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The mass fluctuations in a quantum-crystal alloy lead to a long-range interaction between the particles.
For low He concentrations in 'He, this interaction requires a modification of the simple picture of
mass-fluctuation waves. %'e determine the effect of this interaction on the motion of a 'He particle
through "He and give an alternate explanation of the data that is assumed to show the existence'of
these excitations. %e set a limit at x, g 10 ' for the onset of mass-fluctuation-wave behavior.

I. INTRODUCTION

"Mass-fluctuation waves" (MFW) were invented
independently by Andreev and Lifshitz' and Guyer
and Zane. These excitations describe the coherent
Dlotion of Rn lD1purlty RtoDl through R crystRl. Fur-
ther theoretical discussion of them is found in Refs.
3-6. The early survey experiments by Myoshi,
Cotts, Greenberg, and Richardson on solid 'He-4He
mixtures suggested that dilute He-in- He solid
mixtures are a suitable system in which to seek
evidence for these excitations. 6 Subsequently
Greenberg, Thomlinson, and Richardsone'~ reported
T, and Ta measurements that showed compelling
evidence for He tunneling in He. Richards et
&E. ~ ' ' have undertaken an extensive set of mea-
surements on dilute He-in- He mixtures designed
to find evidence for the coherent motion of the im-
purity, i.e. , for the existence of He MFW.
These measurements include diffusion data in addi-
tion to T~ and Ta data. Richards et a/. have argued
that only a diffusi. on measurement gives a clear
signature for coherent motion. Recently Grigor'ev
and co-workers' 4 have verified and extended the
diffusion measurements of Richards et al.

Many aspects of the data of Richards et al. Rre
coDsisteDt with the qualitative feRtures expected
using the MFW description of the 'He motion. But
there are two serious difficulties in the quantifica-
tloll of such a tiescllptioll: (1) The 1'ate of He- He

tunneling must be taken to be about two orders of
magnitude below what is regarded as R plausible
value '; (ii) the interaction between He inlpurities
must be taken to be about three orders of magnitude
below what is regarded Rs R plausible value. '"

This paper provides an explanation of the mea-
surements of Richard et &l. and Grigor'ev and co-
workers in terms of 'He tunneling in the presence
of a strong He- He interaction. This explanation
in terms of an intemetion model is offered as an
alternative to the MI' R' model. It employs plausi-
ble magnitudes for the basic parameters describing
the system. The interaction model yields a 'He

concentration limit below which MFW behavior

should be seen in a diffusion experiment. The ex-
periments of Richards et &l. and Grigor'ev and co-
workers reach down to this limit, xs«10 '.

In Sec. II we derive the Hamiltonian that we use
to describe a He- He mixture. We employ a sin-
gle-particle representation of the particle motions
using a few of the low-lying states of an average
crystal, a crystal with an average mass at each
lattice site. The real crystal has mass fluctuations
that cause its Hami, ltonian to depart from the aver-
age crystal Hamiltonian. These mass fluctuations
lead to a mass-fluctuation-mass-fluctuation inter-
action which is important to the description of He

motion at low 'He concentrations. We assess the
D1Rgnltude Rnd rRDge of the mass-fluctuation-mass-
fluctuation interaction in Sec. III. We find it to be
of strength 102 K and to fall off as x '. In Sec. IV
we examine the effect of the mass-fluctuation-
mass-fluctuation interaction on the behavior of a
He MFW. We find that in the concentration range

10 '~ x,—10 a He particle moves incoherently
because of the mass-fluctuation-mass-fluctuation
interaction. The diffusion constant and T~ that we

calculate for this concentration range are in good
qualitative and quantitative agreement with the data
of Richards et ~E. and Grigor'ev and co-workers.
%6 show that a rate of He- He tunneling similar to
the rate of 'He-'He tunneling is consistent with the
data. We expect coherent sHe motion, i.e. , a 'He

MFW, at xs«10 '. Section V contains a brief sum-
mary of our results and conclusions. The details
of many of the calculations that are required to
support the arguments in the main body of the paper
are contained in Appendices A-E. These include
a reformulation of the small-polaron problem in
Appendix D that may be of some interest.

II. THEORY OF THE HAMII. TONIAN

In this section we derive the equation for the
ground-state energy that leads to phase separation
Rnd to the interaction between impurity atoms. We
formulate the theory, in second-quantized form,
using the single-particle states of the average sin-
gle crystal (average crystal), i.e. , the single-par-
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ticle states generated by the solution to the problem where

2

&(xp) = —'(~ '&+- Z ~(&i),

(
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= xp —+ {1—xp) —= —+ xp ————
I (2)
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and xp =Np/N is the PHe concentration. A solid He-
He mixture ls described by

We assume that the Einstein-oscillator ground-
state problem associated with X is solved with the
results

%0 EP(x3}40

+,=....el"( „)....i( „I,I). (5)

Here P fP' is a single-particle wave function (per-
haps of the form p,'@ =Apexp[- pe (r; —R;)']] and g
is the part of the pair wave function that, with s,
yields the t matrix,

t(x„r,~) =g(xp, r,~)v(r„) . (6)

The details of the solution of the ground-state prob-
lem with & are described by Takemori and Guyer. ~v

We assume that in addition to the ground-state sin-
gle-particle wave functions Q'0' and the ground-
state t-matrix elements, too, oo, we also have a
knowledge of the low-lying excited states and cor-
responding t-matrix elements (see, for example,
Appendix C). Using these we can write X in sec-
ond-quantized form,

K =Q [Z(R)„n(R),+Z(R)„n(R), +Z(R)ppn{R)0]+
2 Q [t(RR')„,„n(R),n(R'), + t(RR')„„n(R),n(R'),

+t(RR') n(R) n(R') ]++[t(RR') n(R) n(R') +t(RR') n(R) n(R') +t(RR') n(R) n(R') ]
RRe

+ Q [t(RR')00 pqn(R)0+ t{RR')~q pqn(R)q+ t(RR')00 pqn(R)p](b~t, + bR, )

+ Q [t(RR')0, p,n(R) 0+ t(RR')„ppn(R), + t(RR')02, 0pn{R)p](d R~+dR. )+—Q t(RR')0, 0,(bs~ + bR)(bt, + bs, )
RRr RR

+—Q t(RR )00 00(ds+d„)(d~, +d~,)+Q t(RR )0, 0,(b„+b„)(d~,+ds, )+Q[aZ(R)ppn(R)0
RRr RR' R

+~Z(R)„n(R), +~Z(R)„n(R), +~Z(R}„(dt+d,)],

where e„„creates a particle in state v at lattice
site R, n(R)p—-csvcsp q bs csgcEilpq ~d ds cs?Csp'
For the states 1 and 2 we employ the approximate
states

Q&"' =A.,az exp[- 2n'(r —It)' ]

0"' =& [1 --'&'(~ -R)'] exp f- ,'n'(r - R—)']. (9)

The 15 potential energy terms in Eq. (7) are shown
in Fig. 1. We understand b~& to create a ChsPlaee-
ment fluctuation and ~~& to create a svidth fluctua-
tion (see Fig. 2). The displacement-displacement

coupling constant, t(RR')0, 0„ is the random-phase-
approximation (RPA) phonon coupling. The displace-
ment-width coupling constant, t(RR')0~ 00, is the
RPA cubic anharmonic phonon coupling, etc. (see
Appendix C). There are lots of terms in Eg. (7).
Most of them describe properties of a perfect sin-
gle crystal. The last four terms describe effects
due to the mass fluctuations away from the average
crystal. If we systematically go through Eg. (7)
me can understand the physics in most of the terms
and achieve an enormous simplification of the equa-
tion. To this end we use n(R)0+n(R)z+ n(R)p= 1 to
rewrite Eg. (7) (with rearrangement} in the form

X=gZ(R)„+-g t{RR')„„+g~Z(R)„+g[e(R), —e(R),]n{R),+- g t(RR')„„(b,'+ b, )(b'„, + b„,)
R 2 RRr

+/[a(R)p —e(R)0 jn(R)p +- P t(RR')00 00(d~s +ds)(ds~, +ds. ) + P t(RR')0~ 00(be + bs)(d ~, +ds, }
R 2 RRr RRr

+ g (t(RR )pp pg + [t(RR )gg pg t(RR )pp pg]n(R)g + [t(RR )00 pg t(RR )pp pg]n(R)g(b~t +bs)
RRr
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+ P fK(R)~+ t(RR')pp pp+ [t(RR')pp pp]n(R)z+ [f(RR')pp ~ —t(RR')pp pp]n(R)p](ds~, +ds, )RRi

+—P [t(RR')p, p, +t(RR')»» —2t(RR')pp, »]n(R),n(R'),
2 RRp

+—P 2[t(RR')pp, pp+t(RR')i4pp —t(RR')pp» —t(RR')pp pp]n(R), n(R')p
2 zz'

+- g [t(RR')pp~pp+ t(RR')pp pp
—2f(RR')pp pp]N(R)pn(R')p ++&K(R)pp(ds+d„),

RR' R

where

e,(R) =K(R)„„+Qt(RR')„, pp+hK(R)„„.

(12)

(i) The first term in this equation is the Ein-
stein-oscillator ground-state energy. This con-
tribution to the energy yields the phase separation
curve to good approximation. '7 We define

Ep(xp) g K(R)pp + g t(RR )pp pp
B 2 RR~

(ii) The second term in Eq. (10) is the fluctua-
tion in the kinetic energy from the average crystal.
This contribution to the energy is zero:

g ~K(R) =-((~K(R))) = 0.

oscillator ground state. We note that

and

t(RR')„„p,= 0
BA(&')

K(R)pp+ + t(RR )pp, pp
= 0~

8'0(R)

using the orthogonality of the P. Both the sixth
and seventh terms are of order b' or b d. We drop
them.

(vii) The eighth, ninth, and tenth terms in Eq.

(iii) The third term in Eq. (10) yieMs the RPA
displacement fluctuations (phonons). We define

0

XL)= fR 1 E R p R 1+ tRR pl p1
R 2 RR~

x (f's +4)(4 + 4') ~

These phonons are discussed in this form by Guy-
er. " They are essentially the phonons of Nosanow
and Werthamer. '9

(iv) The fourth term in Eq. (10) yields the RPA
width fluctuation. We define

0

X,=P[~(R), —p(R),]n(R), +- g t(RR')„,p,2 BR'

(de+de)(ds + s ) ~ (14)

0

This Hamiltonian will be discussed in some detail
below 2

(v) The fifth term in Eq. (10) is the cubic an-
harmonic coupling of displacement fluctuations and

width fluctuations, i.e. , a part of the three-phonon
process. We define

Kpp = g t(RR')pi, pp(bs+bR)(de~+de, ) .
RRp

When the displacement fluctuation and width fluctua-
tion are regarded as independent entities KD~ cou-
ples them.

(vO The sixth and seventh terms in Eq. (10) are
the displacement and width fluctuation at R' due to
deviations of the particle at R from the Einstein-

0

2

0

0

FIG. 1. Effect of the potential energy on the low-lying
single-particle states. The various terms in the second
quantized Hamiltonian, Eq. (7), are illustrated by what
they do to the single-particle states.
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KD =QK01D(q)(btb, + 2), (21)

where

801,(q) = ,' [—a~210+2n,e„m,(q}]'",

FIG. 2. Single-particle states. (a) Addition of the
first excited state to the ground state causes the wave
function to be displaced to the right or left. This type of
admixture is called a displacement fluctuation. (b) Addi-
tion of the second excited state to the ground state causes
the width of the wave function to change, without chang-
ing the position of the peak. This type of admixture is
called a width fluctuation.

my&(q) = e t(RR )p1 p1 r

R'X(R)

and a0,0
-- ((c,)) —((&0)).

For the WF Hamiltonian we have

X =Q [&2(R) —E1(R)]n2(R)+ —p t(RR')„„
R 2 RR'

x (d R + dR ) (d Rr +dRr ) . (22)

As in the case of the DF's, we take e„(R)=((2„(R)))
and we assume that the WF's and DF's do not inter-
fere with one another; i.e. , we use no+n, =1 and
write

(10) are high-order fluctuations in the potential en-
ergy. They are proportional to n; we drop these
terms.

(viii) The eleventh term in Eq. (10) is the tran-
sition 0- 2 induced by the fluctuation in inverse
mass at R away from (m '). This is the major
term in Eq. (10) that results from the fluctuation
in mass.

With the definitions in Eqs. (11)-(17)we may
write the Hamiltonian in the form

X(X3) E (X03) +3CR +%or +XR~

+ QLK(R)02(dtR+dR) . (18)

The terms &D, M~, and ~~ describe the propaga-
tion and interaction of the displacement fluctuations
(DF's) and the width fluctuations (WF's). Such
terms are present in the description of perfect sin-
gle crystal. The last term in this equation brings
about the effects due to the mass fluctuations.

For the DF Hamiltonian we have

RR = Q [e,(R) —ep(R)]n(R), +—Q t(RR')01 0,
R 2RR'

x(bR+bR)(bR +bR ). (19)

We take 2,(R) =K„+t1K(R)„+pR,t(RR')„,00=((&,(R)))
and 00(R) =Koo+&K(R)00+QR, t(RR )00,00=((&0}). Both
((e,(R))) and ((&0(R))) are numbers independent of
R. Further, we write n(R), =bt b„(this is strictly
correct if only the 0 and 1 states are involved, mo

+n, = 1). Thus Eq. (19) takes the form

1~+D Z ~10bRbR + ~ t(RR )01,01
R

x(bR+bR)(bR +bR ) (2o)

It is straightforward to diagonalize this Hamiltonian
employing a Bloch transformation and a Bogoliubov
transformation, with the result (see Appendix A)

&~=K t'&20dRdR+ Zt(R-R )oo, o.
R RR2

x (dR+dR) (de, +d„.), (28)

where &@20 = ((&2)) —((eo)). Then, following the
same steps as are employed in dealing with Eq.
(20), we find

Ror =Q 5 Door(l2)(d 2d2+ 2) r (24)

Z [+~20bRR'+ 2t(RR )p2 021 ~R +K(R)02,
R'

(28)
+ or 2 [ 20bRR' R+Rr + 2t(RR )02, 02(+R + +Rr )]

RR2

+ Q AK (R)02D2, (RR )ELK(R )02,

where Do, (RR ) is defined by

where

@+or(b) 2 [+~20 + 2+ ~20mpr(t2) ]

mw(t2) = p e'"'" "'t(RR )02, D2 ~

k' A(R)

The excitation created by d„ is a width fluctuation.
It propagates with energy @&op (k) = —,[he20
+ 26&20m~(t2)]' . For the DF we know lim, 0&(q)-q; for the WF we do not know its 0 - 0 behavior.

For the moment we drop the DF-WF interaction
and consider the treatment of the mass-fluctuation
term. We look at ~+5C =- Rp, ,

1
3Cgr = ~ +620dRdR+ ~ t(RR )p2 p2

R 2 RR2

x (dt +d„) (dt, +d„,)+ g t2K(R)02(dtR+dR).
R (25)

We may eliminate the linear term in the WF opera-
tors dR by introducing aB+aB, where aR is a num-
ber. We find



3378 WHITTAK HUANG, H. A. GOLDBERG, AND R. A. GUYER

Q DW(RR ) [tl&205s"„.+2t(R R )02 02]= —5„„,.

We may solve Ell. (27) employing the WF disper-
sion relation. Since

R = Q t(RR )0, 02 AK(R )02(b„+bs) .
RR~

""—«2o
(s5)

When X is introduced into the Hamiltonian along
with KD we have XD+R' =R~,

[K&uw(q)]' = 4[&6 02+24& 2B0lw(q}]

and the Fourier transform of Ell. (27) is

(4&«20}Dw(q) I @~w(q}l
' = —1,

we have

(28) 1 ~ p

&D = ~ Aembzz~ bzbz + —Z t(RR }01,01
zz' 2 zA

x(bst+bs) (b„', +b„,) + Q A(R)(b„'+b„),

where

(38)

&&so
W(q) 4b 2

( )2 (so) A(R) =g t (RR )01 02 AK(R )02 .
8' ao

(37)

Thus
~«t

e q R-R

4hZ ~ Pl (q)

We follow the same procedure in treating this
Hamiltonian as we followed in treating Eq. (25).
The result is

This latter formula is to be compared to the cor-
responding formula for the inverse of the phonon
dynamical matrix (see below). Thus we can write

R~=K~+ g A(R)D (RR') A(R ), (s8)

XW=X +mr' ',
where

(32)

where

g DD(RR ) [A&105D~isi+ 2t(R R )pl pl] = —5DDi

(s9)
We have

R~l" = Q &E(R)02DW(RR )&K(R )02 (33) ~&io efq R-R"
DD(RR )= Q ( )

(40)

is a direct interaction between the mass fluctuation
at 8 and the mass fluctuation at R communicated

by the width fluctuation. For the Hamiltonian de-
scribing the system we take (we continue to ignore

+DW)

tl &D(q) 4[ ~10 + 2 ~10~D(q) ] ~

We write E11. (38) in the form

(41)

5C(x3) —Ep(x3) + RD +XW +Xf (34)
LCD —KD +5CI

where

(42)

where Ep(xp), XD, ~, and Rz" are given by Eqs.
(11), (21), (24), and (33), respectively.

In order to estimate the consequences of 3CI'" in

Eq. (32) we need to know the strength of this inter-
action and its range. We discuss this question in

Sec. III. From that discussion we learn that R,"'
is relatively weak and short ranged.

In addition to the direct interaction embodied in
I"' there is a long-range interaction between mass

fluctuations brought about by the displacement of
the neighbors of a mass fluctuation. The term 3C~~

in the Hamiltonian couples the width fluctuation at
R due to AK(R)02 to the displacement fluctuation at

8 . Then, the displacement fluctuation at 8 is
communicated across the crystal by the phonons to
interact with a similar displacement fluctuation at

8 due to a width fluctuation at S. This process
mixes b and d operators; it is most easily de-
scribed in perturbation theory. We return to Eq.
(18). The last term in Eg. (18) gives rise in sec-
ond-order perturbation theory to a displacement
fluctuation at R described by

X &2& =g A(R)D, (RR')A(R') .
(4s}

x(x3) =E,(x)+xD+x +X, ,

where

=x &"+x"& .I ' I ' I

(44)

(45)

This is the total Hamiltonian we use in this paper.
The two excitation terms 3CD and ~ correct the
Einstein-oscillator ground-state energy slightly
and describe the thermal excitations. As we are
at low temperature, we drop these terms and con-
centrate in the remainder of this paper on the
mass-fluctuation-mass-fluctuation interaction
given by Eq. (45).

We see that both the direct width fluctuation cou-
pling of BK(R)02 to bK(R )02 given by Eq. (33) and

the indirect displacement fluctuation coupling given

by Eg. (43) are of the same form. We write the
total Hamiltonian as
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III. MASS-FLUCTUATION-MASS-FLUCTUATION
INTERACTION

In this section we discuss the quautative effects
of the MF-MF interaction and estimate its order
of magnitude.

The MF-MF interaction is given by Eqs. (45),
(43), and (33), where D()(RR") and Dp, (RR') are
given by Eqs. (40) and (31), respectively, and

(48)

If there is a 3He atom at R we have

AK(R)pp ——EK(1 xp)—np(R), (4V)

where bK =- ——,'5 (VP)pp[(1/mp) —(1/m4)]. If there is
a He at R we have

~K(R)„=—~Kx,n, (R) .
Thus we may write

X ~~' =Q &KP D)),(RR') [np(R) —xp][np(R') —xp],

(48)
where we have used np(R)+n4(R) =1. Similarly,
we have

X(lp) = Q A(RR') ~ D()(R'S') ~ A(S'S)[n, (R) -xp]
RR'SS&

x[n, (S) -x,],
where A(RR') = bK(1/happ)t (RR')pp p(. For a ran-
dom distribution of PHe in 4He (np(R)) = xp and these
interactions lead to the energy

(Ki) = +4K Dp(RR)+ Q A(RR') ~ D()(R'S')
R RR'S'

L(s'R)) x, (1 —x,), (4g)

which makes a small additional contribution to the
phase separation temperature calculated using
Ep(xp) only.

As a consequence of the interaction described
by X~, different arrangements of the particles in
an isotopic mixture lead to different energy levels
for the system. In principle these energy levels
make themselves known in a variety of ways. For
example, because of the quantum-mechanical
tunneling of the particles in a mixture, various
particle arrangements are accessible to take up
the energy available from a thermal reservoir;
JCI should be seen in thermodynamic mea-
surements. 2 ' Further, at nondilute concen-
trations, an interaction between pairs of particles
requires that one modify the simple picture of
quantum tunneling to account for the effects of the
interaction. At the very least the presence of an
interaction sets a concentration threshold for the

onset of MF% behavior. To quantify this discus-
sion we require an estimate of the order of mag-
nitude of the MF-MF interaction.

To estimate the order of magnitude of the MF-
MF interaction we need to know Dv(RR') and
Dn(RR'). From Eqs. (31) and (40) we see that this
in turn requires knowledge of &up, (k) and &on(k). It
is easy to learn as much as is necessary about
&u()(k); it is not easy to learn about (d~(k). Thus we
begin by discussing Dn(RR'). From Eq. (40) we
have

or

2
(RISI) 3& ~ ea ea (a ~ (R'-s')

2m' ~ —p)~(q)p
(50)

x [n, (R ') -x,], (53)

where s = &Kpp(l/+spp)f(RR )pp pg measures the
strength of the coupling of a width fluctuation at R
to a displacement fluctuation at R'. (This result
is achieved using the plausible assumption ™D=D™I

that is verified by detailed calculation of D using
the continuum approximation. ) If Dp(RR') is iso-
tropics' D~is zero and Xl~' is zero. ~ But from
the continuum approximation of Dederich and Leib-
fried'p we know that D(RR') is anisotropic and
V' D~ nonzero. Using their results as described
in Appendix B, we obtain

& D (r)= cy21 1
5~~' C ' (54)

where ~ measures the width of the single-parti-
cle wave funct'on [see Eq. (8)] and C» is the elas-

) ) ~ d dlD()(R'S') = exp &s.s ' —exp &p. p
'

~
D()(RS),dR GS)

(51)
where d„s=R' —R. Here in writing Eq. (50) we
use the full three-branch generalization of the one
branch D~ that we employed in developing the
model Hamiltonian. pp We write Eq. (51) in place
of Eq. (50) to reference the point of the interac-
tion on the location of the mass fluctuation. Using
Eq. (51) in combination with Eq. (41) leads to

x'P = —I g g a, (z'a)(z„.„' )w (ss')
RR SS al

d
~... = D,"'(RS)[n,(R) —x,] [n, (S) —x,],x s's dS

(52)
where we have expanded the exponentials in Eq.
(51) and taken the first nonzero term, the dipole-
dipole term. The sum on R' and S' has been iso-
lated (it no longer involves 5) and can be done with
the result (see Appendix B)

G d
~ = D, (RR')[n, (R) -x]da
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tic constant. We use Eq. (54) in Eq. (53) and the
numerical estimates of &, ~2~~, and C„and Ap-
pendix B to achieve

3
X',"= —V,g, [n3(R) -x,] [n3(R') -x,],

, iR -8')
(55)

where Vo= 10 K. Thus the indirect MF-MF inter-
action communicated by the phonons is long range,

, and relatively weak. There is some uncer-
tainty in the estimate of V3 that is not easily (or
usefully) removed (see Appendix B).

The direct part of the MF-MF interaction is
carried by the width fluctuations. We have made
a study of this interaction employing a number of
reasonable assumptions about the behavior of
u3 (k). We find the interaction to be weak, of or-
der &K /&@33=10 3kee~, and short ranged. If we

had &u3,(k) -0 as k-0 this conclusion would be in-
validated. But we have no reason to believe
&o3,(k) - 0 as k - 0. Thus we expect Kz"' to con-
tribute only to the short-range part of the inter-
action. The short-range part of 3'„due to 3'-I '

and the q-qD part of R& ', is inadequately treated
here. We believe it is not important to the physics
we want to discuss. Thus we rewrite Eq. (45), us-
ing Eq. (55) in the form

X (x3) = E3(x3) —V3Q, [n3(R) —x3]tR-H, 'I
zz'

x [n3(R') —x,], (55)

where Z3(x)3 is E3(x3) corrected for the zero-point
contributions from 3'~ and 3'-~ and for the diagonal
parts of Xzu' and X'I3', as in Eq. (49). We drop
X~ and X» as they now contain only thermal ex-
citations.

IV. EFFECTS OF Xl

the corresponding simple pictures. For example,
as small concentrations of He are added to pure
He a He MFW enters the discussion. But this

MFW is nonpropagating (it diffuses) by virtue of
the fact that it moves in a spin-disordered medi-
um. s' The dominant mechanism for the motion
of the magnetic moments continues to be the He-
He exchange process that occurs at x3= 1. But

a new mechanism enters the discussion of T,
data, . As tbe concentration of He is further
increased, the interaction between 4He impurities
described by Kl increases in importance and ar-
rests the quantum tunneling motion that occurs in
the MFW limit. For a He at R and a He at R'
the potential energy given by X& is

3

V(RR') = —V3 Q (1 —x3)',... IR-si
)s

[n, (S) —x,] .
iH'-Sly (57)

Upon exchange the potential energy of this pair is

3 3

V(RR') = V3 x3 — ~, (1 —x3)iR-S i

' l~'-Sl

x [n, (S) —x,]. (58)

3

V(R'R) —V(RR') =+ V3 iR-8 i

3

ns 5 —x3. (59)

Thus the interchange leads to a change in potentia, l
energy of

Tbe interaction discussed in Sec. III arises from
deviations of the mass at a lattice site from the

mass of the average crystal. This interaction is
present over the entire concentration range for
dilute He in 3He, for 50% mixtures, for dilute
SHe in 4He, ete. In this sectionwe will discuss tbe

probable effect of the int;eraction at low concentra-
tions of He in He on the diffusion constant, T2 and

T, . We will attempt to determine criteria for the

validity of the MFW picture in this concentration
limit.

In a discussion of the magnetic properties of
He- He mixtures there are two extreme limiting

cases that can be discussed. These are xs =1.0,
tbe pure- He case, and x3-0, the MFW case. In

this latter case the 3He atoms are essentially iso-
lated. They move by quantum-mechanical tunnel. -
ing through their 4He neighbors. Departures from
either of these extremes lead to departures from

It is the comparison of this change in potential

energy (essentially the gradient of X,) with the

tunneling energy 8~4 that provides a measure of the
ease with which the tunneling process can occur.
Since 8~4 is expected to be of order J,3p cT33/kg

=5xl0 'K, and V3/&3=10 3K, we are dealing with

a system in which the kinetic energy is much less
than the potential energy. As a consequence the
new T& mechanism above is modified upon increas-
ing the concentration. 4' As the concentration of
He is further increased to x3= G. 50 the interaction

comes to play a more important role; 3He-4He in-
terchange is relatively slower than in the x3-1
case so that 'He-'He exchange continues as the im-
portant motion. Further increases of the 4He con-
centration lead to a region of hindered 3He motion
through a 'He medium (below 1% 'He in 4He) and

finally to MFW behavior in very dilute He mix-
tures (see I ig. 3).
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FIG. 3. Experiments on
He- He mixtures. We

show the concentration re-
gions examined in the liter-
ature. We are concerned
here mainly with the dilute
region, region II. The var-
ious regions have been ex-
plored in the experiments
by (i) R. Giffard and J.
Hatton fPhys. Hev. Lett.
18, 1106 (1967)]; (ii) Ref.
24; (iii) Refs. 10 and 11;
{iv) Refs. 10-12; {v)
Refs. 7-9.

A. Diffusion

e (q}=2J~4 (cosq„n+cosq, h+cosq, 4),

where J34 is the rate of 'He- He tunneling. The
interaction between two MFW's, + V, (b,/I R —R'

I )',
leads to a cross section for MFW-MFW scatter-
ing~

(60)

3y q r/2
my' = ma'

J34 )

where we define %by

(6l)

J34 —— (b, V) Vo IrI)
The physical idea here is that when two MFW's are
closer than 7 from one another, they cannot con-
tinue to move by quantum-mechanical tunneling be-
cause the energy difference due to the motion of
one relative to the other is greater than J34. For
two MFW's closer together than 7 relative motion
can be energy conserving only upon absorption or
emission of phonons. These phonon-assisted
processes are incoherent (see Fig. 4). The MFW-
MFW mean free path is

Let us begin with a discussion of the very dilute
He in He, the MFW range, of Fig. 3. In this

concentration range, the He are typically very far
apart; we may assume that they form Bloch waves
which propagate with dispersion relation (simple-
cubic geometry)

sion data in the dilute region (region II of Fig. 3}
are shown in Fig. 7. A crude upper limit to the
MFW region of Fig. 3 is given by requiring that
the average distance between the 'He particles be
greater than 7; i.e. , 4/xs~~~&7 or

(66}

/

I

i

He

For J&4/3V&= 10 this is xs«6xl0 . This esti-
mate should be compared with that made below.

At concentrations greater than 7;, which defines
the transition from the MFW region to the dilute
region, we have a sltuatlon ln which a typical 3He

particle is continually strongly interacting with its
neighbors. Thus the appropriate starting point is
not Bloch waves, but states which have the 3He lo-
calized on lattice sites, i.e. , the eigenstates of
the potential energy. The diffusion constant is ob-
tained by treating the tunneling between these states
in perturbation theory. Following the steps de-
scribed in detail in Appendix E we find 9

J4 '"
(63)

and the diffusion constant in the MFW region is
given by

sj8
g2 34 34I 34 ~ ~ 3 jj (64)

Predictions for D& based on our analysis of diffu-

FIG. 4. MFW motion. When an 'He moving through
the lattice comes within a distance 7 of another 3He, it
is scattered because of the large interaction between the
two particles.
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FIG. 5. Elements of the calculation of D. In (a) and (b) we show the spectra of AV(RR') from Eq. (57) for z&=0. 0016
and &3=0.0083, respectively. These results are achieved by generating 2000 random configurations of particles at each
concentration. In each figure we show the width of the spectrum that follows from a second-moment calculation. From
spectra of this kind we can calculate P(0) for various values of the ratio J34/Vp. In (c) we show the results of such a
calculation in the concentration range 10 &x&~.10" for 10 ~ J&4/Vp~10 3. In (d) we show the results of the generaliza-
tion of the basic idea of the "one-step" process to include 2, 3, ... , steps. The quantities nP„(0) are plotted for n=1, 2, 3.
and 4 as well as 5'„nP„(0) for 1~n~10. We also show P(0), the "one-step"-only proba'bility from (c), for comparison.
All of these calculations are for the particular value of the ratio J34/Vp=2. 5&&10 . W'e note that at x3 6&&10" ~1~P)
=5'„&nP„(0), so that in P(0) at this concentration half of the configurations that permit one step also permit more than
one step. At F3=2.5&&10 3 at most 25'$0 of the configurations that permit one step also permit more than one step. The
diffusion results shown in Fig. 6 use P(0) and P„nP„(0) from this figure.

D = —z 6 W~ (xs), (66)

where W~ (xs) is the average rate of exchange of
a He- He pair in a mixture at concentration x3.
Further, W~ (xs) is given by

(6V}

where J'~4 is the 3He-4He tunneling rate and P(0) is
the probability that the energy difference between
the initial configuration (RR }and the final config-
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uration (R'R) is of order JS4 (see Appendix D). The
rate Wz, (xs) is the product of an attempt frequency
Js4/5 and the probability that the process is ener-
getically possible. The result in Eq. (66) is the
perturbation-theory result for D. It is derived
in Appendix E from a Kubo formula for D so that
one can see how to remove the specialization that
produced it.and to make improvements on it.

To calculate P(0) we need to know the average
number of 4V(RR') states at zero energy. A mo-
ment calculation in which p (0), the average den-
sity of 4 V(RR') states at zero energy, is approxi-
mated by the second moment of n V(RR') yields
p(0) =(1/Vs) [5/27xs(1 —xs)it's. The calculation
of higher moments contains little additional in-
formation about p (0) even after substantial compu-
tational effort. The use of this second-moment
p(0) yields poor results for P(0). We have under-
taken Monte Carlo studies of the spectrum of
b, V (RR') and P(0) for several values of J,4/Vo as
a function of concentration. ' In Fig. 5(a) we show
the spectrum b, V(RR') for two concentrations, x
=0.0083 and x3 =0.0016. The striking thing about
these spectra is the relatively large central peak at
zero energy. On each spectra we show the width giv-
en by a second-moment calculation. Itis clear that
such a calculation completely misses the essential
feature of the spectrum for calculating P(0). The
central peak in the spectrum comes from configura-
tions with particles near the plane perpendicular
to the tunneling pair and bisecting their path. The
edges of the spectrum are due to configurations
having particles that neighbor the tunneling pair
along the line joining their path. It is these con-
figurations that dominate the second moment and

lead to its inadequacy as a judge of p (0). In Fig.
5(c) we show P(0) as a function of xs for various
choices of Js4/Vo. We find that for Js4/Vo in the
range 10 -10 s P(0}approaches 1 at xs about
10 . For all of the values of JM/Vo studied P(0)
is 1 at x3 well below 10'. Thus we see that for
Js4/Vs =10 more than half of the configurations
are within the energy interval 2J34 centered at zero
for x3 & 7 x 10 . For x3 & 7 x 10 more than half of
the configurations are beyond the energy interval
2Js4 and P(0) is less than —,'. At x3 =10 only 2%
of the configurations are in the energy interval
2Js4, P (0) = 0.02. We choose as a criterion for
MFW behavior the condition that most configura-
tions be in the energy interval 2J34 Thus for
J34/Vo =10 we expect MFW behavior at x3
«7x10~. We have used the results of the cal-
culations shown in Figs. 5(a) and 5(b) to fit the
diffusion data of Richards et al. and Grigor'ev
and co-workers at 21.0 cm'/mole using Eqs. (66)
and (67). We obtain the results shown in Fig. 6
using Vo/ks = 10 'K and Js4/ks = 2. 5 x10 ' K, i.e. ,
Js4/Vo =2. 5 x10 . In Fig. 6 we also show D, as

0-6
I I I III) I I I I I I III„

o Richards et al.

~ Grigor ev et al.

10

O
III

E
O

O

lo

USING X nP„(0)
II

US ING P (0)

Io I I I I I I II
io4

I I III
IO'

I I I

lo

FIG. 6. Diffusion constant. Data of Richardh et al.
and Grigor'ev and co-workers are shown along with the
results of the theory for two cases. The curve labeled
P(0) is the result using the one-step approximation that
we believe to be valid at higher concentrations. The
curve labeled P„nP„ is calculated with the many-step
generalization of P(0). In both cases we have fit the the-
ory curve to the data at @3=2.5X10 . Since P(0)-
5,'„nP„(0}at this concentration, we have ignored the differ-
ence in J34/Vp that would result in using 5'nnPn(0) or P(0).
The value J&4/Vp=2. 5 &&10 comes from fitting the theory
with P(0) to the data at x& = 2.5 && 10

a function of xs calculated from Eq. (64}using
Js4/Vs=2. 5x10 . For Js4/Vs=2. 5xl0~ we expect
MFW behavior at x,«1.Sx10 '.

We have attempted to improve on the "one-step"
expression for D given by Eqs. (66) and (67) by
writing

D = — Q nhP„(0},
n

where AJM/h is the velocity of the particle and

P„(0) is the probability that particle is in a config-
uration that permits it to move distance n4. Equa-
tions (66) and (67) are the n =1 approximation to
this equation. We calculate P„(0)by finding the
fraction of the configurations that permit a particle
to make n steps (in one direction) before encounter-
ing a potential-energy barrier greater than 2Js4/n.
The results for nP„(0) are shown in Fig. 5(d) for
Js4/Vs=2. 5x10 s. The sum of the nP„(0) is also
shown in this figure and the resulting calculation
of D is shown in Fig. 6. It is clear that this gen-
eralization extends the concentration range over
which the theory is valid to somewhat lower con-
centration, but certainly a static-configuration
theory of the kind we have here must fail when sub-
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stantial particle motion occurs. We expect this
failure to occur at x3 «10 . The fit to the diffu-
sion data in the range 10 &x3&10 is quite good-
but we chose J,4 to make it good. The theory of D
embodied in Eqs. (66) and (67) is valid only in this
restricted concentration range. It appears that
the high-concentration data, x3 &10, approach
the theoretical DI curve at low concentration. The
virtue of our explanation of the diffusion data in the
range 10 ~ x3~10 is that we accomplish it using
plausible values of the basic parameters. We em-
ployed the theoretical value of Vo and found

J34 Q ~ J33). A serious test of this explanation of
the He motion is made in attempting also to under-
stand the T, data.

The result we have obtained for D is quite similar
to that of Landesman and Winter. Using a pseudo-
spin-formulation of the diffusion problem Landes-
man and Winter achieve a formula similar to our
equation (D4) with A (t) given essentially by the
first cumulant approximation of Eq. (D12). Un-
fortunately, the generalization of their computa-
tional procedure to handle the T~ calculation was
not carried through.

Before going on to this we note that W~ (x3) has
relatively strong volume dependence. We have

MFW behavior in Tj and T2 data. In contrast to
T& and T2, which see nearby pairs of particles, a
diffusion measurement sees single particles. To
calculate T, we make the approximation that the
particles at R and R' move separately, i. e. ,

((n3(R, 0)n, (R, 0)n3(R, t)n3(R, t)))

= ((n3(R, 0)n3(R, t)))si((n3(R, O)n3(R, t)))s, (71)

where ((n3(R, 0}n3(R, t)))s. is the correlation func-
tion for the number operator at R, given that there
is a spectator 'He at R'. We further approximate
this correlation function by

((n(R, 0)n(R, t)))si = eXp[ —tW3(X3)„s.], (72)

where W3(x3)». is the rate of transition of a He at
R to a neighboring site R by interchange with a

He while a spectator 'He is at R . We write

W3(x'3)s„i =QW3(x3, RR )„~ .
z'&

We show examples of some of the geometries that
are important to this calculation in Fig. 7. We
assume that any step to R from R that a particle
can take changes the local dipolar field at R and
contributes to the narrowing process. Thus we
have

W() (x3) = 2J34 p (0; x3), (66)
I1

W3(x3)»t ~W3(x3) RR )„. , (74)

W() (x'3) ~ 234/Vo . (69)

where p(0;x3) goes as V3 . Thus the volume de-
pendence of W(3(x3) is

IPwhere W3(x3;RR )„ is the configuration average
of the transition rate from R to R with a specta-
tor at R . Using Eqs. (V2) and (V4) in Eq. (70)
leads to

This volume dependence is substantially greater
than that of J33 alone and in qualitative agreement
with the observations of Richardson et al. and
Qrigor'ev gt al. '

B. T2

1 6

&3(0) ~ s'3(s) I ~ —0 I 2W3(x3)„„.
= M3(1)x3 I

3

R R(s) IR —0 I

(75)

The transverse relaxation time T2 at zero Lar-
mour frequency is given by

1 3 +co

=M, (1)x, g - -I dt ((n3(RI 0)
~3(0 ' ' s~()

6

xx~()t, o)x,t)t, t)x, tR, I))) 2 (ttt »t
(70)

where M, (1) is the second moment of a perfect
single crystal of volume V at concentration x, = 1.
The effect of dilution of the He on the second mo-

ment is in the factor x3. The important point il-
lustrated in this formula is that a T2 measurement
senses two He particles that must be very close
to one another by virtue of the weighting factor

Thus in a T& and T2 measurement we see the
behavior of pairs of particles well within the inter-
action range F'. It is therefore not possible to see

0'1 0 011
I R
I

1 11
t~

R R'

R I(

FIG. 7. Geometries. We show the three near-geom-
etries that would be most important in a motional narrow-
ing calculation of T2. The spectator at R' watches the
particle at R go to any of the near-neighbor sites R"
marked by an X.

Now, carrying out a calculation of the W3(x„'RR )s
following a procedure exactly analogous to that de-
scribed in Appendix D for WD(x, ) leads to

W3(x3 RR )s. = 7((tf34/h)P». ~ (0)s. (76)

where P»" (0)s. is the probability that the poten-
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FIG. 8. Elements of the calculation of T&. In (a) we

show the spectrum of 4V(RR") for a spectator particle
at R' for the (0, 1, 0) geometry of Fig. 7. We note that
because the spectator is fixed nearby the spectrum peaks
at a nonzero value. In (b) we show Pzz" (0)z. for the
same geometry as (a) as a function of x3 for two choices
of the ratio J34/Vo. In (c) we show 8'2(x3)&&. for R and
R' near neighbors. For the other geometries of Fig. 7,
8'2(x3)&z. is slightly larger, and thus they will have a
small contribution to T2. In the figure we also show the
dipolar frequency of a near-neighbor pair, 5&&10 rad/
sec ~. It is therefore clear that a motional-narrowing
picture is appropriate. The weak dependence of W2(x3)as.
on x3 can be understood in the following manner. In
order for the 3He at R' to move, two things must occur:
A third 3He must come nearby to balance the potential of
the 3He at R, and the other 3He's in the system must re-
main far away. The first event occurs with a probability
proportional to x3, while the second occurs with a prob-
ability proportional to approximately 1/x3 (as indicated
by the calculation of the diffusion constant). The proba-
bility that both events occur together is thus essentially
independent of x3.

tial-energy difference due to the exchange
RR -R R is in the energy interval 2J34 centered
at zero energy, given that a spectator 'He particle
is at R . In Fig. 8(a) we show the spectrum of
hV(RR")a. for xs=0.0033. In Fig. 8(b) we show

Pss. ,(0)s, for the geometry shown in the inset of
this figure for several values of Zs4/Va as a func-
tion of xs. In Fig. 8(c' we show the rates Wa(xs)».
calculated from Eq. (V3) for the value of the ratio
J34/Ve obtained from the fit to the diffusion data
above In this fig. ure we show the rate Ws(xs)»,
for pairs of particles in the near-geometries shown
in Fig. V. We also show in Fig. 8(c) the rigid-lat-
tice dipolar rate of motion of each of these pairs

of particles. For the rigid-lattice rate we use

&o„(RR )= ~ s = 5.x10 rad/sec,
p PP.

where y = 2. 04 x104 rad/sec G, p = 10 s' erg/G, and
IR -R I

= 3. 5 A. We note that the frequency of
particle motion given by Wa(X, )„si is substantially
greater than the frequency of motion due to the di-
polar field. Thus we are justified in using the mo-
tional narrowing formalism implied by the basic
equation we are employing to calculate T~, Eq.
(VO). Using Eq. (V6) for Ws(xs)aa. and taking only
the near-neighbor contribution to the R' sum in
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Eq. (75) leads to

(77)

Using a single-particle picture of the particle
motions we describe a 'He -'He mixture using a
Hamiltonian that contains an average single- crys-

10
I

I I I I i II(

~ = 2.5 x lo
Vo

O. I— ~ I L

~ '
~

~ ~

1

V=21.0 cm~ /mole

For Ma(1) we have

Mq(1) - 8. 6(g~(RR )

so that Eq. (74) yields

1 u)q(RR ) xe
&a

'
&a(xs)ss

Using the results for Wz(x, )ss. shown in Fig. 8(c)
we obtain the results for T~ shown in Fig. 9. From
Fig. 9 we see that the order of magnitude and con-
centration dependence of the theory are in good
agreement with the experimental results in the con-
centration range where we believe this theory to
have validity.

In this paper we will not attempt to make a theory
of T,. But we note that in the dilute-concentration
range on which we have focused attention there are
two intrinsic frequencies J34 and J,3 and a host of
lower frequencies Wz(xs)». that characterize the
fundamental motions of the particles. A T, experi-
ment will be sensitive to all of these motions and
as a consequence its interpretation will be complex.

V. CONCLUSION

tal Hamiltonian (with an average mass at each
lattice site) and a perturbation due to deviations of
the mass at each site from the average mass. The
mass-fluctuation perturbation is shown to lead to
a mass-fluctuation-mass-fluctuation interaction.
For dilute 'He in He this is essentially a 'He-'He
interaction. This interaction is long ranged, x
and relatively weak; its strength is about 10"~ K.
But this energy is large compared to the energy
associated with the quantum-mechanical tunneling
of pairs of particles, e. g. , 834/ks= 1D 5 K. Thus
a description of the motions of 'He particles through
the He medium must view the 3He system as a
strongly interacting system. We have explored
some of the consequences of the long-range
3He-3He interaction on the propagation of a 3He

impurity. We find that the dilute concentration
range x, &10 is broken up into two ranges:
10 4«x3, &10 ~, in which the interaction prevents
coherent motion of a He particle over a reasonable
distance, andx, «10, in which MFW behavior is
observed. We are able to give a qualitative and
quantitative description of the D and T~ data of
Richards et al. and Grigor'ev and co-workers in
the concentration range 10 &x3 & 10 . We con-
clude that data in this concentration range do not
demonstrate the existence of MFN. They do pro-
vide numbers that permit a reasonable estimate
of the concentration range in which MFW behavior
should be seen. We estimate MFW behavior to
appear in diffusion data at x,«10 ' .

The calculations that we describe in this paper
contain numerous approximations. Nonetheless,
we believe that the essential features of the physics
are described correctly. Unquestionably there is
room for quantitative improvement of many aspects
of the theory.

We have made a theory applicable to the dilute
region 10 +x3 &10" . For the MFW region,
x3«10, we have only been able to make a theory
of the diffusion constant. It remains then for a
theory of T, and T~ in the MFW region to be de-
veloped.
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APPENDIX A: DIAGQNALIZATION OF3CD AND K~

In this Appendix we diagonalize the Hamiltonians
in Eqs. (21) and (24). These Hamiltonians are of
the form

3C= Q 2&(RR')a~a~ + g &(RR') (a~a„+a„a~ ),

where for the displacement fluctuations we have
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Ap (RR ') = «(eg —eo)

Gee�'+

« t(RR )og, os s

Bp (RR ) = « t(RR )pg, pg,

and for the width fluctuations we have

Aw(RR') = «(cp —ep) Gee. + « t(RR )ppspp,

Bw(RR ) = « t(RR )pp, pp ~

We employ a Bloch transformation to write

(A2)

(As)

(A4)

(A8)

phonons. In the discussion of phase separation we
do not include this correction.

APPENDIX 8: DETERMINATION OF THE MAGNITUDE
OF Xg

The He- He interaction is given by %1=%1 ' and

X,'" = g ~'„&(RR'}[~(R)-x,][n,(R') -x, ],RB'
(B1)

n~ = uIa& —v~a

upas —
vesta

(A7)

(A8)

3C= g A(k) (a«a«+ a~«a «)+g B(k) (a«a «+ a«a «),

(A8)
and transform to the n~ defined by

where hKop = —«@ (& )op [(I/mp} —(1/m4)],

(B2)

X)(RR ) = g t(RS)pp pg ~ D (SS )ss' p
~~ap

+t(S'R )os, op }

and D (SS') is the inverse of the dynamical matrix,
where [n„c(,] = 1. Thus we obtain

3C= Q 2t(k)n«n«+Q [e(k) -A(k)], (AS)

l, e, )

g QD. ,(SS")e.,(S"S')= —8„.1. (Bs)

where

e(k)'= A(k)' —B(k)' .
For the displacement fluctuations we have

Ao(k) = ««gp+ «mo(k),

B,(k) = ,' m, (k), —

and

~D (k)' = l [«io+ 2«io mo(k)1

For the width fluctuations we have

Aw(k) = ««po+ «mw(k),

Bw(k) = —' mw(k)

ew(k)'= «[«op+2«pomw(k)] .

(A10)

(A11)

(A12)

(Als)

(A14)

(A15)

(A18)

We use the definition of e from Eq. (C18) to write

Ri = Q Q a(RS) ~ D(SS') ~ 7(S'R')
zz' ss'

(B5)

in the form

D(SS )=e» "e e'&' "'D(RR'), (B8

where Zoe ——S —R and De= d/dR. If we expand
D(SS') about D(RR') the first nonzero contribution
to Xl comes from the & term,

x [n,(R) —xp] [n,(R') —x,] ' (B4)

here e(RS) and p(R'S') are nonzero [see Eq. (C18)]
for S and S' near neighbors of R and R'. To eval-
uate Eq. (B4) we need D(SS'), given by

3A g casa i(( s-s'
2m', (d(q)'

In a displacement-fluctuation approximation to
the ground-state energy of the average crystal we
have

&= &p(x)+ Q [ep(k) -An(k)], (A17)

where Ep(x) =¹p thus

(~) = Q [e,+ a (k) —A (k)] . (A18)

Since we must have &p(k)-0 and k= 0 we can write
mp(k) = —

& «,oS(k), where S(k)-1 as k-0. We
also have cp = up 2 6 and e& —Ep = 4 thus

(X), ,=E,(x)+-g {[I-S(k)]"'-[I--,'S(k)]] .
(A19)

The second term in this expression is the correc-
tion to the Einstein-oscillator ground-state energy
due to improving that approximation to include the

dl—D(SS')=- ~» ~,& I ~. , ~~D(RR'), (B7)) d j
since d/dR= —d/dR'. Using Eq. (B7) in Eq. (B4)
leads to

SS = —Q QQc (SS}(Z„~. -}Kg(R S }

x b~ s. ~ —D &RR n3 R -x3 n3 R -&sdR
(B8)

The sum on S for fixed R is zero except for e(RS)
parallel to b»,' thus we have

Rz = -g & & ~ —~ D(RR ) [np(R) —xp]
p ~ d d p

dR d

x [n, (R') —x,], (Bo)

where g = ge. (e~.), e». is the z component of the
unit vector from R to R', and we have assumed
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D(RR ) = ID(RR').
To evaluate V D(RR') we use the continuum ap-

proximation of Dederich and Leibfried. Thus we
have

(f&'"' =A((x, -R, ) exp[- Qn'(x —8)'],

Q„' ' =AQ[1 ——,'(x (x —8)'] exp[--, o'(z —R) ].

(C2)

(C3)

D(r) = —(3n /S((r) g(&), (B10)

where g(A) is a function on the unit sphere. A fac-
tor —,

'
3()( appears in this formula and in Eq. (B5)

due to the difference in dimensions in the dynami-
cal matrix in a single-particle picture and in a
phonon picture; see Eq. (C16). For bcc He we
have to good approximation

t(RR')
(& „,= dx dx' PNx)(t)&(o&(x)

x t(x —x')T())(".'(z')(t) &("(x').

The matrix element t(RR')QQ QQ is given by

(C4)

The general f-matrix element t(RR') () „, is given
by

g(Q) = (1/C& i) (2. 5 —0. 5 cos48) . (B11) t(RR )QQ QQ
= dx dx' ()&)s( &(x)*(t&„' '(z)t(x —x')

'""=5 ~rc .n2 &1

Using Eq. (B13) in Eq. (B9) leads to

X, ———,Z g g, [n, (R) -x,]
11 BB'

&([n,(R') -x,] . (B14)

We have g=3, & = —a ~ &10 4&jo, Cti& =+Ki0g 2 1 2 2 -4 2 3

and 4&~0= @~ed. Thus

We get Eq. (Bll) from (a) noting that the ratio of
the elastic constants for bcc He is the same as for
copper, (b) using an analytic approximation for the
result for copper displayed in Fig„6 of Leibfried
and Dederich, and (c) ignoring the off-diagonal
components of g, g(A)=gl&(A)=goo(Q)=g33(A). Now

3n 05V'D(r) = — g "(8), (B12)
((

where g (8) = 16 cos'8+4 sin 8(cos8/sin8). We re-
place g "(8) in Eq. (B12) by its angular average.
Then

&& (» "&(z')0"'(z'). (C5)

„(&f&&(') = —AQ2(). (x'-R")exp[- oo(x —R) ] (C6)

2

;Q ((I&g")'= AQ2n [2n (x' —R")' —1]dx )

&&exp[- o. (z —H) ]. (CV)

V ((t&&(') =AQS()( [, a (x 8—) —1—]

&( exp[- n'(z —R)'] (CS)

y(o)y(2& 2 V2(y(o))QR R 6 2g R
0

We use this latter result to write

(C9)

In order to calculate this matrix element it is use-
ful to note that

3

~, = —Vo Z - ~, [n, (R) -x,][n,(R') -~Q],„„.IR —~ I

(B15)

where V0=10 K.
In this paper we are dealing with a displacement-

displacement interaction in an hcp material. The
calculation above is for a bcc material. But the
order of magnitude of the effect we are describing
is not strongly sensitive to this difference. Thus
we use Eq. (B15) to characterize the QHe-QHe in-
teraction in hcp helium. We expect Vo to be of or-
der 10 K in this material and mildly volume de-
pendent.

t(RR')QQ, QQ=36AQ 4
~

dz ~dzV ((t&&(')
36A() o

x (V')'(0&(", )'t(z- z').

Now integration by parts and V = —V' implies

a(aaaa)aa, aa= a' ' «)« l(' (x)l

x
i
(t)",)(x') i'(V'-)'f(x —x')

or

t(RR )QQ, QQ
=

24 g ((V ) t(z —x')).

(C10)

(C11)

APPENDIX C: CALCULATION OF t(RR )02 02 ~ f(RR )01 Q2 q

't(RR )01 01~ AND gg

Before discussing this term in detail we calculate
t(RR')Q( QQ using a similar procedure We have.

We employ the single-particle states (we drop
the bar on ()()

t(RR )o&~
QQ= dz dz 4'&( 4I(

f (x —z')(t's'V&(" ~ (C12)

(t) „"'= Ao exp[- Q o.'(x —R)'], (Cl) Using Eq. (CS) we have



QUANTUM-CRYSTAL ALLOYS: MASS- FLU CT'/ATION WA VE8

y(O)y(1u 3 1 g (yM&)2R R
0

(C13)

t(RR')»»= —~ ',' I dx I dx'v'(y„"')'
12m Ap „

We combine Eq. (C13) with Eq. (CQ) to write Eq.
(C12) in the form

is a mass fluctuation at R) we have

1 ~, 1 — 2xpg ~
u~r = 2XO1 t (R R)O1 OO AKOO =

~&M ~20 ~10

where we define

1
& = &Koo t (RR )oo o1 .

(Cla)

(C19)

&& t(x —x')V'(y,",')'. (C14)
We write Eq. (C18) in the form

Using integx'ation by parts and V = —V' leads to

t(RR') =+—IIdx I
dx' lp&'I12m

x Iy„",& 'v, v't(x-x') (C15)

2xo1

Using xo, = 1/42a and uz. = 10 & from the numerical
studies of Mullin and Glyde we have

t(RR )o1 oo = o (%+V t(x x )) .

Similarly to calculate t(RR')» „we use Eq. (C13)
twice with the result

We use &, a measure of the mass-fluctuation-dis™
placement-coupling, to determine Ki. See Appen-
dix B and Eq. (53) of the text.

APPENDIX D: TRANSITION Q.ATE

or

t(RR )o1 o1 =
o p

I

dx '

dx v+ (tg&s )n Ap

&& t(x- x')&'(P„"'),
r

t(RR )o1,o1 = — ' ~
~

dx
I

dx
3 6

t(RR )o1 o1 = —
o (%+V&t(x x )).

(C16)

(C17)

In this appendix we calculate the rate of tunnel-
ing of a 'He- He pair that sits in the potential-
energy field of their neighbors. We take the states
of the system to be defined by the location of the
pair of particles we study (they start at RR and go
to R R) and the location of the background particles
(denoted by a Greek index). The states we are con-
cerned with are these particle-configuration"
states denoted by (RR; p), (R R; v), etc. The rate
of transition from (RR; p, ) to (R R; v) is given by

Order-of-magnitude estimates of these matrix ele-
ments can be accomplished using phenomenological
arguments. The spring constant that yields the
phonons is y= s (V't). Thus we have

(V t) = 23cP t(RR )o1 o1 = p/g

ol

t(RR')o1, o1 = (3/2+ ) (~/&)

We also have

t(RR )o1,oo= »(1/o, 4)t(RR )o1,o1~

where y~ is the phonon Griineisen constant. Final-
ly, for t(RR')oz o, we would guess

w= —,g ~. I
t(RR')„„ I'~(z„',, -z"„,„), (Dl)

where P~ is the pxobability that the background is
in state p, , t(RR )~„ is the matrix element for the
transition RR -R R as the background goes from
p, to v, and E~~, is the energy in the configuration
(RR'; p). We assume that the matrix element for
the transitions (RR; }1), (RR; v) factor in the form

t(RR').„=t(RR') (e"„„,
I c,",„), (D2)

where t(RR') describes the motion of the pair from
RR to R R (it is I Z, 4 I) and (C„ IC„) is the overlap
integral for the background wave functions. Thus
we have

It(RR') loo, os= [&z&/(&+) ) It(RR')o1, o1I ~

For» =3 and o& = 6 ( He at 20 cm /mole)

lt(RR')o1 o I
=2I«RR')o1 o. l

=4I«RR')» o. l

All of these matxix elements are rapidly converg-
ing functions of IB-8'I for IB-B'I large;
t(RR )o», - I R —R I ', t(RR )»»- IR -R I, and
t(RR')„„-IR —R'

I
-".

For the displacement at R' a neighbor of R (there

tt V

&z z) ~ (D3)
Following the standard procedures for exponentiat-
ing the 5 function and using the completeness of
the 4». for description of the background we have
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A(t) =((RR' ie-" "'e"&'IttiRR')) (D6)

and I RR ) denote the complete set of background
states based on the RR configuration for the initial
pair. Here we have

3

&ss =% —V() (1 -x,)S.&RR ) ~R- S

3

xo [n, (S) —x] (D6)|R -Sf

X)s.tt = JCo —Vo Z
S tt:(RR')

3

x — — — xo+ -1 -
I (l-x,) [n, (s)-x],IR- SI IR —S I)

)(D7)
where ICo represents the configuration-independent
part of the Hamiltonian. If we write 3Csa. =3Co

+ VRR and R R-+0+ VR R we have 3CR.R =RRR.
+ VR. R —VRR. = 5CRR. + ~VRR. . Now we use a mixed
representation to write Eq. (D5); i. e. , we write

have

C, (t) =-„g V(RR'; S) dt'[((tt, (S; t'))) -x,] =0
S JQ

and for short times

Co(t) =
o Q &V(RR; S)Q t).v(RR'; S )2 @
2

Sl

)& (([n, (s) -x,] [n, (s') —x,])) .
We can rearrange the sum SS in the form

C, (t) = —
o P V(RR;S) x,(l-x, )

S

(D16)

tQ sv(RR';s)sv(RR's')[1(nt(s)tt, (s')))-ti)).
SS»

If we assume n, (s) is independent of n, (s ), the sec-
ond term is zero. If there is correlation between
n, (s) and no(s') we can write ((n, (s)n, (s ))) =x,
+x,g(ss ) and obtain

Co(t) =+; Q hv(RR; S) x, (1 —x,)5

A(t) = ((RR'i e (~»' e("-s'st
i
RR'))

=((RR'i Te'""' RR')),

where

t
~(t) = — ~v,„,(t'), dt'.

0

In this equation b, VRR, is given by

~v„, =+ P v,RR' 0 iR Si)

(D8)

(D9) (W') =p ~v(RR'; s)'.
S

It is not necessary to make these approximations.
Using Eqs. (D12)-(D17) we write Eq. . (Dll) in

the form

(D17)

+ g S 'V(RR; S) SV(RR; S ) t;S(SS )) .
(D16)

We drop the second term in this equation and write
Co(t) =t (I/II )(W )x, (1 -x,), where

3

[n, (S) —x,) (Dl 0)
IR -SI

and the subscript one on t).v)(t(. (t ), means that the
time evolution of 4VRR. is due to XRR. . We can
make an analytic approximation by employing a
cumulant expansion of Eq. (D8), keeping the first
few terms

(( TeA((t))) e(c)(t) (1/21) c2(t)
~ ~ ~

where

C,(t)=—((1'f dt (tS),v)),

'(Dl 1)

(D12)

~V„,, = +~V(RR'; S) [n, (S) -x,],
S

(D14)

C,(t)=S, (T dt dt Sv „(t),sv ~ (t ))),~0 0

(Dis)
etc. To get an idea of the content of this low-order
approximation consider the short-time behavior of
((Te'A"')) so that we can deal with Eqs. (D12) and
(D18) quite simply. If we define b, V(RR; S) by

A(t) = exp(- t /[2 (W2) xo(1 —xo)/II2]}. (D18)

We use this expression to do the time integral in
Eq. (D4), with the result

I t(RR ) I I t(RR') I

[ (1 — ) (Wo)], l o . (D19)

We understand this result in terms of It(RR ) I/O

being the attempt frequency for He- He exchange
and I t(RR ) I/[x, (1 —x,) (W )] i being the probabil-
ity that this energy difference between the two par-
ticle arrangements is of order It(RR ) I, i.e. , that
the transition RB -R R is energy conserving.

The numerical work we have done on the spec-
trum of tsv(RR ) suggests that the result in Eq.
(D19) is qualitatively correct but quantitatively
quite inaccurate. With the hindsight provided by
Monte Carlo analysis we might proceed as follows.
The average called for in Eq. (D8) or in the cumu-
lants is an average over configurations. We divide
the configurations into two groups, the "near" con-
figurations and the "far" configurations. The con-
figurations that belong to these two groups are de-
termined from the Monte Carlo analysis discussed
above. The near configurations involve particles
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near the trajectory of the tunneling pair that con-
tribute to the background states in Fig. 5(a). The
far configurations are those that contribute to the
central peak. We break up (&RR' I

~ ~ ~
I IRR')) thus

p

((RR'I "IRR')}=«RR I" IRR')).
+&(RR'I" IRR'»„ (D20}

where the subscripts N and F mean that the aver-
ages called for are over near and far configurations.
The near configurations span a large region of
4V(RR ) and dominate the second-moment approxi-
mation to the spectrum above, Eq. (D17). The
far configurations are swamped in a second-mo-
ment calculation but they are precisely the con-
figurations of importance in determining 8'. A
cumulant expansion of (D20) carried to second order
leads to

t2 g
2

A(R =P„exp —~(W'„) eP eep ——,(W )),
(o21)

where

But if fewer than half of the states are outside
2I t(RR') I our picture of hindered tunneling is not
valid. Equation (D24) is valid in the concentration
range in which we use the perturbation-theory
formula. Note that the discussion here is inde-
pendent of the specific character of the averaging
procedure employed. Thus the entire discussion
can be carried through for an averaging procedure
carried out with a spectator particle, as is re-
quired for T2 calculations.

APPENDIX E: DIFFUSION CONSTANT

The basic formula for the conductivity is given
by

1 1
o'„(0)= dt d& lim ——Tr[pofR(-X)I J(t)] .

o o v,„VZ
(E1)

Employing a sequence of manipulations similar to
those illustrated by Brinkman and Rice leads to

o„(0)=+ d&u'e —Tr[I,(0) lmG(&o')
7T

(W') =(( I Rp(RR R)e)) (D22)
where

x l*, (0) ImG(v ')], (E2)

and

(W )= I ep(RR ( 8)))
$4(BB~ ) F

(D2s)

Here P„+PF =1, P„ is the weight of the back-
ground states in Fig. 5(a), and PP is the weight
of the central peak. As the concentration is low-
ered P„-0 and Pz - 1. Equation (D21) is a far
more satisfactory representation of A(t) than Eq.
(D18).

Regardless of the analytic approximations that
are possible to represent the spectrum of &V,
we can always write (as a lowest-order approxi-
mation)

w = w[I t(RR')
I
/8']P(0), (D24)

w=2. [It(RR }I'ya]p(0),

where P(0) is the number of states in energy inter-
val 2It(RR') I centered at energy zero. We can de-
termine P(0) analytically or by a Monte Carlo cal-
culation. It is Eq. (D24) that we use in Sec. IV
in conjunction with a Monte Carlo analysis of the
spectrum of A(t). In writing Eq. (D24) we are
simply interpreting the basic perturbation-theory
formula

G((o') =, , ImG((d ) =—1 1 1 1

(ES)
(d -X—gf

The current operator is given by (we use a ficiti-
tious charge c)

IR(0) = —t —Q t(RR ') (RR —R,)c~~c~
RR, '

Using Eq. (E4) in Eq. (E5) leads to

2

o~RR' = ~ t(RR )t(SS') (RR R,') (S,—S,)-

dred e —Tr c~& c&ImG co c~cq ImG ~
«eo

(E5)

We assume (a) that the current operator does not
change the background state (see Appendix D) and
(b) that the site diagonal component of G((o ) is ad-
equate; i. e. ,

Tr[c~c~. ImG(&a')ctzcz. ImG(v'}]

=5+~.5s RTrImGss ((d') ImGz z((d ), (E6)
where p(0) is the density of states. Our interpre-
tation makes sense only so long as p(E) changes
slowly over interval 21t(RR') I near E=0. From
what we '.now about the spectrum of t) V(RR') we
know p(E) is flat near E=O until fewer than half of
the &V(RR') are outside of the interval 2It(RR') I.

where

1
Gzz '((()) =

+ -&m'

Here 3'ss. is given below Eq. (D7). Using

(Ev)
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ImGsst(+)= —— dhe '" &R'
2

(E8)
where Wis given by Eq. (D4). Using the Einstein
relation, D„=(ks T/ea) ( V/N) v„(0), leads to

we can obtain

P e2 +00

s„(0)=r——zp t(RB )'(R'-A, ,) J dtR(t),
V. 0

Dg, (0) = —Q (Rg —R,') W . (E11)2'
For z near neighbors at 6 we have (approximately)

(E9)
where A(t) is given by Eq. (D5). If we combine
Eq. (E9) with Eq. (D4) we obtain

u„(0)=,-'s &'W .
Using Eq. (D24) for W leads to

(E12)

p 2

e„(0)= g(R, -R,')'W,
zg'

(Elo) (0)
ws 3 I t(RR')[

( )zg 6 (E13)
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