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Josephson tunneling current in the presence of a time-dependent voltage
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(Received 16 October 1974)

The expression for the current through a small Josephson tunnel junction in the presence of a
time-dependent voltage is presented. Four terms appear: the usual sine, cosine, and quasiparticle terms,
and a reactive part of the quasiparticle current. The latter is displayed graphically as a function of
both energy and temperature. It is shown that in the limit of zero dc voltage and small ac voltage, the
Josephson device behaves linearly. Interpretation of the in- and out-of-phase components of the current
in this linear limit is given to provide physical insight into some of the details of the general
expression. Finally, the tunneling current in the linear limit is shown for thin tunneling barriers to be
proportional to the current in a single superconductor in the presence of an electromagnetic fieM.

I. INTRODUCTION

The theoretical expression for the current through,
a small Josephson tunnel junction is quite com-
plicated and seemingly defiant to intuitive physical
interpreta, tion. In this paper we will introduce the
general expression for the current and then con-
sider a special case in which physical insight is
possible. ODe term 1D the geDexRl expxess3. 0D, a,

reactive part of the usual quasiparticle current,
has not previously been discussed in detail. It is
given graphically as a, function of energy and tem-
perature. Then it is shown that when the genera, l
expression for the tunneling current is speciabzed
to the case of a small sinusoidal voltage the junc-
tion behaves linearly and contains terms ea.sily
identifiable as components in and out of phase with
the applied voltage. The intexpretation of all of the
terms then becomes more clear. Finally it is
shown that the expression for the tunneling current
in the limit of lom junction resistance is propor-
tional to that for the current in a single supercon-
ductor exposed to Rn electromagnetLc field,

II. GENERAL EXPRESSION FOR THE TUNNELING
CURRENT

%6 have generalized an unpublished calculation
by Schrieffer to include voltages having arbitrary
time dependence. The resulting, rather general,
form of the tunneling current follows:

=lm d&a& d&u'[ U*(&o)U(co') e'~" " "I~(he')

+ U(&o) U(~') e ""'""I~(A&o')] (l)

ue of tbe charge of tbe electron. The complex-
valued funcbon Iqp Imp+ $Iqpp describes the flow of
qua. sipa, rticles. Iq~s is rea,l and tbe usua, l quasi-
particle current. 4 (In Ref. 4, I,~3 is labeled I,~. )
Iqpg ls x'eal RDd ls R reactive part of the quaslpar-
ti,cle current. It mill be discussed further belom.
The complex-vatued function I~ = I«+ iE~& describes
the Josephson terms. I~, is the amplitude of the
usual Josephson current, sometimes called the
sine term. 5~3 is the amplitude of the cosine term.

It is interesting to note that all of the details of
the superconductivity enter Eq. (l) primarily
through the functions I,& and I~. In a,ddition, of
course, the general form of the equation is man-
dated by the existence of superconducting elec-
trodes. The driving voltage, on the other hand,
enters solely through the function U(a&).

In the derivation of this equation, it is assumed
that at all times the superconductors on each side
of the insulating barriex are described as equilib-
rium superconductors of negligible spatial extent.
In a real junction, of course, equilibrium may be
disturbed for la,rge currents. Furthermore, the
theory does not include losses occurring in the
superconductors themselves due to the high fre-
quency currents which commonly flow in these de-
vices. Finally, because tunne1ing is introduced
using a perturbation approach, the result is strict-
ly valid only in the limit of low coupbng between
the two supereonducting electrodes.

Equation (l) agrees with the general result pre-
viously obtained by %erthamer, ' but not with
Werthamer's result at T =O. Details are discussed
in the reference to Werthamer.

exp -i— V t' dt'- —,'i+0 = Ugu e '"'de .
4{j

In the above, V(t) is the voltage appearing across
the junction, t is the time, h is Pla, nck's con-
stant divided by 2~, po is a constant phase deter-
mined by the circuit, s Rnd e is the absolute val-

III. REACTIVE PART OF THE QUASIPARTICLE CURRENT

our functions Iqpgp Iqp2p IJ fx Rnd IJ'2 con
taining the details of the superconductivity in Eq.
(l), the last three have been discussed in Ref. 4.
These three functions are the only ones which en-



3330 RIC HARD E. HARRIS

0.25

0.0
O
CV

K -0.25

-0.50

10
Ol

+

~&l

0.5
K
O
04
O.
CF

-0.75
I

0.5
e~/m, (0)

1.0 1.5

FIG. 1. Reactive part I~~ of the quasiparticle current
for identical superconductors.
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FIG. 3. Usual quasiparticle current lq&2 for different

superconductors.
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FIG. 2. Reactive part I~&~ of the quasiparticle current
for different superconductors.

ter expressions for the time-dependent current
through a Josephson tunnel junction when the volt-
age is constant, and the only ones which enter the
expression for the time-averaged current when a
more general voltage appears across the junction.
These are the only cases considered in Ref. 4.

However, when a time-dependent voltage appears
across the junction, the time-dependent part of the
current also depends on the additional function I,»,
which we call the reactive part of the quasiparticle
current.

Larkin and Ovchinnikovs have given a formula
which we have used to numerically evaluate I,~, as
a function of energy A~ and temperature T'. We
restate this formula here for completeness:

((d' —(d) {)(&1—I
(o' —(d I ) e( I

(O'
I
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Definitions of the quantities in Eq. (2) are given in

Ref. 4. Note that we have used 5=1 in this equa-
tion. The function is plotted in Fig. 1 for identical
superconductors on each side of the insulating bar-
rier.

It can be shown algebraically, and more physi-
ca11y in Sec. IV, that I,» is the Kramers-Kronig
transform of the usual quasiparticle current I,».
I,» is plotted as a function of energy A~ in Fig. 1
for several reduced temperatures. The logarith-
mic singularity in I,» at 2A seen in Fig. 1 thus re-
sults from the Kramers-Kronig transform of the
corresponding abrupt jump in the quasiparticle
current at 2~.

When the superconductors are different, the log-
arithmic singularity in I,~, occurs at 4, +4& and
again corresponds to the onset of the usual quasi-
particle current at that energy. Here, in addition,
a step is seen in I,» at the difference in the energy
gaps 4& —&&. This step arises from the Kramers-
Kronig transform of the logarithmic singularity in
Iqp2 at the diff e rene e in the energy gaps. In Fig. 2

we show I,~, evaluated for a hypothetical case in
which b,2(0) =34,(0), the same case considered for
the other three functions in Ref. 4. The reduced
temperature t, = T/T„ is that for the superconduc-
tor having the smaller energy gap. For reference
we have plotted in Fig. 3 the usual quasiparticle
current I,» for the same cases for which I,» is
plotted in Fig. 2.

As can be seen also in Fig. 2, structure still re-
mains in I,» when only one of the electrodes is
superconducting. This is a necessary consequence
of the structure remaining in I,» under the same
circumstances. In contrast, both I~, and I&& van-
ish whenever either electrode is normal, since
these functions involve the tunneling of pairs which
is not possible when one electrode is normal.

One additional point may be useful. It can be
shown that adding a constant to Iq~~ does not change
the value given by Eq. (1) for the current. Thus
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we have chosen this arbitrary constant so that I,»
vanishes for large argument. We prefer this be-
cause one expects the superconducting device it
describes to behave like a normal device at high
frequencies. 6

IV. LINEAR LIMIT OF A JOSEPHSON JUNCTION

Since the quantities I & and Iz have real and
imaginary parts which are the Kramers-Kronig
transforms of each other, it is natural and will
turn out to be vexy helpful to further specialize
E[I. (I) to the case for which the Kramers-Kronig
relations are derived. ' There axe three usual
general conditions assumed in this derivation.
First is that the process described is casual, an
assumption not likely to be violated in a Josephson
tunnel junction. Second, the response of tbe device
to a disturbance must be bounded, again an ex-
pected result in a real physical system. 8 Finally,
the response must be linearly related to the dis-
turbance. That is, in this case, that the current
must be linearly related to the voltage. This last
assumption is usually violated in a nonlinear de-
vice like the Josephson junction.

The tunneling current is, however, linear in the
special case of Eq. (I) in which the voltage is pure-
ly sinusoidal [V(t) = vcos(dt] and is small (eV/h&@

«I). In this case, the Kramers-Kronig assump-
tions are satisfied. The linear relation between
current and voltage has the following form:

y(t) = —I~,(0) sin(][)0

—I&~ 0 sin(dt

s[1os(etc)]cocci} .

8
+ v cos go —[IJ~(h (0) + Iz~ (0)] sin(d t

+[I„(lftc)]coo|co}.

The physical significance of each of the terms in
this equation can readily be seen. The first term
is tbe usual dc Josephson supercurrent. The mi-
nus sign results because X« is a negative number
using the sign convention of Ref. 4.

The second and third terms of E[I. (3) (in large
curly brackets) give the time-dependent parts of
the quasiparticle and Josephson currents, each of
which has a part out of phase and a part in phase
with the applied voltage. These are the texms
propoxtional to sinwt and cos& t, respectively.
In discussing the amplitudes of these terms below,
we have divided by the amplitude v of the time-
dependent voltage, obtaining quantities having the
units of conductance.

The second term of E(I. (2) gives the out-of-
phase and in-phase parts of the quasiparticle cur-

rent. The amplitude of the former is described by
—(e/A&@)[I,&&(k(d) —I,&&(0)] and that of the latter is
(e/h~)I~~(k&()). It might appear that an extra mi-
nus sign has arisen. It was stated earlier that I,&j

and I~3 are the Kramers-Kronig transforms of each
other. By simple manipulations of tbe Kramers-
Kronig relations it follows that (e/h&u)I~&(A&@) and
—(e/ku&)[I, ~, (h&o) —I,~, (0)] are the real and imagi-
nary parts, respectively, of another complex-val-
ued function whose real and imaginary parts are
the Kramers-Kronig transforms of each other.
Thus the minus sign accompanies tbe h(d in the
denominator of the amplitudes.

The third term in E[I. (3) gives the Josephson
contribution to the tunneling current. Tbe out-of-
phase part of the Josephson current is -cos(][)0(e/
+(())[&qq(k(d)+ Iq~(0)]. Thus the out-of-phase part
arises from the usual Josephson, or sine, term.
The in-phase part has amplitude cospp(e/k(())
xI~z(ku&) and thus arises from the cosine term I~2.
Both the out-of-phase and in-phase Josephson
terms are modulated by cospo, where po is the
usual constant phase difference.

Qf course the out-of-phase parts of the current
are lossless and the in-phase parts lossy. The
dissipation is simply calculated from

] ( T

I =h.m — s(t) V(t)dt
Tao

gluing

I = 2 5 Iqpa A(d +Cos+OIga 8(d

Thus it is clear that the quasiparticle current is not
purely lossy because I,» does not enter the expression
for the dissipation. We can therefore denote I,~~ as a
reactive part of the usual quasiparticle current I,».
On the other hand, one sees that the Josephson cur-
rent is not purely lossless because I~, does enter
the expression for the dissipation.

It should be noted that in E(I. (3) the (Iuasiparticle
and Josephson parts of the tunneling current are
separated only because they are conventionally
considered separately. From an experimental
point of view what is observed is the sum of these
two parts of the current. While the sums of the
quasiparticle and Josephson contributions to the
in- and out-of-phase pax ts of the tunneling current
can be measured using well-known techniques, more
effort is required to separate the quasiparticle and
Josephson contributions. Another parameter must
be varied, such as the phase yo or the temperature.

Although the preceding applies rigorously only
to tunnel junctions, it suggests that theories of
other kinds of Josephson devices may have the
same sort of linear limit in which the Kramers-
Kronig relati. ons apply. For any kind of device
there may then be quantities corresponding to I,~
and I& which can be measured and which may be a
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significant experimental test of any theory to be
developed.

V. RELATION OF TUNNELING TO CONDUCTIVITY OF
SINGLE SUPERCONDUCTOR

As in Ref. 4, Josephson tunneling can be looked
at in terms of the coherence effects which domi-
nate many different kinds of experiments on super-
conductors. In Ref. 4, it is shown that the Joseph-
son effect exhibits the same type of coherence ef-
fects as the response of a single superconductor
to electromagnetic radiation. This is intuitively
reasonable because in the limit in which the tun-
neling barrier has zero thickness, one expects Eq.
(3) to describe a single superconductor except, for
a constant factor. Normalizing Eg. (3) to the nor-
mal state current removes the constant factor.
Vfe now note that because no constant phase differ-
ence can develop in a, single superconductor, set-
ting po =0 in Eq. (3) should give the normalized
expression for the current in a single supercon-
ductor. Aside from the supercurrent, we carl ex-
press the resulting relation between current and
voltage as a complex conductivity a = o;+ iaa (Ref.
10) where

[f,~z(he) + IJ 3(8'&u)],

Indeed, as suggested by the notation, this simply
reproduces the Mattis and Baxdeen expression"
for the complex conductivity of a single supercon-
ductor in the local limit. Equation (4) relates
tunneling a.nd the response of a. single supercon-
ductor to electromagnetic radiation. This relation
demonstrates that tunneling is yet another example
of the many experiments on superconductors which,
although seeming to differ widely, can be accurate-
ly described in terms of the coherence effects
originally discussed by BCS.'

In the preceding we have given the general ex-
pression for the Josephson tunneling current in the
presence of a time-dependent voltage. Vfe have
shown that it can be applied to a simple ca,se in
which physical interpretation of the components of
the current i.s possible because the junction be-
haves linearly in that case. Finally a, relation is
given between the components of the tunneling cur-
rent and the conductivity of a, single superconductor
in the loca, l limit.

It is a please for the author to acknowledge a
stimulating note by M. R. Beasley and M. Tink-
ham. ~3 Several conversations with J. R. Schrief-
fer and the use of his unpublished notes on tunnel-
ing are also greatly appreciated. We are indebted
to D. N. I angenberg for providing his unpublished
study of Schrieffer's calculation; we used his study
extensively. Discussions with D. G. McDonald, 8.
Shapiro, and E. B. Treacy have also been helpful.
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Eq. (1) is algebraically equivalent to the result of
Wertharner as expressed in his Eqs. (11) and (12).
However, the I,& used here is the negative of the com-
plex conjugate of %'erthamer's j~ (I,&= —j~). Unfortu-
nately, Vferthamer's Eq. (13) and his Fig. 2 present

I~I, even though labeled j&. Furthex'more, although j2
as defined by Werthamer in Eq. (12) is identical with

our I~ (I~=j2), his Eq. (13) and Fig. 2 give -Iz even,

though labelled j,. To simplify Werthamer*s Eq. (11),.
vre have introduced U((d) which includes both the con-
stant and time-dependent parts of the voltage across
the junction; he introduces the constant part explicitly
in a phase y(t). Finally, Werthamer includes the pos-
sibility of a spatial variation in the phase vrhich vre ne-
glect for a, small junction.

2J. R. Schrieffer, private communication. D. N. Lang-
enbcrg, D. J. Scalapino, and J. R. Schrieffer (un-
published) .

Another vray of thinking about yo demonstrates that it is
determined by the history of the voltage applied to the
junction. The expression defining U(cv) in Eq. (1)
arises formally in the theory as

exp -i-('~ V(t') dt' = U((d)e " d(u.

Cofnparing this vrith the form used in Eq. (1) shovrs

that y, = 2 {e/ri) j'„V(t ')dt '.
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~A. I. Larkin and Yu. ¹ Qvchinnikov, Zh. Eksp. Teor.
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6In Ref. 1, Vferthamer chooses this constant so that I~&~
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edited by F. Seitz and D. Turnbull (Academic, New

York, 1963), Vol. 15.
The singularities found in I~p and I~ seem to indicate
that the response of the Josephson. tunnel junction is
not bounded. In a real device the singularities are
broadened into peaks and thi, s difficulty is not present.
In the theory the singula. rities are logarithmic and

therefoxe have finite integrals suggesting that they rep-
resent the proper limit of very narrovr peaks to be
found in a nearly ideal device.

9This intuitive argument was pointed out to the author by
M. Tinkham. Although the result of this argument
agrees with that of the theory, rigorous justification of
the argument may 'be rather involved.
It is imperative to note here that we have used the time
dependence conventionally used by physicists: e "~.
The time dependence conventionally used by electrical
engineers and physicists studying the far-infrared prop-
erties of superconductors is e~"~. Often one can con-
vert from one approach to the other by substituting j
for -i. The effect of these differing conventions upon
the complex conductivity of a single superconductor is
discussed briefly in a footnote by D. M. Qinsberg and

L. C. Hebel in Supewcondletivity, edited by R. D.
Parks (Dekker, New York, 1969), p. 206. Cnanging
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the convention also changes the sign of the Kramers-
Kronig relations. For example, Ref. 4 uses the phys-
icists' convention while the engineers' convention is
used by M. J. Stephen, Phys. Lett. A 46, 289 (1973).
D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412
(1958).

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys.
Rev. 106, 162 (1957); 108, 1175 {1957).
The substance of this note will appear in M. Tinkham,
Introduction to Superconductivity (Mcoraw-Hill, New
York, to be published).


