2} .
- ²⁷K. Maki and H. Takayama, Prog. Theor. Phys. <u>46</u>, 1651 (1971); G. E. Clarke, Phys. Lett. A <u>35</u>, 233 (1971). These authors conclude that close to H_{c2} the Maki term is isotropic, diverges as $(H - H_{c2})^{-1/2}$, and is equal in magnitude to the AL-based term for $J \perp H$.
- ²⁸D. R. Tilley and J. B. Parkinson, J. Phys. C <u>2</u>, 2175 (1969); G. E. Clarke and D. R. Tilley, J. Phys. C <u>3</u>, 2448 (1970).