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Inductive transition of niobium and tantalum in the 10-MHz range. II. The peak in the
inductive skin depth for T just less than T, f
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In the region of temperature just below the superconducting transition temperature T„where the
inductive skin depth 8, is less than the dc penetration depth, a peak was observed in 5, as a function
of temperature in some Ta and Nb specimens. The Mattis-Bardeen theory of the surface impedance of
superconductors is used to investigate the occurrence of such peaks. In order to explain quantitatively
the experimental results, it is necessary to take into account the effect of impurities near the sample
surface. This is done by changing the boundary condition on the order parameter at the sample
surface. The necessary change is similar in magnitude to that needed to explain the penetration-depth

measurements presented in a previous paper.

I. INTRODUCTION II. EXPERIMENTAL

In this paper we discuss in detail the peak in the
inductive skin depth 5& as a function of the temper-
ature T which occurred just below T, in some
samples of Ta and Nb. This peak was mentioned
in Paper I' with regard to the precise determina-
tion of T, for the samples. The theory of Mattis
and Bardeen' of the surface impedance of super-
conductors is used to investigate the occurrence
of such peaks, and the measurements are com-
pared with the predictions of this theory. In order
or explain the experimental results it is necessary
to allow for the presence of impuritites near the
sample surface. This is accomplished by taking
the boundary condition on the Ginzburg-Landau
order parameter g at the sample surface to be

Details of the experimental arrangement are
given in Paper I. It suffices here to mention that
the cylindrical sample was at the center of a coil
which formed part of the LC section of a tunnel-
diode oscillator with a resonant frequency of about
14 MHz. Changes in the inductive skin depth 5&

of the sample produce changes in the inductance
of the coil and hence changes in the resonant fre-
quency which can be measured, and 5; can there-
fore be determined. The purification and anneal-
ing of the samples under ultrahigh-vacuum condi-
tions is discussed in Paper I. Detailed attention
was given for the surface treatment of the sam-
ples.

III. THEORY

dx b'

where b, the extrapolation length, is a parameter
which characterizes the surface. The value of b

which is needed to explain the results is similar
to that used in Paper I to explain the dc-penetra-
tion-depth measurements. A peak in 5; has been
observed previously at microwave frequencies,
and the situation has been reviewed by Waldram. '
Although the measurements considered by %'ald-
ram were in the GHz frequency range, we believe
that essentially the same phenomenon was in-
volved.

At a frequency ~ the inductive skin depth 5& is
related to the reactive part X of the surface imped-
ance of a sample by

To calculate the surface impedance we ignore for
the moment the spatial variation of the order pa-
rameter p produced by the impurities near the
sample surface and assume that g is spatially con-
stant and equal to its bulk thermal equilibrium
value. For convenience we normalize g so that in
this spatially homogeneous case it is equal to the
energy gap e,(T) in the single-particle excitation
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spectrum. The theory of Mattis and Bardeen is
directly appheable to this case. In this theory,
first-order perturbation theory is used to calculate
the current produced by a transverse-magnetic
vector potential A(r)e' '. The response is nonlocal
and is given by

the kernel

&( )- —"'2'
x e"""e "I'(1-u ')I(ro, It, T) .

;„,e'N(0)vz " R[R A(r')]

xI((u, R, T)e "I'dr',
where R=r'-r, l is the electronic mean free
path, v~ is the Fermi velocity, and I)I(0) is the
density of states at the Fermi surface (per unit
volume for one spin direction). The kernel
I(&u, B, T) is given by Mattis and Bardeen.

In the ease under consideration here it is more
convenient to work mith the Fourier components
of the vector potential and current and to consider

The current response j{gp'~~'+ " to a transverse
vector potential A(g)e'&~' ' '& is then given by

Hi) = —[&(q, ~)/V. ]A(4) .

The range of variation of the vector potential and
current is 5&, and therefore the important q values
are of order (6&) '. We identify the currents due to
supereonducting and normal electrons as aiising
from the real and imaginary parts of K(q, u), re-
spectively. Using the notation of Miller, ~ general-
ized to the case of finite mean free path, me can
write K(q, (o)

&(q ~) = ' dE[1 —2f(E+ff~)] lg(E)c(P, ~+r)+&(P, n+r)l
~&0-~5 Q)

dE 1 — E — E+5& g E —j. E u+, y

where

"...«[f())) f().'+I~))4)()l)-»&(~+)) A+I Z—))))+))G(o, H)),

o. =e,/kv~q, p=a, /Iv~q, r =1/qf,

E =( E —E (
~ E=[(E+'S(d) —e ]

g(E) —(E'+@~E+e')/q, e, f{E)=1/(esIrsr+1) is the Fermi function,

E(a, b) = dxe ' (sinx —xcosx) =—+ ln», —
2

tan ' +tan '~, sinax a 1+b'-a' b'+(1+a)' ab, 1+a,1 —a
0

y„cosQx b 1+b2 —a, 1 —a, 1+a ab b'+(1+a)2G(a, b)= dxe "
+ (sinx-xcosx)= —2+ 4

tan ' +tan ' +—In b,0
x' 2 4 b b 4 b'+ 1 —a'

In writing K(q, ~) in this form we have made two
assumptions. First, me have ignored pair break-
ing which can only occur if Sw& 2e0. To observe pair
breaking in Ta and Nb at 14 MHz mould involve
working within 1 p, K of T„whereas the phenomena
discussed in this paper occur at about 1 mk belom
T,. The second assumption is that retardation ef-
fects may be ignored, which requires (R&oe»)'~'5;/
{hv~) «1. This inequality is well satisfied for the
results considered here. Calculations including
retardation confirm that the effects are negligible.
Both these assumptions are also valid for the ex-
periments discussed by %aldram. '

The surface impedance Z, which gives the bound-
ary condition for electromagnetic fields at the
specimen surface, is defined by

Z =E(0)/II (0),
where E(0) andH(0) are the complex amplitudes at
the specimen surface of the electric and magnetic
fields, respectively. In terms of the kernel
K(q, &u), the surface impedance is given by

0

for diffuse scattering of electrons at the specimen
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surface. The calculation of Z for a specular sur-
face was also performed and led to results for the
peak in 5~ which were very little different from
those for a diffuse surface. The major contribu-
tion to the integral over q in Eq. (4) comes from
the vicinity of q = (5;) '. The kernel K(q, a&) was
obtained by the numerical integration of (2) and in-
serted into (4) to obtain Z. The inductive skin
depth was then obtained by using (2). The numeri-
cal calculations were accurate to about 1 part in
103.

Before comparing the experimental results with
the calculations, we will discuss the conditions
under which a peak in 5; might be expected to oc-
cur. We note that there are two special limits in
which the calculation of the surface impedance is
relatively straightforward, and we now consider
these-

A. Dirty limit l((6, , $0

[(0 is the BCS coherence length, hvF /mao(0)]

Zs /ZN (os /oN ) (6)

o~ is in general complex and is related to the zero-
q value of K(q, &u) by

o's -—o' —is =K(0, (o)/i(op

where 0, and 0, are the real and imaginary parts
of o& and are given by

[f(E) f(E+@~)]Z(E)dE, -
O'N SQ)

0

In this limit the normal metal exhibits the classi-
cal skin effect with a surface impedance

Z„=(1+i)((og,/2o )' '~cr ' '

where ON is the electrical conductivity in the nor-
mal state. The electrodynamics of the supercon-
ducting state is also local in this limit, and the
surface impedance Z~ is given by an equation simi-
lar to (5) in which the conductivity o„ is replaced
by an effective conductivity o& of the superconduct-
ing state. Z& is therefore given by

density of normal electrons in any simple two-
fluid model. The increase of o,/o„ from zero cor-
responds to the presence of an increasing density
of superconducting electrons. The locality of the
electrodynamics enables o, for k~«e, to be re-
lated simply to the dc penetration depth A.:

o,A.
' = 1/&ufo= , 2o„5;„, (6)

where 5;N is the inductive skin depth in the normal
state and we have used (2) and (5) to obtain the last
equality. Figure 1 shows the rise in o,/v„and
o's/o„with increasing eo just below T, for a BCS
superconductor with 5u = 0.00015KBT„which cor-
responds to the case of Ta at 14 MHz. Bearing in
mind the difference between the scales used for
v, /os and o,/o'„, it can be seen that the rise in
o', /o„ is very much bigger than that in v, /o'„ in this
case.

The sign of the change &5& in 5& on decreasing
T from T, will determine whether there is a peak
in 5, . From (6) we can easily show that

fN ~ g ~ f S N

2 ON O

IO

where 4(o,/v„) is the change in cr, /o„. The condi-
tion for a peak is then that the increase in o,/cr„
should dominate that in o,/o'„, and from Fig. 1

this is seen to be the case at low frequencies
[he«c, (0)]. As Waldram' points out, o,/o„ initial-
ly rises as e, for small e„whereas o,/o'„rises as
co, as can be seen from Fig. 1. For sufficiently
small e, therefore the change in o,/o„always dom-
inates. To see this effect, however, would involve
working with values of eo which are much smaller
than in the present work. We see from (9) that it

[1—2f (E +R,(u)] g (E)dE
~N @ q 0-he@

tanh for 5+ «c,«
5(0 2+BT

At low frequencies [Su&«e, (0)] as the temperature
is lowered through T, both a,/o„and o,/o„ increase
as e, increases. As discussed by Bardeen and
Schrieffer, the increase in o,/o„ from unity is due
to the very large density of states for excitations
just above the energy gap in a BCS superconductor.
This increase would correspond to an increasing

0.0 I

0 0.02 0.03 0.04

eTc0

FIG. 1. Conductivity ratios 0&/oN and 02/0& as functions
of ~0/EBT, near T for a superconductor with h~/KBT
=0.00015. (Note the difference between the scales for
~,/~ and ~,/~N. )
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is the superelectrons which cause the peak in 5;,
and this seems to be true generally. If we ignore
the small normal electron contribution then (9) is
essentially the first term in the expansion of b 5,/
5;„as a power series in (6,„/A.)', which is a small
quantity just below T, because A. diverges as T 7.', .
Using (8} we can write (9)

8. Limit BI&&1,$0

In this limit the normal metal exhibits the ex-
treme anomalous skin effect with a surface imped-
ance

This expression is obtained if we assume that for
all q of importance in the integral of Eq. (4) we
have ql » 1. We can then approximate K(q, e) by
its limiting form at high q/, which i.s

limK„(q, &o) =3ni p.,&uo„/4q/ .
al~~

(12)

In the superconducting state, the large-q form of
&(q, &g) differs only in that os is replaced by os,
where cr~ is the effective conductivity in the super-
conducting state defined by (7). The surface im-
pedance in the supercondueting state is therefore
given by

&s/&s=(os/os) ' .

This result bears such a strong resemblance to the
corresponding result [Eg. (6)] in the dirty limit
that the rest of the results for limit 8 are also
ve'. y similar. Corresponding to Eq. (9}we have

fN ~ g ~ for 8 N «].5 1 cr cr cr —cr

3 TSos os

so the condition for a rise in 5& below T, is that
(I/v 3)o,/a„& a(o,/o„), which is seen to be true
from Fig. 1 for a superconductor at low frequen-

Recalling that 5;~ is half the classical skin depth,
we find that this last result is Eq. (17) of Paper I,
from which it is easy to see that the decrease in
A. as T falls through T, implies an increase in 5;.
That 5; must go through a maximum and eventually
decrease as T falls still further can easily be seen
because at low temperatures o, »crg and as noted
in Paper I, 5; becomes very close to the dc pene-
tration depth A.(T) which is less than 5,„. Indeed
as T-O we have in the dirty limit

~(0) 2 N~ «]. at low fx'equencles.
rr e,(0)

eles.
Corresponding to Eg. (8) we have

WS 8 (r„,
l 2rr&up, o 3v3 I

and corresponding to Eq. (10) we find

5~ 27 A, dT 9 A. dT

A s in the dirty limit, 5; approaches A, at low tem-
peratures and must therefore drop below 5&„. As
2'-0, corresponding to Eq. (11), we find

X(0) 8hor «1 at low fx'equeneies.
5qrr v3gf o 0

That there shouM be a peak in 5; in the two very
different limits A and 8 discussed above suggests
that a peak might be observed in any limit. That
this is not so can be seen by considering a third
limit.

C. Limit $0(&5I
This limit is a good approxim3tion for Ta and

Nb at 14 MHz. In this limit the electrodynamics
of the supereondueting electrons is local so the
real part of K(q, &g) at low frequencies is just I/X',
as in limit A. If the electronic mean free path is
very short, then the electrodynamics of the normal
electrons is also local and limit A is simultane-
ously obtained. As the electronic mean free path
increases the nox'mal electrons become nonlocal
and limit A no longer applies. In both limits A
and 8 the normal electrons behave essentially as
in the normal state but with a conductivity 0, xather
than o„, We assume the same is true in limit C,
and K(q, ~) is given by

&(q, ~) = (o,/os)&s(q, ~) + I/&',

~blare K„(q, ~) is the kernel in the normal state.
This form of K(q, ~) may be inserted into Eq. (4)
to obtain the surface impedance and hence 5&. Near
T„h. is large; so the real part of K(q, or) is much
smaller than the imaginary part. &5;/5;„can then
be obtained as a power series in 5';„/A.', and (10)
gives the first term in this series in the dirty
limit. In the limit q/- ~, K„(q, &o) in Eq. (13) takes
such a simple form [see Eq. (12)] that the integral in
Eg. (4) may be performed exactly, without re-
course to a power series. The solution is, how-
ever, complicated, and the power series is more
useful fxom our point of view. As the electronic
mean free path is increased the coefficient of the
term in 6';s/X' decreases and vanishes for I » 5;„.
The leading term in the power series is then in
5(N/A, and we find

~5~/5;„= —0.5054„/A4 ——', h(a, /o „),
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where the second term which is due to the normal
electrons is sufficiently small that our assumption
as to the behavior of the normal electrons is not
crucial. In this limit of $,«5,„«l, therefore,
&6; is negative and there is no peak. This is con-
firmed by the computer calculations and explains
why no peak was observed in the purest Ta speci-
mens and also in some single-crystal specimens
of Sn and In which were also studied. Presumably
this also explains why Waldram observed a peak
at 3 GHz in dirty Sn specimens but no peak in
clean Sn specimens; but note that in clean Sn at
3 6Hz we have 6;„-go,

. so limit C is not a good
approximation in this case.

The conclusions to be drawn from the considera-
tion of the three special limits discussed above are
that in a superconductor for which the extreme
anomalous skin depth in the normal state 5„„is
less than $, a peak in 5» is likely to be observed
whatever the value of l. Such a material would

pass from limit B to limit A as l is decreased. On

the other hand, superconductors for which 5„„&$,
such as Ta and Nb at 14 MHz are unlikely to ex-
hibit a peak in 5; for large l but should exhibit a
peak as l is decreased.

IV. COMPARISON OF THEORY AND EXPERIMENT

The phenomenon is illustrated by the transition
for a Ta specimen shown in Fig. 2. Figure 3 shows
a more expanded version of the peak in two Ta
specimens of resistance ratios (RR) 270 and 410.
(We define RR to be the ratio of the resistivity at

1000—

&I 500—

0.0004 0.0002
I
-T/T

C

FIG. 3. Experimental results of 46; as a function of
1—T/T~ for two Ta specimens of RR 270 and 410. Also
shown are the theoretical results of the theory of Mattis
and Bardeen if no allowance is made for the variation in

|I) near the sample surface. Curves 1 and 3 are theory
and experiment, respectively, for RR 270, and curves
2 and 4 are theory and experiment, respectively, for
RR 410.

2000—

300'K to that at T, .) Figure 4 shows the peak in

two Nb specimens of RR 170 and -1000 (estimated).
We note that the peak height decreases as E in-

creases, in agreement with the conclusions of Sec.
III. If we ignore for the moment the spatial varia-
tion of the order parameter g that is produced by

the impurities near the sample surface and assume

that g is spatially constant and equal to its BCS

To I 500—

13.800
0C[

40 1000—

Nx
X

D
Z
D
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500—
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I

44904.427
I 1

4.4 48 - 4.469
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FIG. 2. Experimental data indicating variation of 6;
with T for a Ta specimen with a resistance ratio of 600.

0.0006 0.0004 0.0002 0
1-T/T

C

FIG. 4. Experimental results of A6; as a function of
1—T/T~ for two Nb specimens of RR 170 and -1000.
Also shown are the theoretical results of the theory of
Mattis and Bardeen if no allowance is made for the varia-
tion in g near the sample surface. Curves 1 and 3 are
theory and experiment, respectively, for RR 170, and

curves 2 and 4 are theory and experiment, respectively,
for RR -1000.
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equilibrium value e,(T), we may use the theory of
Mattis and Bardeen which is described at the be-
ginning of Sec. III to calculate the theoretical
curves for 5& as a function of T. These are also
plotted in Figs. 3 and 4. The theoretical curves
display the expected qualitative dependence on l.
For the Ta specimens the theoretical peaks are
slightly higher than the experimental ones. For
the Nb specimen with a RR of 170 the heights of
the theoretical and experimental peaks are very
similar but the height of the theoretical peak for
a specimen of RR 1000 is very much less than the
experimental peak for the specimen of RR-1000.
For both Nb and Ta the theoretical peaks occur
much closer to T, than the experimental peaks.
We believe that these discrepancies are due to two
factors: an uncertainty in the values of N(0), v~,
and l to be used in the theoretical calculation and
the spatial variation ot' g produced by the impuri-
ties near the sample surface.

The values of N(0) and v~ which were used in the
theoret. ical calculations were obtained from the
measured values of o/1 [=-',e'N(0)vz] and A~2(0)(=3/

[2p,e'N(0), v~] }for Ta and Nb. Obtaining N(0) and

v~ in this way ensures that the theory correctly
predicts for pure Ta and Nb the normal-state skin
depth for T just above T„which depends only on
o/l, and the superconducting penetration depth for
T just below T„whi hcdepends only on X~ (0). l

was obtained from the RR of the specimen and the
measured value of o/l. The resistivities of Ta
and Nb at room temperature were assumed to be
13.1 and 14.5 p, Q cm, respectively. ~ a /l was ob-
tained from measurements of the normal-state in-
ductive skin depth 5;„ in different specimens.
Figure 5 shows a plot of 1/5';„against the conduc-
tivity for the specimens. The theoretical curves
are obtained from the theory of the anomalous
skin effect' by using values of o/l of 1.4, 1.7, and
2.0x10" 0 'm '. We deduce that the value of o/l
for both Ta and Nb is of order 1.7X10"0 'm '.
This value of o/l for Ta agrees with that used by
Auer and Ullmaier. ' For Nb, this value of o/l is
intermediate between that used by Auer and Ull-
maier (2.14x 10"0 'm ') and that used by Hopkins
and Finnemore' (0.92x1(l" Q 'm '). A~(0) values
for Ta and Nb were taken from Paper I to be 350
and 315A, respectively.

From Az (0) and o/l we obtain N(0) = 2.6 and 2.1
x10 ' J 'm for Ta and Nb, respectively, to be
compared with the higher values obtained from
specific-heat measurements" of 4.2 and 5.6~10 '
J 'm '. We obtain v~=3.8 and 4.7&&10' msec '
for Ta and Nb, respectively. From e~ and the
measured value of T, it is possible to calculate $,
and hence the Ginzburg-Landau parameter Ko of
the pure metal. This gives Kp 0.29 and 0.44 for

6
C4

I

5
. O

z4
C4—
40

IO

cr(IO Q 'm ')

I

l5

FIG. 5. Experimental results of normal-state skm
depth at T~ as a function of the electrical conductivity
for a variety of Ta and Nb specimens. The three theo-
retical curves are from the theory of the anomalous skin
effect and correspond to values of 0/l of 1.4, 1.7, and
2.0 x 1015g-im-2

I 000

—500
CI

0.000 I 0.00005
I
—T/T

C

FIG. 6. Theoretical curves for 46& for Nb as a func-
tion of 1-T/T, for values of RR of 400, curve 1; RR of
700, curve 2; and RR of 1000, curve 3. No allowance is
made for the variation of g near the sample surface.

Ta and Nb, respectively, lower than the experi-
mental values of 0.35""and 0.76."" Such discre-
pancies as these are always likely when, as here,
a pseudo-free-electron model of a metal is used
in which the normal state is characterized by just
two parameters N(0) and v~. These discrepancies
can only be overcome by using a more complicated
theory which includes the detailed band structure
of the metal and many-body effects such as the
electron-phonon interaction.

The uncertainty in the values to be used for N(0),
v~, and I, introduces a large uncertainty into the

height of the peak in 5, . To illustrate this we show

in Fig. 6 how the theoretical peak for Nb is affected
by changing l but keeping N(0) and v~ constant.
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This is equivalent to changing the RR, and Fig. 6
shows curves for values of RR of 400, 700, and
1000. It can be seen that the height of the peak is
dramatically changed but that the temperature at
which it occurs is only slightly affected. We there-
fore tentatively associate much of the discrepancy
between the heights of the experimental and theo-
retical peaks with the large uncertainties in the
parameters discussed above, in particular the un-
certainty in o/l for Nb. We must, however,
search for another explanation for the discrepan-
cies in the widths of the theoretical and experi-
mental peaks.

This explanation is easily found. In Paper I, in
order to explain dc-penetration-depth measure-
ments in the same Ta and Nb specimens, it was
necessary to include the effects of the impurities
near the sample surface by using the boundary con-
dition (1) for the Ginzburg-Landau order parameter
g at the sample surface. On solving the Ginzburg-
Landau equation for g with the boundary condition
(1), we find that g is depressed near the surface
below its value e,(T) deep in the bulk. Note that
the peak in 6; occurs so close to T, that the use of
the Ginzburg-I, andau equation gives only a small
error. The value g, at the surface is given by

go= ~co(T)[(c +4)'~' —cj,
where c =v 2$(T)/b and $(T) is the Ginzburg-Lan-
dau coherence length, which in the pure material

$(T) = 0.74$ (1 —T/T, )
' ' .

If we assume that b is only weakly temperature
dependent then as T T, , $(T) diverges, c becomes
large, and Po is depressed considerably below

co(T). For go«eo(T) we may write

q,/e, (0) = 1.23(l —T/T, )b/$(0) . (14)

Figure 7 shows a plot of g,/e, (0) against 1 —T/T,
for various values of ((0)/b. These curves are
valid for any BCS superconductor. Also plotted
in Fig. 7 is e,(T)/e, (0), and it can be seen that as
T falls below T„p, rises more slowly than e,(T).
We might expect therefore the experimental peaks
to occur at lower temperatures than the theoreti-
cal ones, and Figs. 3 and 4 show this to be the
case.

It is possible to use the discrepancies in the
widths of the experimental and theoretical peaks
to derive values of $(0)/b for the specimens of
Figs. 3 and 4 as follows, Provided that $(T)» 5~,
which is true in the relevant temperature range,
we can assume that the value of g which deter-
mines the surface impedance is $0. This quantity
is the effective energy gap in the specimen. In
the region very close to T„ the only parameter in

0.04—
I I I

f (0)/ b =0 ( BCS EQU I LI BR I UM L I N E)

0.05—

&0.,(0)

0.02—

0.0 I

0.0004

the theory of Mattis and Bardeen which is varying
significantly with temperature is the energy gap

The inductive skin depth in this temperature
region is then a function only of the energy gap in
the specimen. A comparison of the experimental
and theoretical curves of Figs. 3 and 4 therefore
enables us to deduce (, as a function of T for each
specimen. To overcome the previously discussed
problem of the discrepancy between the height
of the theoretical and experimental peaks, we
normalized the theoretical peaks to make the
heights equal.

The results obtained for g,/e, (0) are shown on
Fig. 7. For the two Ta specimens the results are
near to the theoretical curve for ((0)/b =0.02,
which was the value of $(0)/b used in Paper I to
explain the dc -penetration-depth measur'ements
in pure Ta. For the pure Nb specimen a value of
$(0)/b of about 0.03 is indicated. A large renor-
malization of the theoretical results was required
for this specimen in order to make the heights of
the experimental and theoretical peaks equal.
This casts some doubt upon the results for this
specimen. However, the value of $(0)/b is in rea-
sonable agreement with the value of 0.02 from
Paper I for pure Nb specimens and also with the
value of 0.02 obtained by Hopkins and Finnemore
in a pure Nb specimen. This latter agreement is
perhaps surprising in that b might be expected to
depend on the detailed nature of the specimen sur-

0.0002 0
I-T/Tc

FIG. 7. Continuous lines are theoretical plots of
(p/ &p (0) as functions of 1—T/T, for various values of
$ (0)/b, where gp is the order parameter at the surface
of the specimen and b is the extrapolation length which
appears in Eq. (1). The discontinuous curves are for the
specimens indicated and were obtained from the experi-
mental results of Fig. 3 and 4 in the manner described in
the text.
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face and therefore to vary from one specimen to
another, particularly if the two specimens are
prepared by different workers. For our dirtier
Nb specimen we obtain $(0)/b =0.04, which is ap-
parently less than the value for this specimen
from Paper I. However, this disagreement is to
be expected since the values of $(0)/b obtained
from dc-penetration-depth measurements are
likely to be in error for the dirtier Nb specimens
for reasons which involve problems of surface
roughness and inhomogeneities, as discussed in
Paper I. In these present considerations where
A. & 5; and both quantities are probably greater than
the distance which characterizes surface rough-
ness or inhomogeneities more ideal values of
((0)/b are likely to be obtained. For a Nb speci-
men of RR 150 Hopkins and Finnemore obtained
$(0)/b =0.029, which is much closer to the value
obtained in our specimen from Fig. 7. The results
shown in Fig. 7 are a striking verification of the
need to take into account the effect of the sample
surface on the measurement of the superconducting
properties that are restricted to the surface such

as the ac skin depth.
From Eq. (14) we see that g, rises from zero

with a finite slope for T& T„unlike e,(T) which
rises with infinite slope. It follows from this and
the theory outlined in Sec. III that 6& as a function
of T should have zero slope at T, . This leads to an
uncertainty in the determination of T, for each
specimen of about 0.2 mK. The corresponding un-
certainty in the experimental values of &5; for T
near T, is indicated in Figs. 3 and 4 by the use of
dotted lines. In practice T, was adjusted to obtain
as good a fit as possible between experiment and
theory in Fig. 7. This uncertainty in T, is suffi-
ciently small that no significant error was involved
in using in Paper I the value of T, determined by
the method described there.
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