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Apparent superconductive fluctuation conductivity (“paraconductivity”) Ao, has been observed in very
“dirty” (short electron-mean-free-path), bulk,type-II superconductors in applied magnetic fields H up to
twice the zero-temperature upper critical field H .,,. Peaks observed in the isomagnetic field
paraconductivity as a function of temperature at H > H ., are attributed to the suppression of
paraconductivity as T approaches either zero or values high in comparison with the zero-H transition
temperature T .. In the (H-T) region well beyond the upper-critical-field curve H .,(T), the
experimentally derived Aoy(H, T) is smaller, less dependent on the orientation of H with respect to
the measuring current density J, and decreases more rapidly with H than suggested by current theory.
As H is increased isothermally in the 80-140-kG region, the positive magnetoresistance associated with
the H quenching of paraconductivity gives way to a small negative magnetoresistance which is
probably not explicable on an ordinary static-localized-magnetic-moment basis.

There has been recent interest in the study of the
effects associated with thermodynamic fluctuations
of the superconductive order parameter, especial-
ly those effects which occur®? at temperatures 7
and/or applied magnetic fields H well outside the
(H-T) realm usually associated with equilibrium
superconductivity. In this regime, standard theory
often breaks down and new insight into supercon-
ductive interactions may be attained. In the pres-
ent article* we report on the investigation of super-
conductive fluctuation conductivity (“paraconductiv-
ity”) in very “dirty, ” bulk, type-II superconductors
in applied magnetic fields H up to 140 kG. The
present 2.5-fold increase in the H-field capability
over that of previous work® has allowed the ob-
servation of near H quenching of the paracon-
ductivity and the resultant determination of a rea-
sonably accurate normal-state conductivity o,(H, 7).
The more accurate base line ¢,(H, T) has then al-
lowed a better determination of the absolute magni-
tude of the paraconductivity Ao(H, T)=0(H, T)

- 0,(H, T) and thus a better comparison of data
with theory than was previously® possible, especial-
ly well above the upper-critical-field curve H,,(T)
where Ao,(T) is small. In addition, we have ob-
served (apparently for the first time in bulk,
type-II superconductors): (i) paraconductivity up
to about twice the zero-temperature upper critical
field H,y, (the paraconductivity does not appear to
be correctly described by current theory); (ii)
peaks in the isomagnetic-field Aorf(T) curves at
H> H_,, which we attribute to the suppression of
paraconductivity as T approaches either zero or
values high in relation to the zero-H transition
temperature T,; (iii) a small negative magneto-
resistance in the 100-140-kG range, which is
probably not due to the presence of ordinary static
localized magnetic moments.

11

Figure 1 shows magnetoresistive characteristics
as measured for a typical, ® very dirty, ® paramag-
netically limited, *7 superconducting alloy TigeRug
in the (H-T) region beyond both the upper- and
surface-° critical-field curves shown in Fig. 2.
Magnetoresistive curves very similar to those of
Fig. 1 have been measured for TigyMo4, TigFegq,
TigeOsg, TigsVas, TiggMny,, and Vg, Tise Cryg and
will be reported in a subsequent paper. The mag-
netoresistance measurements were made with a
precision of about 3% 107, employing a standard
dc 4-lead technique, 3 with an H-field homogeneity
of one part in 10° over the specimen volume.

The positive, saturating magnetoresistive curves
of Fig. 1 are attributed® to the H quenching of
superconductive fluctuations (“magnetoparacon-
ductivity”) rather than to ordinary normal-state
magnetoresistance. This interpretation is con-
sistent with (a) the high electrical resistivities of
the present alloys (p> 10"* Qcm) which suggest,
on the basis of Kohler’s-rule arguments, * negligible
ordinary magnetoresistance, and (b) the nearly
flat magnetoresistive characteristics observed in
liquid neon at 27 K (~87,), where near absence of
fluctuations would be expected. 22

The field H/(T), indicated in Fig. 1, is defined
as the field at which the slope of an isothermal
magnetoresistive curve is zero, and is regarded
merely as an experimentally convenient measure
of a least upper bound for the existence of detect-
able paraconductivity under the present experimen-
tal conditions. It should be emphasized that H,
serves only as a rough measure of the highest H
at which paraconductivity could be investigated in
the present work and has little or no analytic sig-
nificance for fluctuation theory. Plots of H(T),
such as Fig. 2, yield H/(T,)/H,,=2.0%0.2 for
TigsRug, TigMOyg, % and Tig,Fey. As far as we
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are aware, the present H, values represent the
highest fields, in relation to H,,, at which effects
associated with superconducting fluctuations have
thus far been observed in type-II superconductors.
A prominent feature of the magnetoresistive
curves of Fig. 1 is their progressive sharpening
with decrease of temperature, along with the as-
sociated decrease of H, shown in Fig. 2. We at-
tribute these effects [and related peaks in Ao, (T, H
> H,5) shown in Fig. 3] to the decrease in fluctua-
tion-forming thermal energy 27T as T decreases.
The crossover in the curves of Fig. 1 at H~60 kG
is related both to the sharpening of the curves and
to the anomalous increase in the resistivity [higher
(V= V.YV, ] at the highest H as temperature is re-
duced. The negative slope of the curves (negative
magnetoresistance) at the highest H has apparently
not been previously observed in alloys of the pres-
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FIG. 1. Magnetoresistive curves for TigpRug as dis-
cussed in the text. V is the resistive voltage and Vis a
constant nulling voltage applied with a six-dial uV poten-
tiometer [VS(H IIJ) =4392.50 pV, Vo (H 1J)=4110.00 uv].
V, is chosen so as to offset most of the resistive voltage
and thus allow a large amplification of the off-balance
signal with consequent increase in the precision of the
measurement. The normalized difference voltage (V
—Vg/Vg vs H is traced from X-Y recorder plots of (V
-Vy vs V, , where V is a voltage generated by a mag-
netoresistive field sensor. The lower plot indicates the
extrapolation procedure for deriving A Vf/ Vs and thus
Ace/0,= (AV;/Vg)(Vy/V) asdiscussed inRef. 19, Thevari-
ous isothermal curves were measured at different tem-
peratures which are indicated along the right-hand side
of the figure. The curves shown for T=27 K have been
elevated by about 2x 1073,
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FIG. 2. Resistively determined upper critical field
H,(T) and surface critical field Hy(T) for TigRus. The
theoretical, nonparamagnetically limited, upper-critical-
field curve H%(T) is in accord with Ref. 7 and the pres-
ently measured (dHy,/dT)r, (see Ref. 6). Hyis merely
a rough measure of the highest H at which paraconductivity
could be investigated in the present work, as discussed
in the text.
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FIG. 3. Experimental normalized paraconductivity
Aoy(T/T,)/ o, for various constant normalized measuring
fields H/H .
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FIG. 4. Experimental normalized paraconductivity
Aof/ o, for various constant measuring temperatures,
plotted as a function of (H —~H)/H,. The theoretical
curves represent the Maki expressions (Ref. 22), based
on the Aslamazov-Larkin diagram, corrected for the
paramagnetic limitation as discussed in the text. The
theoretical Aoy values have been divided by the measured
o, (4.2 K, 140 kG) =7.0x10° @ cm™!, 1n order to avoid
complications due to the sheath, the experimental Arrf/ Op
curves are derived from data taken only at H>H(T),
where Hy(T) is the apparent measured surface critical
field shown in Fig. 2.

ent type.

The weak, high-H, negative magnetoresistance
shown in Fig. 1 is especially noteworthy because
standard localized-magnetic-moment behavior®
(which is usually associated® with negative mag-
netoresistance in metallic systems) has never, to
our knowledge, been observed in bee Ti-base al-
loys, even though calorimetric, ° susceptibility,
magnetization, ° and electrical-resistance®® 2-%
measurements have been made on many different
specimens, some containing more than 5-at.% Cr,
Mn, or Fe. We suggest’5 that the presently ob-

served negative (9p/87), and negative (9p/8H),
at 1.2=7T=27 K and 0= H= 140 kG may both re-
sult from conduction-electron interaction with
highly compensated or very rapidly fluctuating
localized spins, * as might also account for the
characteristic’ high p (hence high H,,) and nega-
tive’® (3p/87T)y.0 at = 10< T<300 K.

Figure 3 shows experimentally derived nor-
malized paraconductivity Ao y(7)/c,= (0~ 0,)/0,
at various normalized measuring fields H/H,z .
Here o,(H, T) is the normal-state conductivity
and Acf(T)/or,, is derived from the isothermal curves
of Fig. 1 by the linear extrapolation procedure in-
dicated in that figure.® The maxima in the nor-
malized paraconductivity curves of Fig. 3 (Ref.
20) are not unreasonable: above H,,, isofield
superconductive fluctuations should die out as T
approaches either zero or values high in relation
to T,.%3 Paraconductive peaks of this nature were
apparently first predicted by Thompson?! for thin
films and are implicit in the three-dimensional ex-
pressions for Ag,(7, JiH) derived by Maki* and by
Usadel® and based on the Aslamazov-Larkin (AL)
diagram.?*

Figure 4 shows normalized experimental para-
conductivity curves Ao, /o, plotted as functions of
(H-Hy,)/H,. Curves for J=3 A/cm? are nearly
identical to the J=30 A/cm?® curves shown in Fig.
4. The rather minimal anisotropy? for JIH and
J 1 H, and the rapid decrease of paraconductivity
with increase of H are notable. The theoretical
curves of Fig. 4 represent the Ao, expressions of
Maki? based on the AL diagram but corrected for
the paramagnetic limitation in a manner consistent
with that suggested by Fulde and Maki.? The in-
clusion of (a) the Maki term, %’ (b) higher Landau-
level contributions to the AL term, 2*28 and (c)
other possible terms?2? which are nondivergent at
H,,, would only serve to elevate the theoretical
curves and thus increase the discrepancy with ex-
periment. Thus it appears that current microscop-
ic theory??2328:27 does not properly describe the
present observations of paraconductivity well out-
side the upper-critical-field curve, where the ef-
fects of high-energy, very-short-wavelength
fluctuations should become especially important. 2
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